Mathematical Society of the Republic of Moldova
Vladimir Andrunachievici Institute of Mathematics and Computer Science

Tiraspol State University
Information Society Development Institute

Proceedings IMCS-55

The Fifth Conference of Mathematical Society of the Republic of Moldova

dedicated to the 55th anniversary
of the foundation of Vladimir Andrunachievici Institute
of Mathematics and Computer Science

CZU [51+004](478)(082)
 C 65

Copyright (c) Vladimir Andrunachievici Institute of Mathematics and Computer Science, 2019.
All rights reserved.
VLADIMIR ANDRUNACHIEVICI INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCE
5, Academiei street, Chisinau, Republic of Moldova, MD 2028
Tel: (373 22) 72-59-82, Fax: (373 22) 73-80-27,
E-mail: imam@math.md
WEB address: http://www.math.md
Editors: Mitrofan Choban, Inga Titchiev.
Authors are fully responsible for the content of their papers.

Descrierea CIP a Camerei Naționale a Cărţii

"Conference of Mathematical Society of the Republic of Moldova", (5;2019; Chişinău). The Fifth Conference of Mathematical Society of the Republic of Moldova : dedicated to the 55th anniversary of the foundation of Vladimir Andrunachievici Institute of Mathematics and Computer Science, September 28 October 1, 2019 Chisinau, Republic of Moldova : Proceedings IMCS-55 / ed.: Mitrofan Choban, Inga Titchiev. - Chişinău : Vladimir Andrunachievici Institute of Mathematics and Computer Science, 2019 (Tipogr. "Valinex"). - 346 p. : fig., tab.

Antetit.: Mathematical Vladimir Andrunachievici Inst. of Mathematics and Computer Science Soc. of the Rep. of Moldova, , Tiraspol State Univ. [et al.]. Referințe bibliogr. la sfârşitul art. - 150 ex.

ISBN 978-9975-68-378-4.
[51+004](478)(082)

ISBN 978-9975-68-378-4

This issue is supported by grant 19.00059.50.03A/MS, "IMCS-55 - The Fifth Conference of the Mathematical Society of Moldova - international conference dedicated to the 55th anniversary of the foundation of the Vladimir Andrunachievici Institute of Mathematics and Computer Science".

Investigation of Some Cryptographic Properties of the 8x8 S-boxes Created by Quasigroups

Aleksandra Stojanova, Dušan Bikov, Aleksandra Mileva, Yunqing Xu

Abstract

We investigate several cryptographic properties in 8-bit Sboxes obtained by quasigroups of order 4 and 16 by different methods. The best produced S-boxes so far are regular and have algebraic degree 7 , nonlinearity 98 (linearity 60), differential uniformity 8 , and autocorrelation 88.

Keywords: Nonlinearity, differential uniformity.

1 Introduction

The main building blocks for obtaining confusion in all modern block ciphers are so called substitution boxes, or S-boxes. Designers of block ciphers very often choose S-boxes with special cryptographic properties, which means high nonlinearity (or low linearity), low differential uniformity, high algebraic degree, low autocorrelation and regularity (balance). The well known fact is that the bijective S -boxes are always regular. The AES S-box is the example of the best found 8 x 8 S-boxes, which is optimal with respect to most of the cryptographic properties (with algebraic degree 7, nonlinearity 112 (or linearity 32), differential uniformity 4 , and autocorrelation 32).

Let \mathbb{F}_{2} denote the Galois field with two elements, and let \mathbb{F}_{2}^{n} denote the vector space of binary n-tuples over \mathbb{F}_{2} with respect to addition \oplus and scalar multiplication. An n-ary Boolean function is a function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$. A Boolean map is a map $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m},(m \geq$ 1). Every Boolean map S can be represented as: $S\left(x_{1}, \ldots, x_{n}\right)=$
$\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), f_{2}\left(x_{1}, \ldots x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$. Each f_{i} can be represented in ANF as $f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\bigoplus_{I \subseteq\{1,2, \ldots, n\}} \alpha_{I}\left(\prod_{i \in I} x_{i}\right)$, where $\alpha_{I} \in \mathbb{F}_{2}$.

For all $\mathbf{x} \in \mathbb{F}_{2}^{n}$, the Walsh-Hadamard transform $W_{f}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ of f is $W_{f}(\mathbf{x})=\sum_{\mathbf{a} \in \mathbb{F}_{2}^{n}}(-1)^{f(\mathbf{a}) \oplus \mathbf{a} \cdot \mathbf{x}}$, where $W_{f}(\mathbf{x}) \in\left[-2^{n}, 2^{n}\right]$ is known as a spectral Walsh coefficient, while the Autocorrelation transform of f is $A C T_{f}(\mathbf{x})=\sum_{\mathbf{a} \in \mathbb{F}_{2}^{n}}(-1)^{f(\mathbf{a}) \oplus f(\mathbf{a} \oplus \mathbf{x})}$, where $A C T_{f}(\mathbf{x}) \in\left[-2^{n}, 2^{n}\right]$ is known as a spectral autocorrelation coefficient. The autocorrelation (absolute indicator) of f is $A C(f)=\max _{\mathbf{x} \in \mathbb{F}_{2}^{n} \backslash \mathbf{0}}\left|A C T_{f}(\mathbf{x})\right|$. The nonlinearity of a Boolean function f is defined as $N L(f)=2^{n-1}-\frac{1}{2} \max _{\mathbf{x} \in \mathbb{F}_{2}^{n}}\left|W_{f}(\mathbf{x})\right|$, while the linearity of f is defined as $L(f)=\max _{\mathbf{x} \in \mathbb{F}_{2}^{n}}\left|W_{f}(\mathbf{x})\right|$. They are related by the equation $L(f)+2 N L(f)=2^{n}$.

For Boolean map S we have the following definitions [2, 3]:

- Algebraic degree: $\operatorname{deg}(S)=\max _{i \in\{1,2, \ldots, m\}}\left\{\operatorname{deg}\left(f_{i}\right)\right\}$
- Nonlinearity: $N L(S)=\min _{\mathbf{v} \in \mathbb{F}_{2}^{m} \backslash\{\mathbf{0}\}} N L(\mathbf{v} \cdot S)$
- Linarity: $L(S)=\max _{\mathbf{v} \in \mathbb{F}_{2}^{m} \backslash\{\mathbf{0 \}}} L(\mathbf{v} \cdot S)$
- Autocorrelation: $A C(S)=\max _{\mathbf{v} \in \mathbb{F}_{2}^{m} \backslash\{\mathbf{0}\}} A C(\mathbf{v} \cdot S)$
- Differential uniformity: $\Delta(S)=\max _{\mathbf{u} \in \mathbb{F}_{2}^{n} \backslash\{0\}, \mathbf{v} \in \mathbb{F}_{2}^{n}} \mid\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid S(\mathbf{x}) \oplus S(\mathbf{x} \oplus\right.$ $\mathbf{u})=\mathbf{v}\} \mid$

2 Main Results

Mihajloska and Gligoroski [1] constructed optimal 4x4 S-boxes from quasigroups of order 4, by using four e quasigroup transformations, alternating in normal and reverse mode (in a sense that they apply the string in reverse order - oe). We investigate several cryptographic properties of the 8 x 8 S-boxes obtained by similar constructions with quasigroups of order 4 and 16. In some of the constructions we combine quasigroup transformations with the addition of 2 -, 4 -, or 8 -bit constants.
$\underline{\text { Investigation of Some Cryptographic Properties of the 8x8 S-boxes... }}$
Method 1 - alternate use of e and oe transformations generated by quasigroups of order 4 , like in [1]. Part of the results are given in Table 1, where neoe type means that there are total of n quasigroup transformations.

Table 1. Method 1 - part of the results

Type	$\mathrm{NL}(\mathrm{S})$	$\mathrm{L}(\mathrm{S})$	$\Delta(S)$	$\mathrm{AC}(\mathrm{S})$	$\operatorname{deg}(\mathrm{S})$	No. of S
4eoe	64	128	24	256	7	192
8eoe	98	60	10	$88,96,64$	7	3360
10eoe	98	60	10	88	7	27392
12eoe	98	60	8 10	96 88	7	≥ 714 ≥ 84281

Method 2 - combination of e and oe transformations, with addition of 2 -bit, 4 -bit or 8 -bit constants (some results in Table 2).

Table 2. Method 2 - part of the results

Type	NL(S)	$\mathrm{L}(\mathrm{S})$	$\Delta(S)$	$\mathrm{AC}(\mathrm{S})$	$\operatorname{deg}(\mathrm{S})$	No. of S
1e_add2	0	256	256	256	4	4608
1e_add4	0	256	128	256	4	2816
1e_add8	4	248	132	256	7	6144
	32	192	164			1536
1oe_add8	0	256	132	256	7	6144
2e_add2_oe_add2	0	256	128	256	6	98304
2e_add4_oe_add4	64	128	96	256	6	3072
4eoe_add2	64	128	24	256	7	768
4eoe_add8	88	80	24	160	7	16

Method 3 - as Method 1 and 2, but with one randomly generated shapeless quasigroup of order 16 (Fig. 1).

The best produced 8 x 8 S-box is obtained by $6 e$ quasigroup transformations, alternating in normal and reverse mode, from the quasigroup of order 16 , with consecutive leaders $(0,3,5,3,0,0)$.

References

[1] H. Mihajloska, D. Gligoroski. Construction of Optimal 4-bit S-boxes by Quasigroups of Order 4. SECURWARE 2012, 2012.

> 8114491210576152131103 1484911326501231571011 6117313101420128154951 1041582913121175160314 0151310541149278312116 1510211685412314901137 9125171140148261031513 2612010157911431311548 3148150612111319571024 1336514781101140122915 1911712261334010815145 4139631415102511121870 1201013155376911114482 5701211193815134214610 1121148301541310756129
> 7532401181510614913112

Figure 1. Shapeless quasigroup of order 16.

Table 3. Method 3 - part of the results

Type	NL(S)	L(S)	$\Delta(S)$	AC(S)	deg(S)	No. of S
1e_add2	32	192	34	256	6	64
1e_add4	$\begin{aligned} & \hline 32 \\ & 64 \end{aligned}$	$\begin{aligned} & 192 \\ & 128 \end{aligned}$	$\begin{aligned} & \hline 34 \\ & 44 \end{aligned}$	256	6	$\begin{gathered} \hline 64 \\ 8 \end{gathered}$
1e_add8	64	128	26	232-248	7	20
2e_add4_oe_add4	$\begin{aligned} & 96 \\ & 98 \end{aligned}$	$\begin{aligned} & \hline 64 \\ & 60 \end{aligned}$	$\begin{gathered} 10 \\ 12,14 \end{gathered}$	$\begin{gathered} 88 \\ 96-104 \end{gathered}$	7	$\begin{gathered} 100 \\ 65536 \end{gathered}$
2e_add8_oe	98	60	10	88	7	11
4 eoe	$\begin{gathered} 98 \\ 94-90 \end{gathered}$	$\begin{gathered} 60 \\ 68-76 \end{gathered}$	$\begin{gathered} \hline 10-12 \\ 8 \end{gathered}$	$\begin{gathered} 88 \\ 96-112 \end{gathered}$	7	$\begin{gathered} 15 \\ 5 \end{gathered}$
6 eoe	98	60	8	$\begin{gathered} 88 \\ 104 \end{gathered}$	7	$\begin{aligned} & 1 \\ & 2 \end{aligned}$

[2] K. Nyberg. Perfect nonlinear S-boxes. In: Davies, D.W. (Ed.) Eurocrypt 1991. LNCS, vol. 547, pp. 378-385. Springer, 1991.
[3] K. Nyberg. S-boxes and round functions with controllable linearity and differential uniformity. In: Preneel, B. (Ed.), FSE 1995. LNCS, vol. 1008, pp. 111-130. Springer Berlin Heidelberg, 1995.

Aleksandra Stojanova ${ }^{1}$, Dušan Bikov ${ }^{1}$, Aleksandra Mileva ${ }^{1}$, Yunqing Xu ${ }^{2}$
${ }^{1}$ University Goce Delchev in Shtip, Republic of N. Macedonia
E-mails:
\{aleksandra.stojanova, dusan.bikov, aleksandra.mileva\}@ugd.edu.mk
${ }^{2}$ Ningbo University, Peoples Republic of China
E-mail: xuyunqing@nbu.edu.cn

