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ABSTRACT 

Current genomic data compression techniques rely on referent sequence. This means 

that one sequence is used as a template upon which the differences in other samples 

are tracked. Since none of these techniques works without reference, we propose a 

novel methodology which does not depend on reference. Even though that our 

methodology is reference-independent, compression gain of more than 34 % was 

obtained.            
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 INTRODUCTION 

Thanks to the advances in recent genomic sequencing techniques huge amount of 
genomic data has been collected. This data is stored and offered through public repositories 
such as: EMBL and GenBank. None of these repositories employs data compression 
techniques, i.e. sequences and variations of them are stored in raw data format as array of 
characters. However current research indicates that genomic data compression is possible and 
highly recommended. It is possible because there is a high percentage of identity between 
genomic samples that originate from the same species and it is recommended because of the 
exponential data growth. 

The very beginnings of genomic data compression date from 2009, when Brandon 
(Brandon, 2009) introduced the concept for tracking the differences between a referent genome 
and genome that ought to be compressed. The compression gain is maximized by mapping the 
difference information into binary strings applying entropy coding. However some researchers 
reported difficulties on applying Brandon’s methodology, especially if the reference and the 
sample that has to be compressed significantly differ. Employing more than one reference 
sequence seems to be the solution of this problem.  

For better compression gain, some methods require additional data. Most often this 
data is presented in form of single-nucleotide polymorphisms and insertions/deletions history. 
GRS (Wang et al., 2011) was the first software tool which was able to compress genomic data 
without this data. GRS was upgraded to GreEn (Pinho et al., 2011) which runs at higher speed 
and it has better compression rate.    

Researchers such as (Christley et al., 2008) and (Pavlichin et al., 2013) took the 
James-Watson’s genome as a reference upon which the compression rate was measured. In 
(Christley et al., 2008) this sequence was made small enough to be sent by mail and further 
compression down to 2.5 MB applying entropy coding was obtained in (Pavlichin et al., 2013). 
In both papers single-nucleotide polymorphism information was exploited. 
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Applying HUFFMAN (Huffman, 1952) or GOLOMB (Golomb, 1966) code results in 
additional savings. Huffman code was applied in (Tembe et al., 2010) and it resulted in more 
than 65% of compression gain, while Deorowicz and Grabowski (Deorowicz et al., 2011) 
limited the application of the compression pattern only to sequences that come from the same 
species.    
 Cited papers have one thing in common and this is the use of reference sequence. The 
reference sequence is used as a template for recording the positions of difference regards other 
samples and if this sequence is not used, none of the current research works. Therefore in this 
paper we address the question of compressing genomic data without have to use reference. This 
is made possible through genomic data hashing and offset tracking approach which is also 
suitable for fast data decompression. Our methodology results in more than 36 % of 
compression gain, but since we do not use reference this approach is more reliable than any 
other. 
 
 MATERIALS AND METHODS 

In 2005 Reneker and Shyu (Reneker et al., 2005) introduced the concept of genomic 
data hashing, applying equations (1) and (2). Numerical translations of nucleotides according 

equation (1) are used to compute the hash of the read  in quaternary domain, equation 
(2). The quaternary system was exploited because the DNA is a chain of four nucleotides: A 
(adenine), T (thymine), G (guanine) and C (cytosine).   

                                      (1) 

=

                                                                (2)   
Despite that Reneker and Shyu directed their research towards efficient search of 

massive genomic database against short DNA query; it is also applicable for data compression 
purpose. Compressing genomic data applying equations (1) and (2) can be done without any 
problem, but when it comes to data decompression we may face difficulties and errors in data 
decryption because one of the nucleotides C (cytosine) is mapped to the same value as the radix 
in equation (2) which equals 4. 

To overcome this problem we propose equation (3) which equals equation (2) but 
instead of radix 4 we use radix 5. Single nucleotide translations remain the same as given in 
equation (1), but now, none of translations equals the radix, that will prevent errors in data 
decryption. Radix change allows the straightforward application of equation (4) for random 

nucleotide decryption, given  and  as input. Note that  stands for the hash of the 

read,  is the position of decryption inside the read, while  in equation (4) stands for the 
operator for computing the remainder.  

=

                         (3) 
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                    (4) 

In order to prove equation (4) we can rewrite equation (3) into equation (5) and 

equation (6). Equation (6) equals equation (3), but it is written in terms of  as a common 
factor.  

                              (5) 

   

(6) 

Following equation (6) we get 

that  , equation (7).  

   (7) 

Note that all terms in equation (7), without the first, have 5 as a common factor. 
Therefore we can rewrite equation (7) into equation (8), wherefrom we get that 

 

  (8) 

This means that if we know the hash of the read  and the position of decryption 

 inside the read we can decrypt  applying equation (4). Since 

=  we get that if 1 then  (adenine), if 2 then 

 (thymine), if 3 then  (guanine) and if 4 then  (cytosine).  

For closer look, we will demonstrate this approach to the short read  
Applying equations (1) and (3) this read is hashed to 7309 which is computed as: 

.  

When it comes to decompression  and the position of decryption  must be 
provided as input. Knowing them and applying equation (4) we can decrypt the nucleotide at 
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position . For instance, if we want to decrypt the nucleotide at position  (the 
third nucleotide from the beginning) equation (4) must be applied: 

=  Knowning that 

 we get that T (Thymine), since  

Compressing (hashing) the short read   into single integer 7309 of 4 
bytes results into 2 bytes of memory saving. This happens because one byte per nucleotide is 

required if the data is stored in raw format (as array of characters). The read  which we 
consider contains 6 bp what means that 6 bytes are required to be stored as array of letters. 
Translating the read into single integer, only 4 bytes are required, that results in 2 bytes of 
memory saving. 

However we should be aware that in computational domain there is always a limitation 
upon the value which can be stored into single variable. Theoretically 2.147.483.647 is the 
maximum which can be stored into single variable of integer type, but our tests shown that the 
maximum value with which we can work safety is 1.220.703.124, which corresponds to the 
hash of chain of 13 cytosines.  

To be able to compress big genomic data, we must split the sample into short reads. 
Rather than reads of random size, the size of each short read is carefully selected, such as the 
hash of the read is the one which is closest to 1.220.703.124. Applying this concept, in average, 
we can zip reads of 13 base pairs into integers of 4 bytes. However, information regards offsets 
of short reads must be also tracked if we want to be able to decompress data later. This 
information can be presented in form of end positions of the reads. 

To illustrate what happens, we will take Apple dimple fruit viroid (ENA ID: 
X99487.1) as a sample, Fig. 1. This sequence contains 306 base pairs, i.e. 306 bytes are 
required to store in raw data format, Fig. 1. Applying our methodology this sequence is 
compressed down to list of 50 integers, i.e.  bytes are required that results in 
34.6 % (106 bytes) of memory saving, Fig. 1.  

Each tuple <> on Fig. 1 stands for concrete read, such as: the first integer represents 
the end position of the read; the second integer represents its hash. For instance, 
<25,663870963> represents the second read in the offset 13-25 (Fig. 1) which is hashed in 
663.870.963 (Fig. 1). The beginning of the read 13 can be recomputed as the end position of the 
previous read plus one (12+1=13), Fig. 1.  

As explained and shown on Fig. 1, each hash being computed is the one which is 
closest to 1.220.703.124: 1.199.708.543 for the first read, 663.870.963 for the second….etc. 
and the reason for this is the our general intention to maximize the overall compression gain.  
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FIG. 1. Sample in raw and compressed data format 

 RESULTS AND DISCUSSIONS 

Genomic data compression program was developed, Fig. 2. The program was written 
in Microsoft Visual C # 2008 Express Editions and it compresses data according to the 
explained methodology. One is expected to provide raw genomic data in the upper text control 
which is compressed (hashed) and printed as a list of integers in the middle text control, Fig. 2. 
Given that the range of decompression is provided Fig. 2, data decompression is also possible 
by using the information form the list. This is done by applying the decompression equation (4) 
for all positions that are in the range of decompression. The program prints also details about 
the overall compression gain.     

The program was tested on 6 Citrus dwarfing viroid samples which were retrieved 
from the European Nucleotide Archive, Table 1. Acer Aspire 5507Z computer with Genuine 
Intel CPU at 1.73 GHz and 2 GB of RAM was used in all tests.  

These samples contain 291-295 base pairs and therefore 291-295 bytes are required to 
store them in raw data format as array of characters, Table 1, Fig. 3. Applying our methodology 
all these samples were compressed down to lists of 48 integers or 192 bytes were required, 
Table 1, Fig. 3. Compression gain of more than 34 % was measured in each test Table 1, Fig. 4 
and it took only a few milliseconds to decompress any DNA motif applying equation (4).   

It may be true that current compression techniques achieve better compression gains, 
but none of them achieves any compression gain without the use of referent sequence, i.e. the 
compression gain equals 0% if reference is not exploited. Even though that our methodology 
does not depend of any kind of reference sequence, we got more than 34% of compression gain, 
that is the prime advantage of our methodology over the others.           

 



STOJANOV: Applying Hash to Zip DNA Data 
 

154 
 

 
FIG. 2. Program screenshot  

TABLE 1. Results before and after compression  

Sequence ENA ID Length (bp) 
Size in native 

form (B) 

Size after 

compressio

n (B) 

Saving 

(B) Saving (%) 

Citrus dwarfing viroid, 
complete genome. JF521494.1 291 291 192 99 

34,0206185

6 

Citrus dwarfing viroid 
isolate lot1-1/2-19, 
complete genome. KM214215.1 293 293 192 101 

34,4709897

6 

Citrus dwarfing viroid 
isolate LS-4, complete 
genome. JF812069.1 293 293 192 101 

34,4709897

6 

Citrus viroid III isolate 
054-4uy, complete 
genome. AY514448.1 294 294 192 102 

34,6938775

5 

Citrus dwarfing viroid 
isolate H16-9, complete 
genome. JF970265.1 294 294 192 102 

34,6938775

5 

Citrus dwarfing viroid 
clone Hb-C1-2, 
complete genome. JF742602.1 295 295 192 103 

34,9152542

4 
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FIG. 3. Comparing sequence size (before and after compression) 

 

 
FIG. 4. Percentage of saving 

 CONCLUSIONS 

In this paper we present a new genomic data compression methodology that does not 
depend on reference sequence. We used data hashing for this purpose, changing the radix in 
Ranker’s formula to 5 that in turns allows us to apply unidirectional formula for data 
decompression. We hash genomic data into list of integers, using as much as possible of the 
available capacity of variables. Results indicate that even without reference, more than 34% of 
compression gain is possible.  
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