
Annals of West University of Timişoara, ser. Biology, 2018, vol. 21 (2), pp.185-192

 185

ALGORITHMS FOR GENOMIC SIMILARITY SEARCH: A

REVIEW

Done STOJANOV

Faculty of Computer Science, University Goce Delcev, Krste Misirkov nn – Štip, Republic of
Macedonia

 *Corresponding author e-mail: done.stojanov@ugd.edu.mk
Received 29 June 2018; accepted 10 December 2018

ABSTRACT

In this paper we consider the properties of the most popular algorithms for genomic
similarity search. All these methods use some type of heuristics to improve the speed of
search that has negative impact upon the accuracy. Some of these methods split the
content into small pieces of data, some of them use hashing, while some of them utilize
the computational benefits of suffix tree. In many cases the output depends of the user-
proved parameters that define the sensitivity and the range of search.
KEY WORDS: heuristics, algorithms, genomic, similarity, search.

INTRODUCTION

Genomic similarity search has been widely explored scientific topic nowadays and a

lot of algorithms and software tools (desktop and web applications) have been developed. In

spite of the different concepts that were used, two major groups of algorithms evolved. The first

group or deterministic algorithms are based on predefined metrics. Deterministic algorithms are

based on dynamic programming and they report the best or the highest score solution. However

due to the fact that they operate on predefined metrics they require too much memory and time

(time and memory) that may limit the real-time application of these algorithms. In

practice they can be applied to short fragments or prokaryotic samples.

All older algorithms for genomic similarity search, such as: Needleman-Wunsch

(Needleman et al., 1970), Sellers (Sellers, 1974), Smith-Waterman (Smith et al., 1981),

Waterman-Eggert (Waterman et al., 1987) and Ficket (Ficket, 1984) are deterministic.

Needleman-Wunsch (Needleman et al., 1970) is the oldest known algorithm for this

purpose and it performs global alignment on two samples applying dynamic programming

metrics. The algorithm of Sellers (Sellers, 1974) can be seen as an alternative of Needleman-

Wunsch. Both algorithms work for the same purpose, but Sellers instead of maximizing the

score of the alignment, minimizes the distance between the samples.

On the other hand Smith-Waterman (Smith et al., 1981) performs local alignment, i.e.

it detects the most similar fragments between two samples, performing gapped alignment to

these regions. Dynamic programming scoring scheme is also used in Smith-Waterman.

Instead of searching for one best solution, Waterman-Eggert (Waterman et al., 1987)

looks for the best or highest scoring alignments. At first dynamic programming matrix of

Smith-Waterman type is computed and the algorithm looks for the highest scoring alignment in

the matrix. After printing it, the cells of the highest scoring alignment in the matrix are set up to

STOJANOV et al: Algorithms for genomic similarity search: a review

186

0 and the algorithm looks for the next highest scoring alignment. Waterman-Eggert applies this

procedure until the best or highest scoring solutions are reported.

The concept of diagonal alignment reduces the space and time complexity down

to . The problem was discussed and solved by Ficket (Ficket, 1984). Ficket

proved that the best or the highest scoring solution converges to the main diagonal in dynamic

programming matrix and therefore cells at distance do not have to be computed,

since it not likely that the path of pointers that defines the best solution will go through any of

those cells. However the inquiry regards the value of the parameter (the size of the diagonal

range) remains that limits the application of this algorithm only to very similar samples.

As we mentioned before, due to the unfavorable time complexity, all deterministic algorithms

have limited application only to small-size samples. On the other hand algorithms which are

based on some type of heuristics, such as: FASTA (Pearson et al., 1988), BLAST (Altschul et

al., 1997), Pattern Hunter (Ma et al., 2002), BLAT (Kent, 2002), FLASH (Califano et al.,

1993), YASS (Noé et al., 2005), MUMmer (Delcher et al., 2003) and AVID (Bray et al., 2003)

can solve this problem more efficiently. The high processing power of these algorithms is due

to the data pre-processing or the cuts in the space where they search for solution, what is a

common practice in all heuristic algorithms. Heuristic algorithms, the way they operate and

their properties are topics of this paper.

 MATERIALS AND METHODS

FASTP is one of the oldest methods for massive genomic database search, which was

afterwards upgraded to FASTA (Pearson et al., 1988). These methods (FASTP and FASTA)

differ in the type of data they operate on. In spite of FASTP which works only with protein

data, FASTA is applicable for protein and nucleotide data. Before explaining how FASTA

works, we should emphasize that we are taking about algorithm that runs in several phases. In

the first phase, the query is split into short words of fixed size .For nucleotide data (for

protein). Later, during the search, hits of these words in the database are identified.

Note that each hit is tracked by tuple such as stands for the position of the short word in

the query, while stands for the position of the hit in the database. Consecutive hits form

visually diagonals or extended hits and they are best known as diagonal extensions. Each of

these extensions is properly scored and only the best scoring diagonal extensions are considered

as a part of the alignment. For instance, PAM250 matrix is used for this purpose when the

algorithm operates on protein data. Significant and neighboring diagonal extensions are

connected together by applying the Smith-Waterman gapped algorithm and that is done by

inserting gaps in the space that separates the neighboring diagonal extensions.

This procedure is graphically illustrated on Fig. 1. Each line section regardless of its

thinness represents diagonal extension and as we said before each one of these diagonal

extensions is made of several short consecutive hits that are joined together, Fig. 1. Not all

diagonal extensions are part of the final solution. The less significant diagonal extensions

(shorter and thinner line sections on Fig. 1) are rejected, while the high-scoring (longer and

bold line sections on Fig. 1) are connected together what results into an alignment. The

Annals of West University of Timişoara, ser. Biology, 2018, vol. 21 (2), pp.185-192

 187

connection is made by inserting gaps in the space between the neighboring diagonal extensions

(dashed segments on Fig. 1) applying the Smith-Waterman algorithm.

FIG. 1. Graphic illustration of FASTA

BLAST (Basic Alignment Search Tool) (Altschul et al., 1997) is another useful

approach for genomic database search. The first version was able to perform only un-gapped

alignments, while the later upgrade (PSI-BLAST) performed gapped alignments. Theoretically

there is no conceptual distinction between FASTA and BLAST, because both search for hits of

short words in massive data, which is a widely explored concept for searching genomic

database upon query. However we should note that in terms of the speed, BLAST runs faster

than FASTA and it can be applied to protein and nucleotide data.

They way BLAST operates must be divided in several phases. When it comes to

protein data, a list of query-extracted words of fixed size is construced at the beginning. This

list is afterwards extended with words that are not part of the query but for which the score of

the un-gapped alignment with query-extracted words is greater than . PAM or BLOSUM

substitution matrix is used for this purpose. In the next stage, perfect hits of these words in the

database are identified, such as the program tracks the position of every single hit. These hits

are referred as seeds and they are extended in the both directions (to the left and to the right).

The extension goes on until the score of the alignment increases. Same as FASTA, BLAST

considers only the most significant extensions for which the score of the alignment is greater

than . Note that the parameters: and are provided by the user and therefore different

solutions are expected upon different combinations of these parameters.

When it comes to nucleotide data, the query has to be also split into list of words of 12

bases which are afterwards searched in the database, using two-bit encoding scheme (00, 01,

10, and 11) per base. Nowadays there are many available BLAST implementations, such as:

BLASTN (works with nucleotide data), BLASTP (works with protein data) and BLASTX

(compares nucleotide query to protein database).

The search for perfect hits has been the main drawback of FASTA and BLAST.

Furthermore, BLAST search sensitivity depends of the parameter or the length of the words

STOJANOV et al: Algorithms for genomic similarity search: a review

188

that are searched in the database. For high many hits remain undetected and therefore distant

homologies cannot be found. On the other hand, if is too small, the search slows down.

Pattern Hunter (Ma et al., 2002) is step above FASTA and BLAST, because it searches

for imperfect hits, based on model for hits. This means that words with at least equal

nucleotides are reported as hits, regardless of the order of appearance (consecutive or non-

consecutive) what will improve the sensitivity of search. According (Ma et al., 2002) for region

of similarity of 70% and , the sensitivity of search is maximal for the model:

111010010100110111, such as 1 stands for equal elements, while 0 stands for unequal

elements. Database words that satisfy this or other adopted model are regarded as hits and they

are extended in both directions in the final stage. Different solutions are found for different

models.

Unlike BLAST which is applicable for distant and closely-related samples, BLAT

(Kent, 2002) works only with closely-related samples. BLAT runs faster than BLAST, but the

sensitivity of search is reduced. BLAT searches for perfect or near-perfect hits without

computing statistical significance.

BLAT runs in two phases: search and alignment phase. In the first phase it searches

for perfect, near-perfect or multiple-perfect hits between query and genomic database, upon

which an alignment is constructed in the second phase.

Unlike BLAST and FASTA, BLAT indexes the database. Non-overlapping database

words of size are indexed, such as ranges between 8 and 16 for nucleotide data and

between 3 and 7 for protein data. Database words are compared to query words in order to

detect: perfect, near-perfect or multiple-perfect hits. According Kent (Kent, 2002) near-perfect

hits include one mismatch, while multiple-perfect hits include perfect hits at mutual distance

that does not exceed .

The expected number of perfect hits equals , the

expected number of near-perfect hits

equals and the expected

number of multiple-perfect hits equals , such

as . In previous equations

 stands for the length of the query, is the size of the database, is the maximum allowed

distance between perfect hits in multiple-perfect hits and stands for the size of the alphabet

(for nucleotide data and for protein data).

FLASH (Califano et al., 1993) detects database motifs that resemble to the query. At

the beginning, the program compiles two separate lists that contain information about all

overlapping words of elements in the target sequence and the query. This information is

presented in form of pairs such as is the position of the word in the target/query,

while is the word which is tracked. Motifs from the target sequence are compared to the

query. Common words are identified at first and the differences in positions in the motif and the

Annals of West University of Timişoara, ser. Biology, 2018, vol. 21 (2), pp.185-192

 189

query are computed afterwards. The motif for which the number of equal differences is the

highest is the motif which is most similar (homologous) to the query.

We will illustrate how FLASH works to the target t=ACTGATTG and the query

q=GAGTG. For the program compiles two lists Lt and Lq, such as Lt contains all

overlapping words of elements from the target, while Lq contains all overlapping

words of the same size from the query. So we get that

Lt={(1,AC),(2,CT),(3,TG),(4,GA),(5,AT),(6,TT),(7,TG)} and

Lq={(1,GA),(2,AG),(3,GT),(4,TG)}. When the program comes to the motif m=GATTG which

is compared to the query q=GAGTG, two common words are identified: ((4,GA) in Lt; (1,GA)

in Lq) and ((7,TG) in Lt; (4,TG) in Lq). The difference between the positions of these words in

the motif and the query is equal and it equals 3 (4-1=3 and 7-4=3) and this is true for 2 hits.

Since this number is the highest compared to any other motif, we get that the motif m=GATTG

is the motif that is homologous to the query q=GAGTG.

YASS (Noé et al., 2005) is another homology search tool which is based on sensitive

and efficient data filtering algorithm. It looks for close hits that form groups of close hits. The

distance between hits in the groups must not exceed . The parameter is computed

dynamically as a function of the frequency of base substitutions and insertions (deletions).

However there must be at least hits in the group in order to consider the cluster as a group of

close hits.

 Some software tools such as MUMmer (Delcher et al., 2003) and AVID (Bray et al.,

2003) exploit the benefits of suffix trees. As far as known, suffix trees can be constructed and

searched in time, where is the length of the sequence. Suffix trees are also space

efficient because memory is required. The moderate memory requirement makes suffix

trees suitable tool for big genomic comparisons.

MUMmer (Delcher et al., 2003) is heuristic approach for fast comparison of big

genomic sequences, such as entire genomes. It is based on three concepts: suffix tree,

identification of longest common substrings and Smith-Waterman algorithm. MUMmer

exploits a suffix tree to identify unique longest common substrings between two samples, while

the Smith-Waterman algorithm is used in the final phase to construct the alignment. The unique

longest common substrings are referred as MUM-mers and by definition they are hits which are

not part of any longer hit.

We will demonstrate the way MUMmer operates to the samples:

ACTGCACCACACCC and ACTCCACCACAACTCC. Hits AC and CT can not be

considered for MUM-mers because they are part of longer hit such as ACT, Fig. 2. We cannot

also consider CCA hit for MUM-mer because this hit occurs twice times in the sample , Fig.

2.

The program exploits suffix tree in order to identify the set of all MUM-mers that are

identified in time and space, such as is the length of the sample and is the

length of the sample . The set of all MUM-mers is sorted next, wherefrom the longest subset

of MUM-mers that occur in the same order in the samples and is extracted.

For the samples that we use, the subset of MUM-mers includes hits (1) and (2), Fig. 2.

Hit (3) on Fig. 2 cannot be included in the subset because it intersects with hit (2), Fig. 2.

STOJANOV et al: Algorithms for genomic similarity search: a review

190

FIG. 2. Identification of MUM-mers

Before the final alignment, a local identification of: long insertions, repetitions, short

mutations, tandem repeats and SNPs has to be performed.

The program for global alignment: AVID (Bray et al., 2003) also exploits suffix tree to

detect the longest common hits between two samples. The two samples are merged into one

with delimiter ‘N’ and for the joint sequence suffix tree is constructed, Fig. 3. The program

traverses the suffix tree to find the longest repeating strings that in fact are the longest common

hits between the samples, Fig. 3. The set of all common hits is filtered such as common hits that

are shorter than half of the length of the longest hit must be rejected. A set of parallel common

hits is afterwards selected. Hits are selected by a modified Smith-Waterman program that

computes the score for each selection, based on the length of the hit and the score of the

alignment of nearby hits.

FIG. 3. Searching for repeated substrings

 RESULTS AND DISCUSSIONS

Properties of the algorithms discussed in the previous section are listed into Table 1.

Annals of West University of Timişoara, ser. Biology, 2018, vol. 21 (2), pp.185-192

 191

TABLE 1. Properties of heuristic algorithms

Algorithm Properties

FASTA Works with protein and nucleotide data; Searches for exact and short hits which are afterwards

extended and connected into an alignment applying Smith-Waterman algorithm; Runs slowly

BLAST Applicable to protein and nucleotide data; Looks for query and query-similar words into the

database; Generally runs faster than FASTA; The sensitivity and the speed of search depends of

the parameter (the size of words)

Pattern Hunter Unlike FASTA and BLAST that search for perfect this, Pattern Hunter looks also for imperfect
hits based on matching model; Improved sensitivity of search compared to FASTA and BLAST

BLAT Unlike previous methods that index the query, BLAT indexes the database; Runs very fast and

searches for three types of hits: perfect, near-perfect and multiple-perfect hits; Main drawback:
works only with closely-related samples

FLASH Detects motifs in the database that resemble to query

YASS Looks for clusters of near or close hits which are considered as groups

MUMmer Suffix tree based approach; Looks for MUM-mers or unique and longest common substrings that

are identified in time and space

AVID Exploits suffix tree; Merges two samples into one with delimiter ‘N’ for which the suffix tree is
constructed; Traverses the suffix tree to find the longest repeating substrings that match the

longest common hits

 CONCLUSIONS

In this paper we discuss the most popular algorithms and software tools for genomic

similarity search. Due to the large scale data, all these methods apply some type of heuristics to

speed up the search process. Some of the algorithms, such as FASTA and BLAST split the

query into short words which are afterwards searched into the database upon what local

similarities are detected. The precision of search can be improved if instead of exact hits,

imperfect hits are also considered. The concept of imperfect hits was introduced in Pattern

Hunter. Imperfect hits include one or more mismatches and they can be the key for detecting

distant homologies. For faster search, some methods such as BLAT, index the database instead

of the query. The speed of search can be also improved if groups of near hits are only

considered; YASS.

 However we must mention that there are also suffix based approaches for this purpose.

Those methods such as: MUMmer and AVID exploit the computational benefits of suffix trees

which are constructed and searched in time. MUMmer searches for unique and longest

common substrings, while AVID joins two samples into one, for which the suffix tree is

constructed. Traversing the suffix tree and looking for the longest and repeating substrings, the

longest common hits are identified.

 REFERENCES
• Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST

and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 25(17):3389-

3402.

• Bray N., Dubchak I., Pachter L. 2003. AVID: A global alignment program. Genome research 13(1):97-102.

• Califano A., Rigoutsos I. 1993. FLASH: A fast look-up algorithm for string homology, pp.353-359. In: Computer
Vision and Pattern Recognition, IEEE.

• Delcher A.L., Salzberg S.L., Phillippy A.M. 2003. .Using MUMmer to identify similar regions in large sequence
sets. Current protocols in bioinformatics (1):10-13.

• Fickett J. W. 1984. Fast optimal alignment. Nucleic acids research 12(1Part1):175-179.

STOJANOV et al: Algorithms for genomic similarity search: a review

192

• Kent W.J. 2002. BLAT—the BLAST-like alignment tool. Genome research 12(4):656-664.

• Ma B., Tromp J., Li M. 2002. PatternHunter: faster and more sensitive homology search. Bioinformatics

18(3):440-445.

• Needleman S.B., Wunsch C.D. 1970. A general method applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of molecular biology 48(3):443-453.

• Noé L., Kucherov G. 2005. YASS: enhancing the sensitivity of DNA similarity search. Nucleic acids research
33(suppl 2):W540-W543.

• Pearson W.R., Lipman, D.J. 1988. Improved tools for biological sequence comparison, pp.2444-2448. In:
Proceedings of the National Academy of Sciences.

• Sellers P.H. 1974. An algorithm for the distance between two finite sequences. Journal of Combinatorial Theory,
Series A, 16(2):253-258.

• Smith T.F., Waterman M. S. 1981. Identification of common molecular subsequences. Journal of molecular
biology 147(1):195-197.

• Waterman M.S., Eggert M. 1987. A new algorithm for best subsequence alignments with application to tRNA-

rRNA comparisons. Journal of molecular biology 197(4):723-728.

