
42

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Power Consumption Analysis of the New Covert Channels in CoAP

Aleksandar Velinov, Aleksandra Mileva, Done Stojanov

Faculty of Computer Science

University “Goce Delčev”

Štip, Republic of Macedonia

email: {aleksandar.velinov, aleksandra.mileva, done.stojanov}@ugd.edu.mk

Abstract — This paper presents several novel covert channels

in the Constrained Application Protocol (CoAP) - a specialized

Web transfer protocol used for Internet of Things. The

suggested new covert channels are categorized according to the

pattern-based classification, and, for each covert channel, the

total number of hidden data bits transmitted per second, or

per protocol data unit is given, together with the theoretical

performance evaluation. Additionally, we present a

methodology for power consumption analysis of these covert

channels, and we give the experimental results of applying this

methodology for one of the discovered CoAP covert channels.

Keywords - CoAP; network steganography; Contiki OS;

Cooja; Copper.

I. INTRODUCTION

We have investigated several novel covert channels for
the Constrained Application Protocol (CoAP) in the
conference paper [1]. In this paper, we extend the results
with an experimental methodology for power consumption
analysis of these covert channels, and we give the
experimental results of applying this methodology for one of
the discovered CoAP covert channels.

Network steganography is a practice of hiding data in
legitimate transmissions in communication networks, by
deploying different network protocols as carriers, and
concealing the presence of hidden data from network
devices. It provides only security through obscurity.

Covert channels are first introduced by Lampson [10] as
channels “not intended for information transfer at all” and
they can be exploited by a process to transfer information in
a manner that violates the systems security policy. The
current distinction between the network steganography and
covert channels is artificial, especially in a communication
networks environment. Network steganography techniques
create covert channels for hidden communication, but such
covert channels do not exist in communication networks
without steganography [14]. There is no some algorithm for
exaustive search of all covert channels in a given protocol.

Covert channels can be divided in two basic groups:
storage and timing channels. Storage covert channels are
channels where one process writes (directly or indirectly) to
a shared resource, while another process reads from it. In the
context of network steganography, storage covert channels
hide data by storing them in the protocol header and/or in the
Protocol Data Unit (PDU). On the other hand, timing

channels hide data by deploying some form of timing of
events, such as retransmitting the same PDU several times,
or changing the packet order.

Network-based covert channels may have black hat or
white hat applications. Black hat applications include
coordination of distributed denial of service attacks,
spreading of malware (for example, by hiding command and
control traffic of botnets), industrial espionage, secret
communication between terrorists and criminals, etc. On the
other hand, white hat applications include covert military
communication in hostile environments, prevention of
detection of illicit information transferred by journalists or
whistle-blowers, circumvention of the limitation in using
Internet in some countries (e.g., Infranet [4]), providing
Quality of Service - QoS for Voice over Internet Protocol -
VoIP traffic [12], secure network management
communication [6], watermarking of network flows (e.g.,
RAINBOW [8]), tracing encrypted attack traffic or tracking
anonymous peer-to-peer VoIP calls [21][22], etc.

Nowadays, there are a plenty of choices in the landscape
of network protocols for carriers. There are several surveys
about different covert channels in many TCP/IP
(Transmission Control Protocol/Internet Protocol) protocols
[15][26]. To the best of our knowledge, there are only a few
papers about network steganographic research addressing
protocols specialized for constrained devices in the IoT
(sensors, vehicles, home appliances, wearable devices, and
so on) [3] [9]. The Constrained Application Protocol (CoAP)
[19] is a specialized Web transfer application layer protocol,
which can be used with constrained nodes and constrained
networks in the IoT. The nodes are constrained because they
have 8-bit microcontrollers, for example, with limited
random-access memory (RAM) and read-only memory
(ROM). Constrained networks often have high packet error
rates and small data rate (such as IPv6 over Low-Power
Wireless Personal Area Networks - 6LoWPANs). CoAP is
designed for machine-to-machine (M2M) applications and
its last stable version was published in June 2014 in the RFC
7252 [19]. In fact, it is a Representational State Transfer -
RESTful protocol with multicast and observe support. In this
paper, we try to apply existing network steganographic
techniques for creating covert channels in CoAP.

Wendzel et al. [24] presented a new pattern-based
categorization of network covert channel techniques into 11
different patterns or classes. They represented the patterns in
a hierarchical catalog using the pattern language Pattern

43

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Pattern-based categorization of network covert channel techniques

Language Markup Language (PLML) v. 1.1 [5]. A
modification of this categorization is made by Mazurczyk et
al. [14]. In our paper, we use this joint classification (see
Figure 1) to characterize our covert channels.

Covert channels are analyzed through the total number of
hidden data bits transmitted per second (Raw Bit Rate -
RBR), or through the total number of hidden data bits
transmitted per PDU (for example, Packet Raw Bit Rate-
PRBR) [13]. For each new CoAP channel, its PRBR value is
given, where PDU is a CoAP message.

The rest of this article is structured as follows. The
related work is presented in Section II. Details about the
CoAP header, messages, functionalities and concepts are
presented in Section III. The main Section IV describes eight
groups of new covert storage and timing channels in CoAP,
that can be used regardless its transport carrier (DTLS or
clear UDP). Some possible applications of these covert
channels are also briefly suggested in this section. In Section
V we present the performance evaluation, while the
experimental evaluation of one of the new covert channels is
given in Section VI. We conclude the paper in Section VII.

II. RELATED WORK

The research on network steganography for IoT has seen
an increased interest recently.

One example for this is the work of Islam et al. [9],
which uses Internet Control Message Protocol (ICMP) covert
channels for authenticating Internet packet routers as an
intermediate step towards proximal geolocation of IoT
devices. This is useful as a defense from the knowledgeable
adversary that might attempt to evade or forge the
geolocation. Hidden data are stored in the data field of the
ICMP Echo Request and ICMP Echo Reply messages.

Patuck et al. [18] present several storage covert channels
in the Extensible Messaging and Presence Protocol (XMPP),
a popular instant messaging protocol based on XML, which
in the past was used by many messaging platforms such as
Google Talk, AOL Instant Messenger, Microsoft Messenger
Sevice, etc. These covert channels use some attributes in the
XMPP messages, like Type, id and xml:lang attributes, or
the message body. For example, for the Type attribute, three
covert channels are presented: by changing cases of the
value, by changing value, or by presence/absence of the
attribute.

A storage covert channel with modulated sensor readings
is presented by Tuptuh et al. [20] for wireless sensor
networks. In this channel, LSBs of encrypted sensor readings
are the cover bits. The sender performs the following
algorithm: while LSB bit of the current reading is different
from the cover bit, small offset is added to the sensor reading
(e.g., temperature) and the value is encrypted.

44

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Building Automation and Control Networking Protocol
(BACnet) is another protocol for which two storage
(message-type based and parameter-based) and one timing
(with inter packet gaps) covert channels were given by
Wendzel [23].

Wendzel et al. [25] have showed that even a cyber-
physical system (CPS) can be used for network
steganography. One can places hidden data in the CPS
environment by slightly modifying some of its components,
like actuators, sensors, controllers, and monitoring
equipment. The authors apply the term scatter hoarding,
which means that only small modifications of the CPS will
be allowed but they will be applied to numerous carefully
selected components, to avoid them being regularly
modified, e.g., by a human user. One example is the
temperature sensor, which comprises two 8-bit alarm
registers with a lower and an upper warning threshold, and
can be used to store hidden values. Another example is the
state modulation of actuators, like heater, in which the
heating value of 80% will be a binary “0”, and of 79% will
be a binary “1”. Because the actuator states change and
influence the physical environment, steganographic
operations may not be robust and be easily detectable and
thus need a reasonable storage strategy.

 Some applications of steganography in IoT are not
connected with the protocols themselves, but with the
applications on top of these protocols. For example, Denney
et al. [3] present a novel storage covert channel on wearable
devices that sends data to other applications, or even to other
nearby devices, through the use of notifications that are
normally displayed on the status bar of an Android device.
For that purpose, a notification listening service on the
wearables needs to be implemented. Data are hidden in the
notification ID numbers (32 bits), and their exchange is done
by using two functions notify and cancel. If the notifying
function is immediately followed by the canceling function,
the notification is never displayed to the user although it can
be seen in the log files, so the communication is hidden from
the user who wears the device.

There are several papers that deploy steganography in the
physical or medium access control (MAC) layers [7][11][16]
[19].

As far as we now, there is no paper (other than [1]) that
analyze existance of covert channels in CoAP. Additionally,
we try to give a methodology how one can perform a power
consumption analysis of a given covert channel in the IoT
device.

III. HOW COAP WORKS

Similar to HTTP, CoAP uses client/server model with
request/response messages. It supports built-in discovery of
services and resources, Uniform resource identifiers (URIs)
and Internet media types. The CoAP sends request message
requesting an action (using a Method Code) to the resource
(idenified by a URI) hosted on server. The server responds
to this request by using the response message that contains
the Response Code, and possibly some resource
representation. CoAP defines four types of messages:

Confirmable (CON), Non-Confirmable (NON),
Acknowledgment (ACK) and Reset (RST). These types of
messages use method and response codes to transmit
requests or answers. The requests can be transmitted as
Confirmable and Non-Confirmable types of messages, while
the responses can be transmitted through these and via
piggybacked and Acknowledgment types of messages.

CoAP uses clear UDP or DTLS on transport layer to
exchange messages asynchronously between endpoints. As
shown in Figure 2, each message contains a Message ID
used for optimal reliability and to detect duplicates. A
message that requires reliable transmission is marked as
CON, and if does not, it is marked as NON. The CON
message is retransmitted using a default timeout and binary
exponential back-off algorithm for increasing the timeout
between retransmissions, until the recipient sends an ACK
message with the same Message ID. When the recipient is
not able at all to process CON or NON message, it replies
with a RST message.

Figure 2. a) Reliable CoAP message transmission b) Unreliable CoAP

message transmission.

CoAP messages are encoded into simple binary format

(see Figure 3). Each message starts with a 4B fixed header,
followed by a Token field, with size from 0 to 8B. Then
comes the optional Options field and optional Payload field.
If the Payload field is present it is preceded by one-byte
Payload Marker (0xFF).

The fields that make up the message header are the
following:

• Version (Ver) - 2-bit unsigned integer that idenitfies the
CoAP version. Currently it must be set to 01.

• Type (T) – 2-bit unsigned integer that indicates the
message type: Confirmable (0), Non-Confirmable(1),
Acknowledgement (2), or Reset (3).

• Token Length (TKL) – 4-bit unsigned integer that stands
for the length of the Token field (0-64 bits). Lengths 9-
15 are reserved and must be processed as a message
format error.

• Code – 8-bit unsigned integer. It is divided into two
parts: 3-bit class (the most significant bits) and 5-bit
details (the least significant bits). The format of the code
is “c.dd”, where “c” is a digit from 0 to 7 and represents
the class while “dd” are two digits from 00 to 31.
According to the class we can determine the type of the
message, such as: request (0), a successful response (2),
a client error response (4), or a server error response (5).

45

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CoAP has a separate code registry that provides a
description for all codes [2].

• Message ID - 16-bit unsigned integer that is used to
detect duplicate messages and to connect
Acknowledgment/Reset messages with Confirmable/
Non-Confirmable messages.

The message header is followed by the Token field with
variable size from 0 to 64 bits. This field is used to link
requests and responses.

The optional Options field defines one or more options.
CoAP defines a single set of options that are used both for
requests and for responses. These are: Content-Format, Etag,
Location-Path, Location-Query, Max-Age, Proxy-Uri,
Proxy-Scheme, Uri-Host, Uri-Path, Uri-Port, Uri-Query,
Accept, If-Match, If-None-Match, and Size1.

The payload of requests/responses that indicates success
typically carries the resource representation or the result of
the requested action.

Figure 3. CoAP message format.

Figure 4. a) Piggybacked response b) Separate response.

There are two types of responses: piggybacked and
separate (Figure 4). If the request is transmitted via CON or
NON message, and if the response is available and
transmitted via an ACK message, then it is piggybacked
response. If the server is unable to respond immediately to
the request, an Empty message (with code 0.00) is sent that
tells the client to stop sending the request. If the server is
able for later respond to the client, it sends a CON message
that must then be confirmed by the client. This is called a
separate response.

Similar to HTTP, CoAP uses GET (with code 0.01),
POST (with code 0.02), PUT (with code 0.03), and
DELETE (with code 0.04) methods.

IV. NEW COVERT CHANNELS IN THE COAP

When someone creates a covert channel (CC) in network
protocol, usually uses: a protocol feature that has a dual
nature (i.e., the same feature can be obtained in more than
one way), a feature that is not mandatory, a feature that can
obtain random value, and so on. Therefore if we use some of
these features, we can create new covert channels in CoAP.
From the beginning, CoAP offers some protection against
network steganography. For example, by introducing a
proper order in the appearance of different options in
message, the steganographic techniques that deploy different
order of options can not be applied.

CoAP can be applied in different fields, such as: smart
energy, smart grid, building control, intelligent lighting
control, industrial control systems, asset tracking,
environment monitoring, and so on. So, one useful scenario
of application of the CoAP covert channels would be for
support of the authentication of geolocation of IoT devices.
Another possible scenario is clandestine communication
between wearable devices in a hostile environment, for the
needs of the soldiers, or, between nodes in a wireless sensor
network.

As steganography offers only security through obscurity,
a successful attack against any covert channel consists in
detecting the existence of this communication. Next, the new
CoAP covert channels are presented.

A. Covert Channel Using Token and/or Message ID Fields

The Message ID contains a random 16-bit value. In the
case of piggybacked response for CON message, the
Message ID should be the same as in the request, while in
the case of separate response, the server generate different
random Message ID (while the request Message ID is copied
in the first sent Empty ACK message).

The same Message ID can not be reused (in the
communication between same two endpoints) within the
EXCHANGE_LIFETIME, which is around 247 seconds
with the default transmission parameters.

The Token is another random generated field, with
variable size up to 64 bits, used as a client-local identifier to
make a difference between concurrent requests. If the request
results in the response, the Token value should be echoed in
that response. This also happens in the case when the server
sends separate response. So, we can create an unidirectional
or a bidirectional communication channel between two hosts,
by sending 16 (from Message ID) plus/or 64 (from Token

ID) bits per message (PRBR {16, 64, 80}). According to
the pattern-based classification [14][24], this channel
belongs to the following class:

Network Covert Storage Channels

 --Modification of Non-Payload

 --Structure Preserving

 --Modification of an Attribute

 --Random Value Pattern

46

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Covert Channel Using Piggybacked and Separate

Response

Since the server has a choice for sending piggybacked or
separate response, one can create an one-bit per message
unidirectional or a bidirectional covert channel (PRBR=1),
such as:

• piggybacked response to be binary 1, and

• separate response to be binary 0.

At heavy load, the server may not be able to respond
(sending binary 1), so this covert channel is limited to the
times when the server has the choice. According to the
pattern-based classification [14][24], this channel belongs to
the following class:

Network Covert Timing Channels

 --Protocol aware

 --Message ordering pattern

C. Covert Channel Using Payload of the Message

Both requests and responses may include a payload,
depending of the Method or the Response Code,
respectively. Its format is specified by the Internet media
type and content coding providen by the Content-Format
option. The payload of requests or of responses that indicates
success is typically a representation of the resource or the
result of the requested action.

If no Content-Format option is given, the payload of
responses indicating client or server error is a Diagnostic
Payload, with brief human-readable diagnostic message
being encoded using UTF-8 (Unicode Transformation
Format) in Net-Unicode form.

The CoAP specification provides only an upper bound to
the message size - to fit within a single IP datagram (and into
one UDP payload). The maximal size of the IPv4 datagram
is 65,535B, but this can not be applied to constrained devices
and networks. According to IPv4 specification in the RFC
791, all hosts have to be prepared to accept datagrams of up
to 576B, while IPv6 requires the maximum transmission unit
(MTU) to be at least 1280B. The absolute minimum value of
the IP MTU for IPv4 is 68B, which would leave at most 35B
for a CoAP payload (the smallest CoAP header size with
Payload Marker before the payload is 5B, assuming 0B for
Token and no options). On the other hand, constrained
network presents another restriction. For example, the IEEE
802.15.4's standard packet size is 127B (with 25B of
maximum frame overhead), which leaves (without any
security features) 102B for upper layers. The sizes of the
input/output buffers in the constrained devices are another
restriction of the maximal payload. Thus, we can create a
unidirectional or a bidirectional communication channel
between two hosts, by sending a Diagnostic Payload with the
smallest maximal size of 35B per message (PRBR=280).
According to the pattern-based classification [14][24], this
channel belongs to the following class:

Network Covert Storage Channels

 --Modification of Payload Pattern

Another similar channel can be created by encoding the
data in some specific Internet media format (for example,
“application/xml” media type) and sending this format as
payload of a message with appropriate Content-Format
option (41 for “application/xml”).

D. Covert Channel Using Case-insensitive Parts of the

URIs

CoAP uses “coap” and “coaps” URI (Uniform Resource
Identifier) schemes for identification of CoAP resources and
providing a means for locating the resource. The URIs in the
request are transported in several options: URI-host, URI-
Path, URI-Port and URI-Query. They are used to specify the
target resource of a request to CoAP origin server. The URI-
host and the scheme are case insensitive, while all other
components are case-sensitive. So, we can create a
unidirectional covert channel between the client and the
server using, for example:

• capital letter in the URI-host option to be binary 1,
and

• small letter in the URI-host option to be binary 0.

Taking into account that valid Domain Name System

(DNS) name has at most 255B, we can send at most 255B
per message, or in other words, the PRBR of this channel is
up to 255B. According to the pattern-based classification
[14][24], this channel belongs to the following class:

Network Covert Storage Channels

 --Modification of Non-Payload

 --Structure Preserving

 --Modification of an Attribute

 --Value Modulation

 --Case Pattern

CoAP supports proxying, where proxy is a CoAP
endpoint that can be tasked by CoAP clients to perform
requests on their behalf. Proxies can be explicitly selected by
clients, using the Proxi-URI option, and this role is “forward-
proxy”. Proxies can also be inserted to stand in for origin
servers, a role that is named as "reverse-proxy". So, we can
create similar covert channel using schema and host part
from the Proxi-URI option. A request containing the Proxy-
URI Option must not include URI-host, URI-Path, URI-Port
and URI-Query options.

E. Covert Channel Using PUT and DELETE Methods

The PUT method requires the resource identified by the
URI in the request, to be updated or created with the
enclosed representation. If the resource exists at the request
URI, the enclosed representation should be considered as a
modified version of that resource, and a 2.04 (Changed)
Response Code should be returned. If no resource exists,
then the server may create a new resource with the same URI
that results in a 2.01 (Created) Response Code.

The DELETE method requires deletion of the resource,
which is identified by the URI in the request. Regardless if

47

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the deletion is successful, or the resource did not exist before
the request, a 2.02 (Deleted) Response Code should be send.

If somebody has a known representation of the existing
resource R1 on the server and if he knows that specific
resource R2 does not exist on the same server, a
unidirectional covert channel to the server can be created, in
this way:

• send request with PUT method to create the resource
R1 with enclosed known representation as binary 1,
and

• send request with DELETE method to delete non-
existing resource R2 as binary 0.

In this way, one bit per message can be sent (PRBP=1).

According to the pattern-based classification [14][24], this
channel belongs to the following class:

Network Covert Storage Channels

 --Modification of Non-Payload

 --Structure Preserving

 --Modification of an Attribute

 --Value Modulation Pattern

F. Covert Channel Using Accept Option

The Accept option can be used to indicate which
Content-Format is acceptable to the client. If no Accept
option is given, the client does not express a preference. If
the preferred Content-Format if available, the server returns
in that format, otherwise, a 4.06 "Not Acceptable" must be
sent as a response, unless another error code takes
precedence for this response. We can create a unidirectional
one-bit per message covert channel (PRBP=1), in this way:

• sending a given message without Accept option to
be binary 1, and

• sending a given message with Accept option to be
binary 0.

According to the pattern-based classification [14][24],

this channel belongs to the following class:

Network Covert Storage Channels

 --Modification of Non-Payload

 --Structure Modifying

 --Add Redundancy Pattern

G. Covert Channel Using Conditional Requests

Conditional request options If-Match and If-None-Match
enable a client to ask the server to perform the request only if
certain conditions specified by the option are fulfilled. In the
case of multiple If-Match options the client can make a
conditional request on the current existence or value of an
ETag for one or more representations of the target resource.
This is useful to update the request of the resource, as a
means for protecting against accidental overwrites when
multiple clients are acting in parallel on the same resource.
The condition is not fulfilled if none of the options match.
With If-None-Match option the client can make a conditional
request on the current nonexistence of a given resource. If

the target resource does exist, then the condition is not
fulfilled.

If somebody knows for sure that given condition C1 is
fulfilled (for example, the resource is created or deleted in
previous message) and other C2 is not fulfilled, using either
of If-Match and If-None-Match options, a unidirectional
one-bit per message covert channel (PRBP=1) can be created
in this way:

• sending a given message without fulfilled condition
to be binary 1 (e.g., If-Match + C2), and

• sending a given message with fulfilled condition
(e.g., If-Match + C1) to be binary 0.

According to the pattern-based classification [14][24],

this channel belongs to the following class:

Network Covert Storage Channels

 --Modification of Non-Payload

 --Structure Preserving

 --Modification of an Attribute

 --Value Modulation Pattern

H. Covert Channel Using Re-Transmissions

If we are using CoAP in channels with small error-rate
(to cope with the unreliable nature of UDP), we can create a
unidirectional or a bidirectional covert channel using
retransmissions with PRBP=1, in this way:

• sending a given message only once to be binary 1,
and

• sending a given message two or more times to be
binary 0.

In this way, one bit per message can be sent. According
to the pattern-based classification [14][24], this channel
belongs to the following class:

Network Covert Timing Channels

--Protocol aware

 --Re-Transmission pattern

V. PERFORMANCE EVALUATION

Suppose that two IoT devices communicate with CoAP
every t seconds.

Any covert channel with a given PRBR will need at least

ceil(l / PRBR) t (s)

for sending a message with length l bits.
We can evaluate the minimum time for sending the

message ”Hello, world!” using the newly suggested covert
channels. The message has length of 13 7-bit ASCII
characters or l=91 bits. Results are given in Table I.

So, we can see that not all suggested covert channels in
CoAP are able to send short messages in real time, especially
the ones with PRBR=1. Still, the covert channels 3 and 4 can
be used for sending a short message per one CoAP message,
without rising any suspicions. If the time for sending the

48

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

message is not so important, one can choose covert channels
1 or 2, without rising any suspicions.

TABLE I. PERFORMANCE EVALUATION OF THE NEW COVERT

CHANNELS FOR SENDING THE MESSAGE “HELLO, WORLD!”

No. Type of CC PRBR
Time (s)

t=1s t=5s t=10s

1

CC using
token and/or
message ID
Fields

16 6 30 60

64 2 10 20

80 2 10 20

2

CC using
piggybacked
and separate
response

1 91 455 910

3
CC using
payload of the
message

280 1 1 1

4

CC using case-
insensitive
parts of the
URIs

2040 1 1 1

5
CC using PUT
and DELETE
Methods

1 91 455 910

6
CC using
Accept option

1 91 455 910

7
CC using
conditional
requests

1 91 455 910

8
CC using re-
transmissions

1 91 455 910

TABLE II. PERFORMANCE EVALUATION OF THE NEW COVERT

CHANNELS WITH PRBR>1 FOR SENDING 320X240 RAW COLOR IMAGE

(WITH 24-BIT PIXELS)

Type of
CC

PRBR
Time(s)

t=1s t=5s

1

CC using
token
and/or
message
ID Fields

16
115200
(32h)

576000
(160h)

64
28800
(8h)

144000
(40h)

80
23040
(6,4h)

115200
(32h)

2

CC using
payload of
the
message

280
6583

(>1,82h)
32915
(>9.1h)

3

CC using
case-
insensitive
parts of the
URIs

2040
904

(15 min)
4520

(76 min)

Additionally, we can evaluate the minimum time for

sending the 320x240 raw color image (with 24-bit pixels)

using the newly suggested covert channels. The size of the
image is 225KB or l=1843200 bits. Results are given in
Table II.

The results from Table II show that most of the new
CoAP covert channels are not quite suitable for sending
images, because of the large transmission time. The covert
channel 3 is the most suitable for that purpose (it will send
225KB image in 15 minutes).

VI. EXPERIMENTAL EVALUATION

For our research we have used Contiki OS, and specially,
Instant Contiki version 3.0 as a development environment. It
is a Ubuntu Linux virtual machine that runs in VMWare
player. It has all the development tools, compilers and
simulators. We can develop our application and test it on one
of the devices in simulator. We used Cooja simulator. With
it, we can create different types of devices for which we can
develop applications. This is practical because before we
execute our application on real device we will make sure it
works properly.

For the purposes of our research we used Z1 Zolertia
Mote. It is an ultra low power wireless module for use in
wireless sensor networks (WSN). Z1 has the second
generation of MSP430F2617 low power microcontroller,
which has a powerful 16-bit RISC CPU @16MHz clock
speed. It also has built-in clock factory calibration, 8KB
RAM and a 92KB Flash memory. Z1 module includes the
CC2420 transceiver, which operates at 2.4GHz with data rate
of 250Kbps and it supports 802.15.4 standard to interoperate
with other devices. This module has a built-in temperature
and 3-axis accelerometer sensors. Z1 allows flexible
powering using the battery pack (2xAA or 2xAAA), Coin
Cell, USB and with direct connection.

Figure 5. Implementation scenario

In our research, we used Copper (Cu) as a CoAP user-

agent. It is a Firefox plugin that installs a handler for “coap”
URI scheme and allows users to browse and interact with
Internet of Things (IoT) devices. The scenario for our
research is presented on Figure 5. We used the Cooja
simulator to create a new simulation with, 2 Z1 Zolertia
motes. One Z1 mote is for Border Router. As a source we
used rpl-border router source code that is located in:

/home/user/contiki-3.0/examples/ipv6/rpl-border-router

The other Z1 mote is for CoAP server. In our research we

used Erbium implementation of CoAP server for Contiki OS.
The source code is located in:

/home/user/contiki-3.0/examples/er-rest-example

49

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To adjust it to our needs, we made a change to the source
code, specifically in the file “res-hello.c” that is located in
the following path in Contiki:

/home/user/contiki-3.0/examples/er-rest-

example/resources

According to this scenario, we have implemented the
covert channel that uses the PUT and DELETE methods. By
using Copper user-agent, we created request using the PUT
and DELETE methods (with PUT in the 50th second of the
execution of the simulation and with DELETE in the 60th
second of the execution of the simulation). We also
examined power consumption in case when we do not
implement a covert channel and in the case of an
implemented covert channel. To calculate the power
consumption, we used the data obtained with the tool
“Powertrace” for CoAP server with and without
implemented covert channel. These data are printed at the
mote output for Z1 module in Cooja. We made the
calculations in a total time interval of 100 seconds as
previously predefined interval for performing the simulation
for both cases. These data show the total number of clock
ticks in different states of the module: CPU (CPU in active
mode), LPM (CPU in Low Power Mode), TX (Transmit) and
RX (Receive) (Table III and Table IV).

TABLE III. DATA OBTAINED WITH “POWERTRACE” FOR “COAP”

SERVER WITHOUT IMPLEMENTATION OF COVERT CHANNEL

ALL_CPU ALL_LPM ALL_TX ALL_RX

4674 322863 149 294987

9879 645197 229 622586

15204 967576 412 950244

17500 1292676 412 1277763

19778 1617956 412 1605442

24933 1940346 514 1933022

27435 2265399 594 2260619

29721 2590672 594 2588298

32001 2915952 594 2915978

34271 3241241 594 3243658

39491 3563562 675 3571258

To calculate the power consumption, we used the

following formula [27] :

RuntimeSECONDRTIMER

VoltageCurrentvalueEnergest
nconsumptioPower

*_

**_
_ =

Energest_value is the difference between the number of

clock ticks (in states CPU, LPM, TX and RX) between two
time intervals. We used the Z1 datasheet to get the values for

Current in different states (Approximate Current
Consumption of Z1 circuits: Active Mode @16MHz - < 10
mA (approximate 9mA), Standby Mode - 0.5µA, RX Mode -
18.8mA, TX Mode - 17.4mA) [28]. The value for Voltage
parameter is 3V. The value for RTIMER_SECOND is 32768.
Runtime is the time interval (10 seconds in our case).

TABLE IV. DATA OBTAINED WITH “POWERTRACE” FOR “COAP”

SERVER WITH IMPLEMENTED COVERT CHANNEL

ALL_CPU ALL_LPM ALL_TX ALL_RX

4726 322829 149 294987

10020 645086 229 622586

15271 967393 332 950165

17738 1292480 413 1277762

20253 1617524 476 1605379

25731 1939607 641 1932896

28236 2264657 722 2260493

30521 2589930 722 2588173

32801 2915210 722 2915853

35071 3240499 722 3243533

40372 3562751 802 3571132

Figure 6. Power consumption for CoAP server (Z1) in CPU state (with

and without implemented covert channel)

Figure 6 shows the power consumption for Z1 module

(implemented as CoAP server) in CPU state with and

without implemented covert channel. The average power

consumption without implemented covert channel is

0.28688324 mW, while the average power consumption

with implemented covert channel is 0.293713989 mW. We

can see that the average power consumption with an

implemented covert channel is bigger.

50

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7 shows the power consumption for Z1 module

(implemented as CoAP server) in LPM state with and

without implemented covert channel. The average power

consumption without implemented covert channel is

0.001483474 mW, while the average power consumption

with implemented covert channel is 0.001483119 mW. We

can see that the average power consumption with

implemented covert channel is slightly smaller than the

power consumption without implemented covert channel.

Figure 7. Power consumption for CoAP server (Z1) in LPM state (with

and without implemented covert channel)

Figure 8. Power consumption for CoAP server (Z1) in TX state (with and

without implemented covert channel)

Figure 8 shows the power consumption for Z1 module

(implemented as CoAP server) in TX state with and without

implemented covert channel. The average power

consumption without implemented covert channel is

0.008379272 mW, while the average power consumption

with implemented covert channel is 0.010402405 mW. We

can see that the power consumption with implemented

covert channel is around 1.24 times greater than the power

consumption without implemented covert channel.

Figure 9 shows the power consumption for Z1 module

(implemented as CoAP server) in RX state with and without

implemented covert channel. The average power

consumption without implemented covert channel is

56.3908949 mW, while the average power consumption

with implemented covert channel is 56.3887262 mW.

We can see that the average power consumption with

implemented covert channel is slightly smaller than the

power consumption without implemented covert channel.

Figure 9. Power consumption for CoAP server (Z1) in RX state (with and

without implemented covert channel)

Figure 10. Total power consumption for CoAP server (Z1) in all states

(with and without implemented covert channel)

51

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10 shows the total power consumption for Z1

module (implemented as CoAP server) in all states, in each

time interval with and without implemented covert channel.
The average power consumption without implemented

covert channel is 56.68764088mW, while the average power

consumption with implemented covert channel is

56.69432571mW. We can see that the average power

consumption (in all states) for Z1 module with implemented

covert channel (when sending two bits) is slightly greater

than the power consumption without implemented covert

channel.
The power consumption of the Z1 module in the 50th

second (the time when we sent a request with the PUT

method) with implemented covert channel has increased

very little, for only 0.02580548 mW.

We have the same case in the 60th second (the time when

we sent a request with the DELETE method), when the

power consumption with implemented covert channel has

increased very little, for only 0.00040648 mW. The

implementation of the covert channel using the PUT and

DELETE methods does not greatly affect the power

consumption of the Z1 module.

VII. CONCLUSION

Considering that IoT will consist of about 30 billion
objects by 2020 [17], CoAP belongs to the group of possible
most exploited protocols in the forthcoming years. The
CoAP covert channels presented here, are suitable for
sending short messages, as our performance evaluation
showed. Additionally, the performed experimental
evaluation of power consumption analysis on one of the
covert channels, shows only a slight increase in the power
consumption of the used device, when sending two bits. The
consequence of all these results, is the importance of
identifying as much as it can, the possible ways of hiding
data in CoAP and trying to mitigate them. One can deploy
active and passive wardens for this purpose, but this is left
for later investigation.

REFERENCES

[1] A. Mileva, A. Velinov, and D.Stojanov, “New Covert

Channels in Internet of Things,” Proc. 12th International

Conference on Emerging Security Information, Systems and

Technologies - SECURWARE 2018, Venice, Italy, 2018, pp.

30-36.

[2] Constrained RESTful Environments (CoRE) Parameters,

CoAP Codes [Online]. Available at:

https://www.iana.org/assignments/core-parameters/core-

parameters.xhtml [retrieved: July, 2018]

[3] K. Denney, A. S. Uluagac, K. Akkaya, and S. Bhansali, “A

novel storage covert channel on wearable devices using status

bar notifications,” Proc. 13th IEEE Annual Consumer

Communications & Networking Conference, CCNC 2016,

Las Vegas, NV, USA, 2016, pp. 845-848, doi:

10.1109/CCNC.2016.7444898.

[4] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and

D. Karger, “Infranet: Circumventing Web Censorship and

Surveillance,” Proc. 11th USENIX Security Symposium, San

Francisco, CA, 2002, pp. 247-262.

[5] S. Fincher et al., “Perspectives on HCI patterns: concepts and

tools,” Proc. Extended Abstracts on Human Factors in

Computing Systems (CHI EA ’03). ACM, New York, NY,

USA, 2003, pp. 1044–1045, doi: 10.1145/765891.766140.

[6] D. V. Forte, “SecSyslog: An Approach to Secure Logging

Based on Covert Channels,” Proc. First International

Workshop of Systematic Approaches to Digital Forensic

Engineering (SADFE 2005), Taipei, Taiwan, 2005, pp. 248-

263, doi: 10.1109/SADFE.2005.21.

[7] M. Guri, G. Kedma, A. Kachlon, and Y. Elovici, “AirHopper:

Bridging the Air-Gap between Isolated Networks and Mobile

Phones using Radio Frequencies,” MALWARE 2014, 2014.

[8] A. Houmansadr, N. Kiyavash, and N. Borisov., “RAINBOW:

A Robust And Invisible Non-Blind Watermark forNetwork

Flows,” Proc. 16th Network and Distributed System Security

Symposium (NDSS 2009), San Diego, USA, The Internet

Society, 2009.

[9] M. N. Islam, V. C. Patil, and S. Kundu, “Determining

proximal geolocation of IoT edge devices via covert

channel,” Proc. 18th International Symposium on Quality

Electronic Design, ISQED 2017, Santa Clara, CA, USA,

2017, pp. 196-202, doi: 10.1109/ISQED.2017.7918316.

[10] B. W. Lampson, “Note on the Confinement Problem,”

Commun. ACM vol. 16, 10, Oct. 1973, pp. 613-615, doi:

10.1145/362375.362389.

[11] D. Martins and H. Guyennet, “Attacks with Steganography in

PHY and MAC Layers of 802.15.4 Protocol,” Proc. Fifth

International Conference on Systems and Networks

Communications (ICSCN), Nice, France, 2010, pp. 31-36,

doi: 10.1109/ICSNC.2010.11.

[12] W. Mazurczyk and Z. Kotulski, “New Security and Control

Protocol for VoIP Based on Steganography and Digital

Watermarking,” Annales UMCS Informatica AI 5, 2006, pp.

417-426, doi: 10.17951/ai.2006.5.1.417-426.

[13] W. Mazurczyk and K. Szczypiorski, “Steganography of VoIP

Streams,” in On the Move to Meaningful Internet Systems

(OTM 2008) Robert Meersman, Zahir Tari (Eds.). LNCS,

vol. 5332, 2008, pp. 1001-1018, doi: 10.1007/978-3-540-

88873-4_6.

[14] W. Mazurczyk, S. Wendzel, Z. Zander, A. Houmansadr, and

K. Szczypiorski, “Information Hiding in Communication

Networks” Wiley / IEEE Comp. Soc. Press, (2016).

[15] A. Mileva and B. Panajotov, “Covert channels in TCP/IP

protocol stack - extended version-,“ Central European Journal

of Computer Science vol. 4, 2, 2014, pp. 45-66, doi:

10.2478/s13537-014-0205-6.

[16] A. K. Nain and P. Rajalakshmi, “A Reliable Covert Channel

over IEEE 802.15.4 using Steganography,” Proc. IEEE 3rd

World Forum on Internet of Things (WF-IoT), Reston, VA,

USA, 2016, pp. 711-716, doi: 10.1109/WF-

IoT.2016.7845486.

[17] A. Nordrum, “Popular Internet of Things Forecast of 50

Billion Devices by 2020 Is Outdated,” IEEE Spectrum. 18

August, 2016.

[18] R. Patuck and J. Hernandez-Castro, “Steganography using the

Extensible Messaging and Presence Protocol (XMPP),”

Computing Research Repository arXiv:1310.0524, 2013.

[19] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained

Application Protocol (CoAP),” RFC 7252, 2014.

[20] N. Tuptuk and S. Hailes, “Covert channel attacks in pervasive

52

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

computing,” IEEE PerCom, pp. 236–242, 2015.

[21] X. Wang and D. S. Reeves, “Robust correlation of encrypted

attack traffic through stepping stones by manipulation of inter

packet delays,” Proc. 10th ACM Conference on Computer

and Communications Security (CCS'03), 2003, pp. 20-29,

doi: 10.1145/948109.948115.

[22] X. Wang, S. Chen, and S. Jajodia, “Tracking anonymous

peer-to-peer VoIP calls on the Internet,” Proc. 12th ACM

Conference on Computer and Communications Security

(CCS'05), Alexandria, VA, USA, 2005, pp. 81-91, doi:

10.1145/1102120.1102133.

[23] S. Wendzel, “ Covertand Side Channels in Buildings and the

Prototype of a Building-aware Active Warden” IEEE ICC,

pp. 6753-6758, 2012.

[24] S. Wendzel, S. Zander, B. Fechner, and C. Herdin, “Pattern-

Based Survey and Categorization of Network Covert Channel

Techniques,” ACM Computing Surveys vol. 47, 3, Article 50,

2015, doi: 10.1145/2684195.

[25] S. Wendzel, W. Mazurczyk, and G. Haas, “Don't You Touch

My Nuts: Information Hiding in Cyber-physical Systems,”

IEEE SPW 2017, pp. 29-34, 2017.

[26] S. Zander, G. Armitage, and P. Branch, “A survey of covert

channels and countermeasures in computer network

protocols,” IEEE Communications Surveys and Tutorials vol.

9, 3, 2007, pp. 44-57, 10.1109/COMST.2007.4317620.

[27] Internet of Things technology [Online]. Available at:

http://thingschat.blogspot.com/2015/04

/contiki-os-using-powertrace-and.html [retrieved: January,

2019]

[28] Z1 Datasheet [Online]. Available at:

http://zolertia.sourceforge.net/wiki/images/e/e8/

Z1_RevC_Datasheet.pdf [retrieved: January, 2019]

