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SUMMARY

Double homeobox (DUX) transcription factors are
unique to eutherian mammals. DUX4 regulates
expression of repetitive elements during early
embryogenesis, but misexpression of DUX4 causes
facioscapulohumeral muscular dystrophy (FSHD)
and translocations overexpressing the DUX4 double
homeodomain cause B cell leukemia. Here, we
report the crystal structure of the tandem homeodo-
mains of DUX4 bound to DNA. The homeodomains
bind DNA in a head-to-head fashion, with the linker
making anchoring DNA minor-groove interactions
and unique protein contacts. Remarkably, despite
being tandem duplicates, the DUX4 homeodomains
recognize different core sequences. This results
from an arginine-to-glutamate mutation, unique to
primates, causing alternative positioning of a key
arginine side chain in the recognition helix. Muta-
tional studies demonstrate that this primate-spe-
cific change is responsible for the divergence in
sequence recognition that likely drove coevolution
of embryonically regulated repeats in primates.
Our work provides a framework for understanding
the endogenous function of DUX4 and its role in
FSHD and cancer.
INTRODUCTION

Transcription factors are highly modular proteins, not uncom-

monly containing more than one DNA-binding domain; PAX

family transcription factors, for example, contain both a homeo-

domain and a Paired domain. The homeodomain is an ancient

motif, being present in eukaryotes as diverse as yeast and

vertebrates. Although homeodomains typically bind DNA as

dimers, a tandem homeodomain architecture within a single

protein is highly unusual: there are no double homeodomain

proteins in species outside of placental mammals, and within
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mammals, the function of the DUX (double homeobox) family is

enigmatic (Clapp et al., 2007). The DUX family seems to have

radiated out following a mutation in the progenitor to eutherian

mammals, in which part of a gene containing a single homeobox

(Leidenroth and Hewitt, 2010) was duplicated such that the gene

now contained two homeoboxes in tandem, connected by a

short linker. Little is known about the mode of DNA interaction

of such double homeodomain proteins, in particular whether

they bind DNA in tandem (head-to-tail) or symmetrically about

a dyad axis (head to head).

One of the descendants of the original DUX gene is DUX4,

which in humans is present in a multicopy array near the telo-

mere of chromosome 4 (Gabriëls et al., 1999). DUX4 seems

to be normally expressed in testis (Snider et al., 2010) and in

cleavage-stage embryos (De Iaco et al., 2017; Hendrickson

et al., 2017; Whiddon et al., 2017); however, misexpression via

gain-of-function mutations is implicated in two distinct human

diseases: the genetic myopathy, facioscapulohumeral muscular

dystrophy (FSHD) (Gabriëls et al., 1999; Lemmers et al., 2010;

Wijmenga et al., 1992), and B cell leukemia (Yasuda et al.,

2016; Zhang et al., 2016a). In the case of FSHD, overexpression

of the full-length protein is implicated: its expression is observed

at low levels in cultured myoblasts derived from patient biopsies

(Block et al., 2013; Snider et al., 2010). Low-level full-length

DUX4 protein expression interferes with myogenesis in vitro

and in vivo (Bosnakovski et al., 2017; Bosnakovski et al.,

2008b; Dandapat et al., 2014), while high-level DUX4 protein

expression is toxic to myoblasts (Bosnakovski et al., 2008b),

including endogenous DUX4 in human FSHDmyoblasts (Rickard

et al., 2015), as well as other cell types (Kowaljow et al., 2007).

This toxicity is unique to DUX4 within the human DUX family.

Toxicity of DUX4 is conferred by its distinct C terminus (Bosna-

kovski et al., 2008a), which interacts with p300 to strongly acti-

vate expression of its target genes (Choi et al., 2016). Interest-

ingly, the translocations that lead to B cell leukemia always

lead to B cell-specific overexpression of a mutant version of

DUX4, which contains the double homeodomain motif but lacks

the toxicity-associated C-terminal transactivation domain;

indeed, the full-length DUX4 protein is actually toxic to B cells

(Yasuda et al., 2016). Thus, although these two diseases must

be caused by different fundamental transcriptional mechanisms,
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Figure 1. Overview of the DUX4(15–155)-

DNA Complex

(A and B) Overall structure of the DUX4 double

homeodomain bound to DNA. DUX4 HD1 and HD2

are colored in cyan andmagenta, respectively, with

the intervening region including Trp85 in green.

(A) The DNA backbones and base-pairs are de-

picted by ribbons and ladders, respectively.

(B) The molecular surface for DNA is shown. Side

chains are shown in sticks for the arginines that

insert deep into the minor groove and the residues

from a3 that make sequence-specific contacts in

the major groove.

(C) DNA minor-groove contacts made by the

N-terminal arginine-rich stretch preceding a1

of HD1.

(D) Sequence-independent contacts in the DNA

major groove by HD1. Although HD1 and HD2 of

DUX4 make similar DNA backbone contacts, HD1

shows some unique interactions, including the

backbone contact made by Trp26 at the end of the

N-terminal stretch and that by Arg79 at the end

of the longer a3 helix. Hydrogen-bonding interac-

tions are depicted by yellow dotted lines. Water

molecules mediating protein-DNA interactions are

represented by small red spheres and labeled ‘‘w.’’
both absolutely require the specific DNA-binding properties of

DUX4. Understanding the principles of DNA recognition by the

DUX4 double homeodomain thus provides mechanistic insight

into both the natural function of DUX4 in eutherian mammals,

as well as the pathological function in FSHD and B cell leukemia.

The two homeodomains of DUX4 belong to the Paired-homeo-

box (PAX) branch of homeodomain family, but they are more

similar to each other in amino acid sequence than to the homeo-

domains of any other PAX family members, as expected of an in-

ternal duplication within the ancestral PAX-related gene (Leiden-

roth and Hewitt, 2010). PAX homeodomains typically bind as

head-to-head dimers over a TAAT core (Birrane et al., 2009).

The gap between the TAAT and ATTA may be 2 nucleotides

(i.e., 50-TAATNNATTA-30, a palindromic ‘‘P2’’ site), as in the

case of PAX7 (Soleimani et al., 2012), or 3 nucleotides (i.e.,

50-TAATNNNATTA-30, a P3 site), as in the case of Drosophila

Paired (Wilson et al., 1995). However, the DUX4 consensus motif

is quite distinct: 50-TAATCTAATCA-30 (Geng et al., 2012; Zhang

et al., 2016b). Assuming the highly related homeodomains

recognize the same core, one could envision the DUX4 homeo-

domains recognizing TAAT in tandem on the same strand

(50-TAATCTAATCA-30) forcing them into a head-to-tail dimer

configuration. This would be similar to themodes of DNA binding

by Even-skipped homeodomain (Hirsch and Aggarwal, 1995)

and the Hox-Pbx hetero-dimeric homeodomains (LaRonde-

LeBlanc and Wolberger, 2003; Passner et al., 1999; Piper

et al., 1999) (Figure S1A) and was suggested in a recent

structural study of the isolated second homeodomain of DUX4
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(Dong et al., 2018). However, this latter

structure does not actually show a home-

odomain positioned over the TAAT core,

and therefore its significance remains
unclear (Aihara et al., 2018). Alternatively, if core sequence

preference has diverged such that one homeodomain recog-

nizes TGAT, the DUX4 consensus could be viewed as a non-

palindrome (N3: 50-TAATCTAATCA-30) in which the inverted

core sequences separated by 3 bp are recognized by the tan-

dem homeodomains in a head-to-head orientation.

RESULTS AND DISCUSSION

To address how the DUX4 double homeodomain binds DNA, we

have crystallized and solved the structure of the DUX4 N termi-

nus (residues 15–155, which includes the double homeodo-

main), in complex with a DNA substrate including the consensus

motif. The structure refined to 2.12-Å resolution shows that each

homeodomain (HD1 and HD2) of DUX4 has the canonical three

a-helical bundle architecture, connected through a well-ordered

linker segment that plays critical roles in positioning the two

domains by making both protein and DNA contacts (Figure 1).

The two homeodomains bound to DNA are arranged in a

head-to-head fashion and are related by a dyad of the pseudo-

palindromic target sequence, although a3 of HD1 is significantly

longer than that of HD2. Thus, DUX4 recognizes its target

sequence as an inverted repeat, where HD1 and HD2 recognize

different sequences, 50-TAAT-30 and 50-TGAT-30, respectively.
As observed in other structurally characterized homeodomain-

DNA complexes (Hirsch and Aggarwal, 1995; Kissinger et al.,

1990; Li et al., 1995; Passner et al., 1999; Piper et al., 1999; Wil-

son et al., 1995) and for DUX4 HD2 (Aihara et al., 2018; Dong



Figure 2. Sequence-Specificity Determinants
(A and B) Views of the a3 helices of HD1 (A) and HD2 (B) inserted in the DNA major groove, with the side chains making base-specific contacts and some of the

surrounding residues shown in sticks. Hydrogen-bonding interactions are depicted by yellow dotted lines. Note differential positioning of HD1 Arg73 (ERSR) and

HD2 Arg148 (RRAR).

(C) Target DNA sequence preference of DUX4 HD mutants. Luciferase assays measuring transcriptional activation by various mutants of DUX4. Each protein

construct was tested in parallel against reporters bearing two copies of the three target DNA sequences (indicated). Expression levels normalized against the

highest of the three are plotted. The mean + SEM of 3 independent experiments is plotted. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 by one-way

ANOVA analysis with Tukey’s multiple-comparisons test.

(legend continued on next page)
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et al., 2018), the sequence readout by each homeodomain of

DUX4 involves interactions in both the major and minor grooves

of DNA. The third a-helix (a3) of both HD1 and HD2 is inserted

into the DNA major groove for direct base contacts (Figures

1B, 1D, 2A, and 2B). On either side of themajor groove harboring

the a3 helices, the arginine-rich stretches N-terminal to the first

helix (a1) of HD1 and HD2 traverse the minor grooves (Figures

1B and 1C). These interactions allow the DUX4 polypeptide

comprising the tandem homeodomains to follow a circular

path to span 3 consecutive grooves on one face of DNA,

effectively clamping down the target DNA molecule (Figures 1A

and 1B). This topology is distinct from those observed previously

for other transcription factors containing linked a-helical DNA-

binding domains, such as Oct-1 POU domain (Klemm et al.,

1994) or yeast Reb1 (Jaiswal et al., 2016). In an electrophoretic

mobility shift assay (EMSA), formation of a stable DUX4(15–

155)-DNA complex required the binding sites for both homeodo-

mains that are separated ideally by 3 bp (Figures S2A and S2B),

consistent with the crystal structure.

The overall structure of the DUX4(15–155)-DNA complex is

similar to that of the Drosophila Paired (S50Q) homodimer

bound to a P3 DNA site (Wilson et al., 1995), including the

�20� bending and narrowing of the minor grooves of DNA

toward the protein (Figure S1B). The sequence recognition in

the major groove by a3 of HD1 involves hydrogen bonds and

van der Waals contacts by Asn69 and Ile65, respectively, with

two bases (in bold and italics) of the 50-TAAT-30 core (Figure 2A).

Asn144 and Ile140 of HD2 make similar contacts with two bases

of 50-TGAT-30 (Figure 2B). These interactions are conserved

among PAX family homeodomains (Asn51 and Val47 of PAX3

[Birrane et al., 2009]; Figure S3), although Ile65 and Ile140 of

DUX4, in place of the highly conserved Val in PAX proteins,

make closer van der Waals contact with the thymine 5-methyl

group. Arg20 and Arg23 from the N terminus of HD1 insert

deep into the adjacent minor groove to hydrogen bond with

thymine O2 and adenine N3 atoms of 50-TAAT-30 (Figure 2A).

An intervening residue Arg21 forms a salt bridge with Glu135

from HD2 over the DNA strand, while the surrounding main

chain amide groups make phosphate backbone contacts with

either DNA strand to help position the N-terminal segment

(Figure 1C). Arg95 and Arg98 of HD2 similarly interact with

50-TGAT-30 in the minor groove (Figure 2B), and the intervening

Arg96 reciprocally interacts with Glu60 from HD1. The insertion

of arginine side chains into a compressed DNA minor groove is

a hallmark feature of AT-rich sequence recognition by homeo-

domains (Slattery et al., 2014). While many of the DNA back-

bone contacts are conserved between HD1 and HD2 as well

as between DUX4 and other PAX homeodomains, DUX4 shows

unique modes of interaction. These include a DNA phosphate

contact made by Trp26 (corresponding to Phe in most PAX fam-

ily members and Val in DUX4 HD2; Figures S3 and S4) preced-

ing a1 of HD1, and that made by Arg79 near the C-terminal end
(D and E) Sequence alignment of the residues from double-homeobox (DUX) (

Trp66�His78 in HD1 and Trp141�Gly153 in HD2. The region that determines the

DUX4 HD1-type sequence is highlighted in cyan, whereas the DUX4HD2 (sDUX)-t

scheme is also used for the histograms in (C). Protein sequences are from Unipr
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of the long a3 of HD1 with the opposing DNA strand (Figures

1C, 1D, and 2A).

The remarkable implication of this structure is that, despite

sharing high structural similarity and being more related in

amino acid sequence to each other than to any other homeodo-

mains, HD1 and HD2 of DUX4 exhibit different target DNA

sequence preferences. Our structure shows that the key deter-

minant is Arg148 of HD2, which forms bidentate hydrogen

bonds with the guanine base of 50-TGAT-30 in the major groove

(Figures 2B and S4). A similar arginine-guanine interaction

was observed for other homeodomains with 50-TGAT-30

target preference, including yeast MATa1(PDB: 1YRN) (Li

et al., 1995), Drosophila Extradenticle (PDB: 1B8I) (Passner

et al., 1999), and human PBX1 (PDB: 1PUF) (LaRonde-LeBlanc

and Wolberger, 2003). Curiously, arginine at this position is

conserved in DUX4 HD1 (Arg73) as well as in PAX homeodo-

mains (Arg55 in PAX3 [Birrane et al., 2009]; Figure S3), both of

which recognize the 50-TAAT-30 core sequence. However,

Arg73 of HD1 does not project into the major groove and

instead makes a backbone phosphate contact (Figure 2A). Like-

wise, Arg55 of PAX3 is pointed away from DNA (Birrane et al.,

2009). Thus, it is not the mere presence of arginine but its posi-

tioning that confers unique sequence preference.

To understand this unexpected structural divergence, we

compared the DNA interfaces of HD1 and HD2. Two factors

differentiate HD1 and HD2 that may contribute to the differential

positioning of this critical arginine. First, a neighboring residue

Glu70 forms a salt bridge with Arg73 in HD1, keeping the argi-

nine side chain at bay (Figure 2A). PAX3 Arg55 is similarly

bonded with Glu17 from a1 (Birrane et al., 2009). In contrast,

the residue corresponding to Glu70 in HD2 is Arg145, which

does not attract Arg148 (Figure 2B). The second factor is the

longer a3 helix of HD1. Although the positionings of a3 of HD1

and HD2 relative to DNA are very similar, the Ca-Cb bond vector

of Arg73 does not point toward the DNA major groove, which

precludes direct base contacts by Arg73 even with side chain

torsion (c) angles adjustment. In contrast, a3 is interrupted

immediately following Arg148 in HD2, and accordingly the

main chain carbonyl group of Arg148 is not hydrogen bonded.

This provides more flexibility for the HD2 arginine residue so

its side chain can point straight toward the guanine base of

the 50-TGAT-30 motif (Figure 2B).

To interrogate these two potential explanations for distinct

sequence selectivity of HD1 and HD2, we mutated specific resi-

dues of HD1 and HD2 and tested the ability of the mutant DUX4

proteins to activate luciferase reporters with all 3 possible config-

urations of TAAT and TGAT cores (i.e., palindromic P3 TAAT,

palindromic P3 TGAT, or pseudo-palindromic N3 TAAT/TGAT)

(Figure 2C). The luciferase reporter assay using full-length

DUX4 constructs is a more stringent functional test of the effects

of protein orDNA sequence alterations thanEMSAwith theDUX4

double homeodomain (Figure S2). Based on the sequences
D) and single-homeobox (sDUX) (E) family proteins, corresponding to DUX4

target DNA sequence preference of each homeodomain is shown in bold. The

ype sequence is in magenta and the third class (QRxR) is in green. This coloring

ot or Leidenroth and Hewitt (2010).



Figure 3. Linker Interactions
The inter-domain linker connecting HD1 and HD2 of DUX4 is shown in green.

Trp85 docks into a hydrophobic pocket on the HD1 surface. Other residues

from the linker also make protein or DNA contacts to coordinate positioning of

the two homeodomains. Solid and transparent surfaces are shown for HD1

and HD2, respectively.
preceding the key arginine residues Arg73 in HD1 (68QNERSR73)

and Arg148 in HD2 (143QNRRAR148) (Figures 2D and S3), we

made various changes in the a3 of HD2 to mimic HD1: HD2-

ERAR (R145E), HD2-RRSR (A147S), and HD2-ERSR (R145E/

A147S). We also made a key reciprocal change in HD1 to

mimic HD2 (HD1-RRAR: E70R/S72A), and complete homeodo-

main replacements (HD1HD1 or HD2HD2) for reference. Ser72

of HD1, which corresponds to Ala147 of HD2, forms a weak

hydrogen bond (�3.5 Å between non-hydrogen atoms) with the

guanine N7 atom from the CG pair within the 3-bp spacer region

(50-TAATCTAATCA-30) (Figure 2A). In addition, we substituted

residues near the end of a3 in HD1 (74QLRQHR79) for the

corresponding residues in HD2 (149HPGQGG154) to generate a

‘‘long helix’’ HD1-like version of HD2.

As expected, the wild-type DUX4 showed strong preference

for the 50-TAATCTAATCA-30 target and a lower activity on

50-TAATCTAATTA-30. The latter becomes the preferred target

after a complete replacement of HD2 with HD1 (Figure 2C).

The R145E substitution conferred a similar effect to swapping

the entire HD, albeit somewhat less potently, and A147S

alone allowed DUX4 to recognize both targets comparably.

Further combining R145E and A147S led to a complete reversal

of the preference, rendering DUX4 to selectively bind to a

canonical P3-type PAX target sequence 50-TAATCTAATTA-30

as ‘‘HD1HD1.’’ Changes downstream of Arg148 to mimic the

longer a3 of HD1 (long helix) did not have a significant effect

(data not shown). These results confirm that Arg145 in HD2, in

place of Glu70 in HD1, is important for the unique preference

of HD2 for 50-TGAT-30. Mouse Dux (mDux), which has RRNR

and RRAR at this position in HD1 and HD2, respectively

(Figure 2D), was reported to have the canonical target sequence

of 50-TGATTCAATCA-30 (Eidahl et al., 2016; Whiddon et al.,
2017). Consistent with the above results, HD1-RRAR,

HD2HD2, and mDux constructs all showed strong preference

for the canonical mDux target sequence (Figure 2C). Interest-

ingly, we found that Ala147 in HD2 as opposed to Ser72 in

HD1 contributes to the preference of HD2 for 50-TGAT-30, sug-
gesting that the conformation of the neighboring protein or

DNA residues also has a significant effect on the sequence

recognition. While DUX4(15–155) R145E/A147S did not show a

dramatic defect in the protein-DNA complex formation in

EMSA, it bound particularly poorly to the N2 site, likely due to

a combination of compromised DNA-binding by HD2 and a

wrong (2 bp) spacing between the two core sequences

(Figure S2C).

The critical role of the 145RRAR148 stretch including Arg145 in

determining the target sequence preference of DUX4 suggests

that the ‘‘single-homeodomain DUX’’ (sDUX) protein found in

non-placental mammals, which likely represents the progenitor

ofDUX4andhasRRARas inHD2ofDUX4 (Leidenroth andHewitt,

2010) (Figure 2E), would also preferentially bind 50-TGAT-30.
Accordingly, the ancestral DUX protein generated via gene dupli-

cation would have preferentially recognized a 50-TGAT—ATCA-30

target sequence, as does mDUX (Figure 2C). Notably, a compar-

ison between the amino acid sequences of mammalian DUX4

orthologs show strict conservation of the RRAR stretch of HD2,

but considerable variation in the corresponding position in HD1.

Whereas most primate DUX4 sequences share ‘‘ERSR’’ with hu-

manDUX4 (70ERSR73), DUX4/DUXC fromseveral othermammals

have QRxR, and mDux has RRNR (Figure 2D). This predicts that,

outsideofprimates,HD1andHD2ofDUXCwouldprefer the same

core sequence: TGAT. Thus, a unique sequence specificity for

DUX4 distinguishes primates from the rest of mammals.

A superposition of the DUX4(15–155)-DNA and Drosophila

Paired homodimer-DNA complexes shows a notable deviation

of the two structures near the end of the recognition helix (a3)

of DUX4 HD1, which harbors Arg79 mentioned above (Fig-

ure S1B). The a3 helix of HD1 is curved toward the linker

(82SRPWPGRRGPPEG94) connecting HD1 and HD2 of DUX4.

The presence of a linker, which constrains positioning of HD1

and HD2, is a unique structural feature of DUX proteins contain-

ing tandemly linked homeodomains. The indole ring of Trp85

from this stretch (in bold and italic) docks into a hydrophobic

pocket lined by Phe38, Pro42, Tyr43, Gln74, Lue75, and His78

from HD1, where its NεH group is hydrogen bonded to Tyr43

(Figures 1A, 3, 4A, and 4C). The proline-rich linker segment

anchored by Trp85 makes extensive contacts with HD1,

including a hydrogen bond between Glu93 and Thr48. In addi-

tion, Arg88 from the linker also makes a DNA backbone contact.

Through these interactions, the linker likely facilitates coopera-

tive DNA binding by HD1 and HD2. A notable analog to this

mode of interaction exists in the Hox-Pbx1 (LaRonde-LeBlanc

and Wolberger, 2003; Piper et al., 1999) (Ubx-Exd in Drosophila

[Passner et al., 1999]) heterodimer-DNA complexes: the

‘‘YPWM’’ motif in the N terminus of the Hox homeodomain medi-

ates similar interactions with Pbx1, where the tryptophan residue

(in bold and italic) docks into a pocket formed near theC terminus

of Pbx1 (Figures 4B and 4D). However, the mode of homeodo-

main dimerization in the head-to-tail Hox-Pbx1 heterodimers is

fundamentally different from the head-to-head configuration for
Cell Reports 25, 2955–2962, December 11, 2018 2959



Figure 4. Comparison between DUX4 and

HoxB1-Pbx1 Heterodimer

(A and B) A side-by-side comparison between

DUX4 (A) and HoxB1-Pbx1 heterodimer (B)

(LaRonde-LeBlanc and Wolberger, 2003; Piper

et al., 1999) bound to respective DNA substrate,

highlighting similarity in the positioning of a key Trp

residue in coordinating the two homeodomains.

(C and D) Close-up views of DUX4 (C) and HoxB1-

Pbx1 heterodimer (D) bound to respective DNA

substrate (as in A and B) highlighting distinct local

interactions surrounding the key Trp residue

docked in a hydrophobic pocket.
DUX4 HD1-HD2, and the interactions of the peptide motifs

including the tryptophan residues are locally not conserved be-

tween the Hox N terminus and the DUX4 linker (Figures 4C and

4D). Thus, involvement of similar binding pockets at a common

location may have resulted from convergent evolution.

It is interesting that primates are distinct from the rest of

mammals in having a negatively charged residue at position

70 (Figure 2D), which dictates the TAAT specificity for HD1.

In all other DUXC family members, the amino acid at this posi-

tion is arginine or glutamine, and indeed HD2 has an arginine at

this position as does the DUX progenitor sDUX from marsu-

pials, birds, and reptiles. Hendrickson et al. (2017) have shown

that a subset of retroviral-like elements are regulated by

DUX4 in early cleavage-stage embryos and that, in humans,

these preferentially have the TAAT-containing putative DUX4

recognition site, whereas in mouse, the elements regulated

by mDux preferentially have a TGAT-containing mDux recogni-

tion sequence. This suggests that the change from arginine to

glutamic acid in DUX4 precipitated the coevolution of a cohort

of mammalian endogenous retroviral elements throughout the

human genome.

FSHD is caused by the cytotoxic effects of the DUX4

homeodomains recruiting p300 to target loci through the linked

C terminus. Interestingly, both mDux and human DUX4 are toxic

when the full-length proteins are overexpressed in mouse cells

(Bosnakovski et al., 2009; Eidahl et al., 2016), and mDux is toxic

when overexpressed in human cells (unpublished results). So,

while there is apparently selective pressure on endogenous

retroviral-like elements for optimal sequence specificity, this

may not be the case with regard to the targets associated

with cytotoxicity. On the other hand, B cell leukemic mutants

of DUX4 invariably contain the homeodomains and lack the
2960 Cell Reports 25, 2955–2962, December 11, 2018
accompanying toxicity-associated tran-

scriptional activation domain. The cancer

phenotype of DUX4-IGH fusions is thus

directly related to the DNA-binding spec-

ificity of DUX4. It would be interesting to

determine how leukemogenicity varies

with sequence specificity alterations in

HD1, and in particular whether an mDux

mutant lacking its C terminus would be

leukemogenic. Given the critical roles of

the DUX4 double homeodomain in both

FSHD and B cell leukemia, the structural
basis of its target DNA sequence recognition presented here

provides the framework for better understanding and potentially

developing therapeutic strategies for these diseases.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

DUX4 R&D Systems Cat#MAB95351; RRID: AB_2754557

Bacterial and Virus Strains

E. coli BL21(DE3) Lucigen Cat#60401-3

E. coli 5a New England BioLabs Cat#C2987I

Stellar competent cells Takara BIO INC. Cat#636763

Chemicals, Peptides, and Recombinant Proteins

DMEM, high glucose HyClone Cat#SH30081.01

FBS PEAK serum Cat#PS-FB3

Penicillin/streptomycin Life Technologies Cat#15140-122

Glutamax Millipore Cat#SCR006

0.25% Trypsin-EDTA Life Technologies Cat#25200-072

PBS HyClone Cat#SH30256.01

Doxycycline Alfa Aesar Cat#J60579-14

XhoI New England BioLabs Cat#R0146S

HindIII-HF New England BioLabs Cat#R3104M

BsaI New England BioLabs Cat#R0535S

XbaI New England BioLabs Cat#R0145S

Recombinant Sumo protease (Ulp1 core) This paper N/A

LA Taq Polymerase Takara BIO INC. Cat#RR02AG

In-Fusion HD Cloning Kit Clontech Cat#638909

TransIT-LTI transfection reagent Mirus Bio LLC Cat#MIR2300

QIAPrep Spin MiniPrep Kit QIAGEN Cat#27106

Bis-Tris Sigma Cat#B9754-1KG

polyethylene glycol 3,350 Hampton Research Cat#HR2-591

b-mercaptoethanol Aldrich Cat#M6250

sodium chloride Fisher Cat#BP-358

Triton X-100 Acros Cat#21568-2500

Tris base Fisher Cat#BP152

bovine serum albumin Sigma Cat#A7030

bromophenol blue Ricca Chemicals Cat#1353-4

glycerol Fisher Cat#S25342B

tris(2-carboxyethyl)phosphine-HCl Biosynth Cat#C-1818

HisPur Ni-NTA resin Thermo Scientific Cat#88222

Boric acid Fisher Cat#BP168-1

EDTA Fisher Cat#BP120

Imidazole AK Scientific Cat#D070

Critical Commercial Assays

ONE-Glo Luciferase Assay System Promega Cat#E6120

Deposited Data

Crystal structure data (atomic coordinates

and structure factors)

This paper PDB ID: 6E8C

Experimental Models: Cell Lines

iC2C12 Bosnakovski et al., 2008b N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

50-GCGTAATCTAATCAACA-30 Integrated DNA Technologies (IDT) N/A

50-TGTTGATTAGATTACGC-30 IDT N/A

/56-FAM/TGCGTAATCTAATCAACAC IDT N/A

GTGTTGATTAGATTACGCA IDT N/A

/56-FAM/TGCGTAATCTAATTAACAC IDT N/A

GTGTTAATTAGATTACGCA IDT N/A

/56-FAM/TGCGTGATCTAATCAACAC IDT N/A

GTGTTGATTAGATCACGCA IDT N/A

/56-FAM/TGCGTAATCTATCAACAC IDT N/A

GTGTTGATAGATTACGCA IDT N/A

/56-FAM/TT TCC CTT TTC CCC TTT TT IDT N/A

AAA AAG GGG AAA AGG GAA A IDT N/A

/56-FAM/AG CCC GCA CCA ACC ATG CC IDT N/A

GGC ATG GTT GGT GCG GGC T IDT N/A

/56-FAM/TG CGT AAT CTA GGG GAC AC IDT N/A

GTG TCC CCT AGA TTA CGC A IDT N/A

/56-FAM/TG CGC CCC CTA ATC AAC AC IDT N/A

GTG TTG ATT AGG GGG CGC A IDT N/A

Recombinant DNA

pE-SUMO-DUX4 (15-155) expression plasmid This paper N/A

p2lox (Iacovino et al., 2011) N/A

p2lox-DUX4 (Bosnakovski et al., 2008b) N/A

pGL4-2X-TAATCTAATCA (Zhang et al., 2016b) N/A

pGL4-2X-TAATCTAATTA This paper N/A

pGL4-2X-TGATTCAATCA This paper N/A

Software and Algorithms

XDS (Kabsch, 2010) N/A

PHASER (McCoy et al., 2007) N/A

COOT (Emsley et al., 2010) N/A

PHENIX (Adams et al., 2010) N/A

PyMOL https://pymol.org/2/ N/A

Prism (v6.07) GraphPad Software https://www.graphpad.com/

scientific-software/prism/

Other

6% acrylamide native gel (0.5x TBE) Invitrogen EC63652BOX

Superdex 200 26/60 GE 17-1071-01
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to andwill be fulfilled by the LeadContact, Hideki Aihara (aihar001@

umn.edu). Sharing of reagents may require MTA agreements.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Inducible C2C12 murine myoblasts (iC2C12) carrying DUX4 deletion constructs were cultured in DMEM, high glucose (HyClone

Cat#SH30081.01), 1% penicillin/streptomycin (P/S) (Life Technologies #15140-122), 1% Glutamax (Life Technologies #SCR006),

1% Sodium Pyruvate (Caisson labs Cat#PYL01) and 20% FBS (Millipore #ESG1107, Temecula, CA), at 37�C in 5% CO2.
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METHOD DETAILS

Structure determination
HumanDUX4 (15-155) was expressed in E. coli strain BL21(DE3) with anN-terminal 6xHis-SUMO fusion tag and purified using nickel-

affinity and size-exclusion chromatography. The SUMO-tag was removed by Ulp1 treatment during purification. The protein was

mixed with a blunt-ended 17 bp double-stranded DNA substrate (50-GCGTAATCTAATCAACA-30 annealed to its complement) at

1:1.5 protein:DNAmolar ratio in 20 mM Tris-HCl (pH 7.4), 150 mM sodium chloride, and 5 mM b-mercaptoethanol, and at an approx-

imate protein concentration of 10mgml-1.We confirmed the formation of a homogeneous protein-DNA complex using size-exclusion

chromatography. Crystals of the DUX4-(15-155)-DNA complex were grown by the hanging drop vapor diffusion method in a 24-well

plate, using the reservoir solution consisting of 0.1 M BisTris-HCl (pH 6.5), 25%–30% polyethylene glycol 3,350, and 4%–10%

glycerol. 1 mL each of the protein-DNA complex and the reservoir solutions were mixed to form the drops. The crystals were

cryo-protected by increasing the glycerol concentration of the reservoir solutions to 25% then flash cooled by plunging into liquid

nitrogen. X-ray diffraction data were collected at the NE-CAT (APS) beamlines 24-ID-C and 24-ID-E, and processed using XDS

(Kabsch, 2010). The structure of the DUX4-DNA complex was solved by molecular replacement using the Pdx1 homeodomain

(PDB ID: 2H1K) (Longo et al., 2007) as the searchmodel in PHASER (McCoy et al., 2007). The atomic model was iteratively built using

COOT (Emsley et al., 2010) and refined using PHENIX (Adams et al., 2010), imposing a standard set of protein geometry restrains as

well as the base-pair and base-planarity restraints for DNA. Atomic displacement parameters refined included individual isotropic

B-factors and a total of 8 TLS groups. A summary of data collection and model refinement statistics is shown in Table S1. Electron

density suggested that Cys37 is covalently modified by b-mercaptoethanol, which is treated as ‘ligand’ in Table S1. Figures were

generated using PyMOL (https://pymol.org/2/).

Generation of mutant cell lines & luciferase reporter assay
Terminal D4Z4 (2.7 kb) from p2lox-DUX4 was used as a template to generate all DUX4 mutation constructs (Bosnakovski et al.,

2008b). Specific mutations were incorporated into PCR primers and amplified using LA Taq Polymerase (Takara BIO INC.). PCR frag-

ments were fused together using In-Fusion HD Cloning Kit (Clontech) and cloned into p2lox plasmid. All of the constructs were

sequenced before inserting into the targeting locus of iC2C12 myoblast cells as previously described (Bosnakovski et al., 2008b).

Induction of every construct was confirmed by western blot using DUX4-specific antibody (R&D) and RTqPCR (Bosnakovski

et al., 2008b). In addition, we confirmed by immunofluorescence that all of themutant proteins exhibited nuclear localization. Cloning

of the 2x DUX4 TAATCTAATCA luciferase reporter construct has been described previously (Zhang et al., 2016b). To generate the 2x

TAATCTAATTA and TGATTCAATCA luciferase reporters, oligonucleotides encoding 2 copies of each potential DUX4 binding motif,

but otherwise identical to each other and the original reporter, were synthesized and cloned into XhoI/HindIII-digested pGL4 lucif-

erase reporter plasmid using In-Fusion HD Cloning Kit (Clontech). Positive clones were sequenced to confirm proper integration

of the insert. For the luciferase assay, iC2C12-DUX4 and variant HD mutant cell lines were plated by flow cytometry using a

FACS Aria into 96-well assay plates at a density of 2,000 cells/well. The following day, cells were transfected with pGL4-HD reporter

plasmids (75 ng/well), using TransIT-LTI transfection reagent (Mirus Bio LLC). At 24 hours post-transfection, DUX4 expression was

induced with 100 ng/mL doxycycline. Luciferase levels were quantified at 48 hours post-transfection using the ONE-Glo Luciferase

Assay System (Promega), according to the manufacturer’s instructions. Luminescence was measured using the Cytation3 plate

reader (BioTek). For each DUX4 construct, relative luciferase levels for the 3 different target sites are shown as normalized to the

highest.

Electrophoretic mobility shift assay (EMSA)
50-fluorescein-labeled 19 (18 for N2) nucleotide-long oligonucleotide annealed with an unlabeled complementary strand (Integrated

DNA Technologies) at 15 nMwasmixedwith protein at indicated final concentrations in 15mMTris-HCl, pH 7.5, 75mMNaCl, 3.7mM

tris(2-carboxyethyl)phosphine, 0.0075% Triton X-100, 0.1 mg/ml bovine serum albumin, 0.007% (w/v) bromophenol blue, and 10%

(v/v) glycerol. The samples were separated on a non-denaturing 6% acrylamide gel (Invitrogen) with 0.5X TBE running buffer and the

fluorescence was detected using a Typhoon FLA 9500 imager.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as mean ± SEM. Statistical analyses were done with Prism v6.07 (GraphPad Software, La Jolla, CA). The number

of replicates and statistical method for each experiments were indicated in the corresponding figure legend.

DATA AND SOFTWARE AVAILABILITY

The atomic coordinates and structure factors for the DUX4-DNA complex crystal structure reported in this paper have been depos-

ited in the Protein Data Bank, under the accession code 6E8C.
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