
Annals of West University of Timişoara, ser. Biology, 2018, vol. 21 (2), pp.149-156

 149

APPLYING HASH TO ZIP DNA DATA

Done STOJANOV

Faculty of Computer Science, University Goce Delcev, Krste Misirkov nn – Štip, Republic of
Macedonia

*Corresponding author e-mail: done.stojanov@ugd.edu.mk

Received 3 September 2018; accepted 10 December 2018

ABSTRACT

Current genomic data compression techniques rely on referent sequence. This means

that one sequence is used as a template upon which the differences in other samples

are tracked. Since none of these techniques works without reference, we propose a

novel methodology which does not depend on reference. Even though that our

methodology is reference-independent, compression gain of more than 34 % was

obtained.

KEY WORDS: genomic, data, compression, decompression, hash.

 INTRODUCTION

Thanks to the advances in recent genomic sequencing techniques huge amount of
genomic data has been collected. This data is stored and offered through public repositories
such as: EMBL and GenBank. None of these repositories employs data compression
techniques, i.e. sequences and variations of them are stored in raw data format as array of
characters. However current research indicates that genomic data compression is possible and
highly recommended. It is possible because there is a high percentage of identity between
genomic samples that originate from the same species and it is recommended because of the
exponential data growth.

The very beginnings of genomic data compression date from 2009, when Brandon
(Brandon, 2009) introduced the concept for tracking the differences between a referent genome
and genome that ought to be compressed. The compression gain is maximized by mapping the
difference information into binary strings applying entropy coding. However some researchers
reported difficulties on applying Brandon’s methodology, especially if the reference and the
sample that has to be compressed significantly differ. Employing more than one reference
sequence seems to be the solution of this problem.

For better compression gain, some methods require additional data. Most often this
data is presented in form of single-nucleotide polymorphisms and insertions/deletions history.
GRS (Wang et al., 2011) was the first software tool which was able to compress genomic data
without this data. GRS was upgraded to GreEn (Pinho et al., 2011) which runs at higher speed
and it has better compression rate.

Researchers such as (Christley et al., 2008) and (Pavlichin et al., 2013) took the
James-Watson’s genome as a reference upon which the compression rate was measured. In
(Christley et al., 2008) this sequence was made small enough to be sent by mail and further
compression down to 2.5 MB applying entropy coding was obtained in (Pavlichin et al., 2013).
In both papers single-nucleotide polymorphism information was exploited.

STOJANOV: Applying Hash to Zip DNA Data

150

Applying HUFFMAN (Huffman, 1952) or GOLOMB (Golomb, 1966) code results in
additional savings. Huffman code was applied in (Tembe et al., 2010) and it resulted in more
than 65% of compression gain, while Deorowicz and Grabowski (Deorowicz et al., 2011)
limited the application of the compression pattern only to sequences that come from the same
species.
 Cited papers have one thing in common and this is the use of reference sequence. The
reference sequence is used as a template for recording the positions of difference regards other
samples and if this sequence is not used, none of the current research works. Therefore in this
paper we address the question of compressing genomic data without have to use reference. This
is made possible through genomic data hashing and offset tracking approach which is also
suitable for fast data decompression. Our methodology results in more than 36 % of
compression gain, but since we do not use reference this approach is more reliable than any
other.

 MATERIALS AND METHODS

In 2005 Reneker and Shyu (Reneker et al., 2005) introduced the concept of genomic
data hashing, applying equations (1) and (2). Numerical translations of nucleotides according

equation (1) are used to compute the hash of the read in quaternary domain, equation
(2). The quaternary system was exploited because the DNA is a chain of four nucleotides: A
(adenine), T (thymine), G (guanine) and C (cytosine).

 (1)

=

 (2)
Despite that Reneker and Shyu directed their research towards efficient search of

massive genomic database against short DNA query; it is also applicable for data compression
purpose. Compressing genomic data applying equations (1) and (2) can be done without any
problem, but when it comes to data decompression we may face difficulties and errors in data
decryption because one of the nucleotides C (cytosine) is mapped to the same value as the radix
in equation (2) which equals 4.

To overcome this problem we propose equation (3) which equals equation (2) but
instead of radix 4 we use radix 5. Single nucleotide translations remain the same as given in
equation (1), but now, none of translations equals the radix, that will prevent errors in data
decryption. Radix change allows the straightforward application of equation (4) for random

nucleotide decryption, given and as input. Note that stands for the hash of the

read, is the position of decryption inside the read, while in equation (4) stands for the
operator for computing the remainder.

=

 (3)

Annals of West University of Timişoara, ser. Biology, 2018, vol. 21 (2), pp.149-156

 151

 (4)

In order to prove equation (4) we can rewrite equation (3) into equation (5) and

equation (6). Equation (6) equals equation (3), but it is written in terms of as a common
factor.

 (5)

(6)

Following equation (6) we get

that , equation (7).

 (7)

Note that all terms in equation (7), without the first, have 5 as a common factor.
Therefore we can rewrite equation (7) into equation (8), wherefrom we get that

 (8)

This means that if we know the hash of the read and the position of decryption

 inside the read we can decrypt applying equation (4). Since

= we get that if 1 then (adenine), if 2 then

 (thymine), if 3 then (guanine) and if 4 then (cytosine).

For closer look, we will demonstrate this approach to the short read
Applying equations (1) and (3) this read is hashed to 7309 which is computed as:

.

When it comes to decompression and the position of decryption must be
provided as input. Knowing them and applying equation (4) we can decrypt the nucleotide at

STOJANOV: Applying Hash to Zip DNA Data

152

position . For instance, if we want to decrypt the nucleotide at position (the
third nucleotide from the beginning) equation (4) must be applied:

= Knowning that

 we get that T (Thymine), since

Compressing (hashing) the short read into single integer 7309 of 4
bytes results into 2 bytes of memory saving. This happens because one byte per nucleotide is

required if the data is stored in raw format (as array of characters). The read which we
consider contains 6 bp what means that 6 bytes are required to be stored as array of letters.
Translating the read into single integer, only 4 bytes are required, that results in 2 bytes of
memory saving.

However we should be aware that in computational domain there is always a limitation
upon the value which can be stored into single variable. Theoretically 2.147.483.647 is the
maximum which can be stored into single variable of integer type, but our tests shown that the
maximum value with which we can work safety is 1.220.703.124, which corresponds to the
hash of chain of 13 cytosines.

To be able to compress big genomic data, we must split the sample into short reads.
Rather than reads of random size, the size of each short read is carefully selected, such as the
hash of the read is the one which is closest to 1.220.703.124. Applying this concept, in average,
we can zip reads of 13 base pairs into integers of 4 bytes. However, information regards offsets
of short reads must be also tracked if we want to be able to decompress data later. This
information can be presented in form of end positions of the reads.

To illustrate what happens, we will take Apple dimple fruit viroid (ENA ID:
X99487.1) as a sample, Fig. 1. This sequence contains 306 base pairs, i.e. 306 bytes are
required to store in raw data format, Fig. 1. Applying our methodology this sequence is
compressed down to list of 50 integers, i.e. bytes are required that results in
34.6 % (106 bytes) of memory saving, Fig. 1.

Each tuple <> on Fig. 1 stands for concrete read, such as: the first integer represents
the end position of the read; the second integer represents its hash. For instance,
<25,663870963> represents the second read in the offset 13-25 (Fig. 1) which is hashed in
663.870.963 (Fig. 1). The beginning of the read 13 can be recomputed as the end position of the
previous read plus one (12+1=13), Fig. 1.

As explained and shown on Fig. 1, each hash being computed is the one which is
closest to 1.220.703.124: 1.199.708.543 for the first read, 663.870.963 for the second….etc.
and the reason for this is the our general intention to maximize the overall compression gain.

Annals of West University of Timişoara, ser. Biology, 2018, vol. 21 (2), pp.149-156

 153

FIG. 1. Sample in raw and compressed data format

 RESULTS AND DISCUSSIONS

Genomic data compression program was developed, Fig. 2. The program was written
in Microsoft Visual C # 2008 Express Editions and it compresses data according to the
explained methodology. One is expected to provide raw genomic data in the upper text control
which is compressed (hashed) and printed as a list of integers in the middle text control, Fig. 2.
Given that the range of decompression is provided Fig. 2, data decompression is also possible
by using the information form the list. This is done by applying the decompression equation (4)
for all positions that are in the range of decompression. The program prints also details about
the overall compression gain.

The program was tested on 6 Citrus dwarfing viroid samples which were retrieved
from the European Nucleotide Archive, Table 1. Acer Aspire 5507Z computer with Genuine
Intel CPU at 1.73 GHz and 2 GB of RAM was used in all tests.

These samples contain 291-295 base pairs and therefore 291-295 bytes are required to
store them in raw data format as array of characters, Table 1, Fig. 3. Applying our methodology
all these samples were compressed down to lists of 48 integers or 192 bytes were required,
Table 1, Fig. 3. Compression gain of more than 34 % was measured in each test Table 1, Fig. 4
and it took only a few milliseconds to decompress any DNA motif applying equation (4).

It may be true that current compression techniques achieve better compression gains,
but none of them achieves any compression gain without the use of referent sequence, i.e. the
compression gain equals 0% if reference is not exploited. Even though that our methodology
does not depend of any kind of reference sequence, we got more than 34% of compression gain,
that is the prime advantage of our methodology over the others.

STOJANOV: Applying Hash to Zip DNA Data

154

FIG. 2. Program screenshot

TABLE 1. Results before and after compression

Sequence ENA ID Length (bp)
Size in native

form (B)

Size after

compressio

n (B)

Saving

(B) Saving (%)

Citrus dwarfing viroid,
complete genome. JF521494.1 291 291 192 99

34,0206185

6

Citrus dwarfing viroid
isolate lot1-1/2-19,
complete genome. KM214215.1 293 293 192 101

34,4709897

6

Citrus dwarfing viroid
isolate LS-4, complete
genome. JF812069.1 293 293 192 101

34,4709897

6

Citrus viroid III isolate
054-4uy, complete
genome. AY514448.1 294 294 192 102

34,6938775

5

Citrus dwarfing viroid
isolate H16-9, complete
genome. JF970265.1 294 294 192 102

34,6938775

5

Citrus dwarfing viroid
clone Hb-C1-2,
complete genome. JF742602.1 295 295 192 103

34,9152542

4

Annals of West University of Timişoara, ser. Biology, 2018, vol. 21 (2), pp.149-156

 155

FIG. 3. Comparing sequence size (before and after compression)

FIG. 4. Percentage of saving

 CONCLUSIONS

In this paper we present a new genomic data compression methodology that does not
depend on reference sequence. We used data hashing for this purpose, changing the radix in
Ranker’s formula to 5 that in turns allows us to apply unidirectional formula for data
decompression. We hash genomic data into list of integers, using as much as possible of the
available capacity of variables. Results indicate that even without reference, more than 34% of
compression gain is possible.

STOJANOV: Applying Hash to Zip DNA Data

156

 REFERENCES
• Brandon MC., Wallace DC., Baldi P. 2009. Data structures and compression algorithms for genomic sequence

data. Bioinformatics25(14):1731–1738.
• Christley S., Lu Y., Li C, Xie X. 2008. Human genomes as email attachments. Bioinformatics25(2):274–275.
• Deorowicz S., Grabowski S. 2011. Robust relative compression of genomes with random access.

Bioinformatics27(21):2979–2986.
• Golomb S. 1966. Run-length encodings. IEEE transactions on information theory12(3):399–401.
• Huffman DA. 1952. A method for the construction of minimum-redundancy codes, pp. 1098–1101. In:

Proceedings of the IRE.
• Pavlichin DS., Weissman T., Yona G. 2013.The human genome contracts again. Bioinformatics29(17):2199–

2202.
• Pinho AJ., Pratas D., Garcia SP. 2011. GReEn: a tool for efficient compression of genome resequencing data.

Nucleic acids research40(4):e27–e27.
• Reneker J., Shyu CR. 2005.Refined repetitive sequence searches utilizing a fast hash function and cross species

information retrievals. BMC bioinformatics6(1):111.
• Tembe W., Lowey J., Suh E. 2010. G-SQZ: Compact encoding of genomic sequence and quality data.

Bioinformatics26(17):2192–2194.
• Wang C., Zhang D. 2011. A novel compression tool for efficient storage of genome resequencing data. Nucleic

acids research39(7):e45–e45.

