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ABSTRACT 

In this paper we consider the properties of the most popular algorithms for genomic 
similarity search. All these methods use some type of heuristics to improve the speed of 
search that has negative impact upon the accuracy. Some of these methods split the 
content into small pieces of data, some of them use hashing, while some of them utilize 
the computational benefits of suffix tree. In many cases the output depends of the user-
proved parameters that define the sensitivity and the range of search.   
KEY WORDS: heuristics, algorithms, genomic, similarity, search.  

INTRODUCTION 

Genomic similarity search has been widely explored scientific topic nowadays and a 

lot of algorithms and software tools (desktop and web applications) have been developed. In 

spite of the different concepts that were used, two major groups of algorithms evolved. The first 

group or deterministic algorithms are based on predefined metrics. Deterministic algorithms are 

based on dynamic programming and they report the best or the highest score solution. However 

due to the fact that they operate on predefined metrics they require too much memory and time 

(  time and memory) that may limit the real-time application of these algorithms. In 

practice they can be applied to short fragments or prokaryotic samples. 

All older algorithms for genomic similarity search, such as: Needleman-Wunsch 

(Needleman et al., 1970), Sellers (Sellers, 1974), Smith-Waterman (Smith et al., 1981), 

Waterman-Eggert (Waterman et al., 1987) and Ficket (Ficket, 1984) are deterministic.  

Needleman-Wunsch (Needleman et al., 1970) is the oldest known algorithm for this 

purpose and it performs global alignment on two samples applying dynamic programming 

metrics. The algorithm of Sellers (Sellers, 1974) can be seen as an alternative of Needleman-

Wunsch. Both algorithms work for the same purpose, but Sellers instead of maximizing the 

score of the alignment, minimizes the distance between the samples.  

On the other hand Smith-Waterman (Smith et al., 1981) performs local alignment, i.e. 

it detects the most similar fragments between two samples, performing gapped alignment to 

these regions. Dynamic programming scoring scheme is also used in Smith-Waterman. 

Instead of searching for one best solution, Waterman-Eggert (Waterman et al., 1987) 

looks for the  best or highest scoring alignments. At first dynamic programming matrix of 

Smith-Waterman type is computed and the algorithm looks for the highest scoring alignment in 

the matrix. After printing it, the cells of the highest scoring alignment in the matrix are set up to 
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0 and the algorithm looks for the next highest scoring alignment. Waterman-Eggert applies this 

procedure until the    best or highest scoring solutions are reported.  

The concept of diagonal alignment reduces the space and time complexity down 

to . The problem was discussed and solved by Ficket (Ficket, 1984). Ficket 

proved that the best or the highest scoring solution converges to the main diagonal in dynamic 

programming matrix and therefore cells at distance  do not have to be computed, 

since it not likely that the path of pointers that defines the best solution will go through any of 

those cells. However the inquiry regards the value of the parameter  (the size of the diagonal 

range) remains that limits the application of this algorithm only to very similar samples.  

As we mentioned before, due to the unfavorable time complexity, all deterministic algorithms 

have limited application only to small-size samples. On the other hand algorithms which are 

based on some type of heuristics, such as: FASTA (Pearson et al., 1988), BLAST (Altschul et 

al., 1997), Pattern Hunter (Ma et al., 2002), BLAT (Kent, 2002), FLASH (Califano et al., 

1993), YASS (Noé et al., 2005), MUMmer (Delcher et al., 2003) and AVID (Bray et al., 2003) 

can solve this problem more efficiently. The high processing power of these algorithms is due 

to the data pre-processing or the cuts in the space where they search for solution, what is a 

common practice in all heuristic algorithms. Heuristic algorithms, the way they operate and 

their properties are topics of this paper.  

 

 MATERIALS AND METHODS 

FASTP is one of the oldest methods for massive genomic database search, which was 

afterwards upgraded to FASTA (Pearson et al., 1988). These methods (FASTP and FASTA) 

differ in the type of data they operate on. In spite of FASTP which works only with protein 

data, FASTA is applicable for protein and nucleotide data. Before explaining how FASTA 

works, we should emphasize that we are taking about algorithm that runs in several phases. In 

the first phase, the query is split into short words of fixed size .For nucleotide data (for 

protein ). Later, during the search, hits of these words in the database are identified. 

Note that each hit is tracked by tuple  such as  stands for the position of the short word in 

the query, while   stands for the position of the hit in the database. Consecutive hits form 

visually diagonals or extended hits and they are best known as diagonal extensions. Each of 

these extensions is properly scored and only the best scoring diagonal extensions are considered 

as a part of the alignment. For instance, PAM250 matrix is used for this purpose when the 

algorithm operates on protein data. Significant and neighboring diagonal extensions are 

connected together by applying the Smith-Waterman gapped algorithm and that is done by 

inserting gaps in the space that separates the neighboring diagonal extensions.   

This procedure is graphically illustrated on Fig. 1. Each line section regardless of its 

thinness represents diagonal extension and as we said before each one of these diagonal 

extensions is made of several short consecutive hits that are joined together, Fig. 1. Not all 

diagonal extensions are part of the final solution. The less significant diagonal extensions 

(shorter and thinner line sections on Fig. 1) are rejected, while the high-scoring (longer and 

bold line sections on Fig. 1) are connected together what results into an alignment. The 
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connection is made by inserting gaps in the space between the neighboring diagonal extensions 

(dashed segments on Fig. 1) applying the Smith-Waterman algorithm.    

 
FIG. 1. Graphic illustration of FASTA  

 

BLAST (Basic Alignment Search Tool) (Altschul et al., 1997) is another useful 

approach for genomic database search. The first version was able to perform only un-gapped 

alignments, while the later upgrade (PSI-BLAST) performed gapped alignments. Theoretically 

there is no conceptual distinction between FASTA and BLAST, because both search for hits of 

short words in massive data, which is a widely explored concept for searching genomic 

database upon query. However we should note that in terms of the speed, BLAST runs faster 

than FASTA and it can be applied to protein and nucleotide data.  

They way BLAST operates must be divided in several phases. When it comes to 

protein data, a list of query-extracted words of fixed size  is construced at the beginning. This 

list is afterwards extended with words that are not part of the query but for which the score of 

the un-gapped alignment with query-extracted words is greater than . PAM or BLOSUM 

substitution matrix is used for this purpose. In the next stage, perfect hits of these words in the 

database are identified, such as the program tracks the position of every single hit. These hits 

are referred as seeds and they are extended in the both directions (to the left and to the right). 

The extension goes on until the score of the alignment increases. Same as FASTA, BLAST 

considers only the most significant extensions for which the score of the alignment is greater 

than . Note that the parameters:  and  are provided by the user and therefore different 

solutions are expected upon different combinations of these parameters.  

When it comes to nucleotide data, the query has to be also split into list of words of 12 

bases which are afterwards searched in the database, using two-bit encoding scheme (00, 01, 

10, and 11) per base. Nowadays there are many available BLAST implementations, such as: 

BLASTN (works with nucleotide data), BLASTP (works with protein data) and BLASTX 

(compares nucleotide query to protein database).     

The search for perfect hits has been the main drawback of FASTA and BLAST. 

Furthermore, BLAST search sensitivity depends of the parameter  or the length of the words 
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that are searched in the database. For high  many hits remain undetected and therefore distant 

homologies cannot be found. On the other hand, if  is too small, the search slows down.  

Pattern Hunter (Ma et al., 2002) is step above FASTA and BLAST, because it searches 

for imperfect hits, based on model for hits. This means that words with at least  equal 

nucleotides are reported as hits, regardless of the order of appearance (consecutive or non-

consecutive) what will improve the sensitivity of search. According (Ma et al., 2002) for region 

of similarity of 70% and , the sensitivity of search is maximal for the model: 

111010010100110111, such as 1 stands for equal elements, while 0 stands for unequal 

elements. Database words that satisfy this or other adopted model are regarded as hits and they 

are extended in both directions in the final stage. Different solutions are found for different 

models.     

Unlike BLAST which is applicable for distant and closely-related samples, BLAT 

(Kent, 2002) works only with closely-related samples. BLAT runs faster than BLAST, but the 

sensitivity of search is reduced. BLAT searches for perfect or near-perfect hits without 

computing statistical significance. 

BLAT runs in two phases: search and alignment phase. In the first phase it searches 

for perfect, near-perfect or multiple-perfect hits between query and genomic database, upon 

which an alignment is constructed in the second phase.  

Unlike BLAST and FASTA, BLAT indexes the database. Non-overlapping database 

words of size  are indexed, such as  ranges between 8 and 16 for nucleotide data and 

between 3 and 7 for protein data. Database words are compared to query words in order to 

detect: perfect, near-perfect or multiple-perfect hits. According Kent (Kent, 2002) near-perfect 

hits include one mismatch, while multiple-perfect hits include  perfect hits at mutual distance 

that does not exceed .  

The expected number of perfect hits equals , the 

expected number of near-perfect hits 

equals  and the expected 

number of multiple-perfect hits equals , such 

as  . In previous equations 

 stands for the length of the query,  is the size of the database,  is the maximum allowed 

distance between perfect hits in multiple-perfect hits and  stands for the size of the alphabet 

(for nucleotide data    and for protein data ).  

FLASH (Califano et al., 1993) detects database motifs that resemble to the query. At 

the beginning, the program compiles two separate lists that contain information about all 

overlapping words  of  elements in the target sequence and the query. This information is 

presented in form of pairs  such as  is the position of the word  in the target/query, 

while  is the word which is tracked. Motifs from the target sequence are compared to the 

query. Common words are identified at first and the differences in positions in the motif and the 
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query are computed afterwards. The motif for which the number of equal differences is the 

highest is the motif which is most similar (homologous) to the query.  

We will illustrate how FLASH works to the target t=ACTGATTG and the query 

q=GAGTG. For  the program compiles two lists Lt and Lq, such as Lt contains all 

overlapping words of   elements from the target, while Lq contains all overlapping 

words of the same size from the query. So we get that 

Lt={(1,AC),(2,CT),(3,TG),(4,GA),(5,AT),(6,TT),(7,TG)} and 

Lq={(1,GA),(2,AG),(3,GT),(4,TG)}. When the program comes to the motif m=GATTG which 

is compared to the query q=GAGTG, two common words are identified: ((4,GA) in Lt; (1,GA) 

in Lq) and ((7,TG) in Lt; (4,TG) in Lq). The difference between the positions of these words in 

the motif and the query is equal and it equals 3 (4-1=3 and 7-4=3) and this is true for 2 hits. 

Since this number is the highest compared to any other motif, we get that the motif m=GATTG 

is the motif that is homologous to the query q=GAGTG. 

YASS (Noé et al., 2005) is another homology search tool which is based on sensitive 

and efficient data filtering algorithm. It looks for close hits that form groups of close hits. The 

distance between hits in the groups must not exceed . The parameter  is computed 

dynamically as a function of the frequency of base substitutions and insertions (deletions). 

However there must be at least  hits in the group in order to consider the cluster as a group of 

close hits.  

 Some software tools such as MUMmer (Delcher et al., 2003) and AVID (Bray et al., 

2003) exploit the benefits of suffix trees. As far as known, suffix trees can be constructed and 

searched in  time, where  is the length of the sequence. Suffix trees are also space 

efficient because  memory is required. The moderate memory requirement makes suffix 

trees suitable tool for big genomic comparisons.  

MUMmer (Delcher et al., 2003) is heuristic approach for fast comparison of big 

genomic sequences, such as entire genomes. It is based on three concepts: suffix tree, 

identification of longest common substrings and Smith-Waterman algorithm. MUMmer 

exploits a suffix tree to identify unique longest common substrings between two samples, while 

the Smith-Waterman algorithm is used in the final phase to construct the alignment. The unique 

longest common substrings are referred as MUM-mers and by definition they are hits which are 

not part of any longer hit.  

We will demonstrate the way MUMmer operates to the samples: 

ACTGCACCACACCC and ACTCCACCACAACTCC. Hits AC and CT can not be 

considered for MUM-mers because they are part of longer hit such as ACT, Fig. 2. We cannot 

also consider CCA hit for MUM-mer because this hit occurs twice times in the sample , Fig. 

2.   

The program exploits suffix tree in order to identify the set of all MUM-mers that are 

identified in  time and space, such as  is the length of the sample  and  is the 

length of the sample . The set of all MUM-mers is sorted next, wherefrom the longest subset 

of MUM-mers that occur in the same order in the samples  and  is extracted.  

For the samples that we use, the subset of MUM-mers includes hits (1) and (2), Fig. 2. 

Hit (3) on Fig. 2 cannot be included in the subset because it intersects with hit (2), Fig. 2. 
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FIG. 2. Identification of MUM-mers 

 

 

Before the final alignment, a local identification of: long insertions, repetitions, short 

mutations, tandem repeats and SNPs has to be performed.  

The program for global alignment: AVID (Bray et al., 2003) also exploits suffix tree to 

detect the longest common hits between two samples. The two samples are merged into one 

with delimiter ‘N’ and for the joint sequence suffix tree is constructed, Fig. 3. The program 

traverses the suffix tree to find the longest repeating strings that in fact are the longest common 

hits between the samples, Fig. 3. The set of all common hits is filtered such as common hits that 

are shorter than half of the length of the longest hit must be rejected. A set of parallel common 

hits is afterwards selected. Hits are selected by a modified Smith-Waterman program that 

computes the score for each selection, based on the length of the hit and the score of the 

alignment of nearby hits.            

 
FIG. 3. Searching for repeated substrings 

 

 

 RESULTS AND DISCUSSIONS 

Properties of the algorithms discussed in the previous section are listed into Table 1. 

 

 

 



Annals of West University of Timişoara, ser. Biology, 2018, vol. 21 (2), pp.185-192 

  191 

 

 
TABLE 1. Properties of heuristic algorithms 

Algorithm Properties 

FASTA Works with protein and nucleotide data; Searches for exact and short hits which are afterwards 

extended and connected into an alignment applying Smith-Waterman algorithm; Runs slowly 

BLAST Applicable to protein and nucleotide data; Looks for query and query-similar words into the 

database; Generally runs faster than FASTA; The sensitivity and the speed of search depends of 

the parameter  (the size of words) 

Pattern Hunter Unlike FASTA and BLAST that search for perfect this, Pattern Hunter looks also for imperfect 
hits based on matching model; Improved sensitivity of search compared to FASTA and BLAST 

BLAT Unlike previous methods that index the query, BLAT indexes the database; Runs very fast and 

searches for three types of hits: perfect, near-perfect and multiple-perfect hits; Main drawback: 
works only with closely-related samples   

FLASH Detects motifs in the database that resemble to query 

YASS Looks for clusters of near or close hits which are considered as groups 

MUMmer Suffix tree based approach; Looks for MUM-mers or unique and longest common substrings that 

are identified in  time and space 

AVID Exploits suffix tree; Merges two samples into one with delimiter ‘N’ for which the suffix tree is 
constructed; Traverses the suffix tree to find the longest repeating substrings that match the 

longest common hits 

 
 CONCLUSIONS 

In this paper we discuss the most popular algorithms and software tools for genomic 

similarity search. Due to the large scale data, all these methods apply some type of heuristics to 

speed up the search process. Some of the algorithms, such as FASTA and BLAST split the 

query into short words which are afterwards searched into the database upon what local 

similarities are detected. The precision of search can be improved if instead of exact hits, 

imperfect hits are also considered. The concept of imperfect hits was introduced in Pattern 

Hunter. Imperfect hits include one or more mismatches and they can be the key for detecting 

distant homologies. For faster search, some methods such as BLAT, index the database instead 

of the query. The speed of search can be also improved if groups of near hits are only 

considered; YASS.  

 However we must mention that there are also suffix based approaches for this purpose. 

Those methods such as: MUMmer and AVID exploit the computational benefits of suffix trees 

which are constructed and searched in  time. MUMmer searches for unique and longest 

common substrings, while AVID joins two samples into one, for which the suffix tree is 

constructed. Traversing the suffix tree and looking for the longest and repeating substrings, the 

longest common hits are identified. 
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