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MODELS FOR THE LORENZ SYSTEM

BILJANA ZLATANOVSKA AND DONC̆O DIMOVSKI

Abstract. Using the systems of difference equations from [1] and [2],
as approximation for the solutions of the Lorenz system of differential
equations, we obtain two new systems of difference and differential
equations as models for the Lorenz system. By computer simulations
as in [3] and [4] we give examples, where locally the solutions of these
new systems, approximate the solutions of the Lorenz system.

1. Introduction

Lorenz system is a nonlinear autonomous dynamic system whose ex-
plicit solutions are not known, but its behavior is studied extensively in the
mathematical literature (for example [5], [6], [7], [8]).

The use of power series is one of the oldest methods for examining dif-
ferential equations. It is used for numerical calculations and for theoretical
results. In the literature there are numerous papers concerned with such a
use of power series, like the papers [9], [10] and [11].

In [1] and [2] we have used power series combined with difference equa-
tions to find local approximations to the solutions of the Lorenz system of
differential equations:

ẋ = σ (y − x)

ẏ = x (r − z)− y (1)

ż = xy − bz

with parameters σ, r, b. For initial values a0 = x (0) , b0 = y (0) , c0 =
z (0) by [12], [13], [14], we assuming the solutions of the system (1.1) are
expanded as Maclaurin series,

x(t) = a0 + a1t+ a2
t2

2!
+ . . .+ an

tn

n!
+ . . .

y(t) = b0 + b1t+ b2
t2

2!
+ . . .+ bn

tn

n!
+ . . . (2)
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z(t) = c0 + c1t+ c2
t2

2!
+ . . .+ cn

tn

n!
+ . . .

By consecutive differentiation of (1.1), for the coefficients an, bn, cn from
(1.2), we obtain the following system of difference equations:

an = σ (bn−1 − an−1)

bn = r an−1 − bn−1 −
n−1∑
i=0

(
n− 1

i

)
ai cn−i−1 (3)

cn = −b cn−1 +
n−1∑
i=0

(
n− 1

i

)
ai bn−i−1

In [1], starting from the representations (1.2) after mathematical trans-
formations of (1.3) we obtained the following forms for the coefficients
an, bn, cn :

an = ãn + (−1)n−1σHn

bn = b̃n + (−1)n−1Wn (4)

cn = c̃n + (−1)n−1{−bnc0}

where the parts ãn, b̃n, c̃n are not given in explicit forms and the Hn,Wn

have the explicit forms:

Hn = (σ + r)n−1(b0 − a0) +

[n−1
2

]∑
m=1

n−m∑
j=m+1

(
n− j
m

)(
j − 1

m− 1

)
σn−j−1(rj − rm)a0

−
[n
2
]∑

m=1

n−m∑
j=m

(
n− j − 1

m− 1

)(
j

m− 1

)
σn−j−1(rj − rm−1)b0

Wn = [σ + (r − c0)]n−1(a0 − b0)(r − c0) + [(r − c0)n − 1]b0 (5)

−
[n
2
]∑

m=1

n−m+1∑
j=m+1

(
n− j
m− 1

)(
j − 1

m− 1

)
σn−j [(r − c0)j − (r − c0)m]a0

+

[n+1
2

]∑
m=2

n−m+1∑
j=m

(
n− 1− j
m− 2

)(
j

m− 1

)
σn−j [(r − c0)j − (r − c0)m−1]b0

Forgetting some parts from ãn, b̃n, c̃n we obtained polynomials in ex-

plicit forms ãn
′
, b̃n

′
, c̃n

′
Replacing ãn, b̃n, c̃n in (1.4) by the polynomials

ãn
′
, b̃n

′
, c̃n

′
, we obtained new coefficients an(≈), bn(≈), cn(≈) in explicit

forms:
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an(≈) = ãn
′
+ (−1)n−1σHn

bn(≈) = b̃n
′
+ (−1)n−1Wn (6)

cn(≈) = c̃n
′
+ (−1)n−1{−bnc0}

In [2], using the coefficients an(≈), bn(≈), cn(≈) with initial values a0 =
x(0), b0 = y(0), c0 = z(0) we obtained the system of difference equations

an(≈) = −Aan−1(≈) +Ban−2(≈)− Can−3(≈) +Dan−4(≈)+

+ (−1)n−5σ{Hn −AHn−1 −BHn−2 − CHn−3 −DHn−4}, n > 7

bn(≈) = −Abn−1(≈) +Bbn−2(≈)− C̄bn−3(≈) +Dbn−4(≈)+ (7)

+ (−1)n−5{Wn −AWn−1 −BWn−2 − C̄Wn−3 −DWn−4}, n > 6

cn(≈) = −Acn−1(≈) +Bcn−2(≈)− Ccn−3(≈) +Dcn−4(≈)+

+ (−1)n−5[−bn−4c0]{b4 −Ab3 −Bb2 − Cb−D}, n > 5

where A = 1 +σ+ b, B = σ(r− c0)−a20, C = σa0b0, C̄ = σa0b0−σbc0, D =
−σ2b20.
The coefficients ap(≈), bq(≈), cs(≈) for p ∈ {1, 2, 3, 4, 5, 6, 7}, q ∈ {1, 2, 3, 4, 5, 6}, s ∈
{1, 2, 3, 4, 5} are calculated directly from the system (1.3) as the exact val-

ues ap(≈) = ap = x(p)(0), bq(≈) = bq = y(q)(0), cs(≈) = cs = z(s)(0) and
they are:

a1 = σ(b0 − a0);b1 = ra0 − b0 − a0c0; c1 = −bc0 + a0b0

a2 = σ(b1 − a1);b2 = ra1 − b1 −
1∑

i=0

(
1

i

)
aic1−i; c2 = −bc1 +

1∑
i=0

(
1

i

)
aib1−i

a3 = σ(b2 − a2);b3 = ra2 − b2 −
2∑

i=0

(
2

i

)
aic2−i; c3 = −bc2 +

2∑
i=0

(
2

i

)
aib2−i

a4 = σ(b3 − a3);b4 = ra3 − b3 −
3∑

i=0

(
3

i

)
aic3−i; c4 = −bc3 +

3∑
i=0

(
3

i

)
aib3−i

(8)

a5 = σ(b4 − a4);b5 = ra4 − b4 −
4∑

i=0

(
4

i

)
aic4−i; c5 = −bc4 +

4∑
i=0

(
4

i

)
aib4−i

a6 = σ(b5 − a5);b6 = ra5 − b5 −
5∑

i=0

(
5

i

)
aic5−i

a7 = σ(b6 − a6)
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2. Models for the Lorenz system

For c0 = z(0) = 0 in (1.5) and (1.7) we obtain: C = σa0b0 = C̄, B̄ =
σr − a20 and

W̄n = (σ + r)n−1(a0 − b0)r + (rn − 1)b0

−
[n
2
]∑

m=1

n−m+1∑
j=m+1

(
n− j
m− 1

)(
j − 1

m− 1

)
σn−j(rj − rm)a0

+

[n+1
2

]∑
m=2

n−m+1∑
j=m

(
n− 1− j
m− 2

)(
j

m− 1

)
σn−j(rj − rm−1)b0

If we take H∗
n = (−1)n−5σHn,W

∗
n = (−1)n−5W̄n in the system (1.7) we

obtain the following system of difference equations

an(≈) = −Aan−1(≈) + B̄an−2(≈)− Can−3(≈) +Dan−4(≈)

+H∗
n −AH∗

n−1 − B̄H∗
n−2 − CH∗

n−3 −DH∗
n−4, n > 7

bn(≈) = −Abn−1(≈) + B̄bn−2(≈)− Cbn−3(≈) +Dbn−4(≈) (9)

+W ∗
n −AW ∗

n−1 − B̄W ∗
n−2 − CW ∗

n−3 −DW ∗
n−4, n > 6

cn(≈) = −Acn−1(≈) + B̄cn−2(≈)− Ccn−3(≈) +Dcn−4(≈), n > 5

with the initial values a0 = x(0), b0 = y(0), c0 = z(0) = 0 and (1.8).
Moreover, H∗

n,W
∗
n satisfy the system of difference equations

H∗
n = σ(W ∗

n−1 −H∗
n−1)

W ∗
n = rH∗

n−1 −W ∗
n−1 (10)

The systems (2.1) and (2.2) with the parameters σ, r, b and the initial values
a0 = x(0), b0 = y(0), c0 = z(0) = 0 and (1.8), produce the following system
of difference equations for an(≈), bn(≈), cn(≈):

an(≈) = σ(bn−1(≈)− an−1(≈)) +Aσ(bn−2(≈)− an−2(≈))

− B̄σ(bn−3(≈)− an−3(≈)) + Cσ(bn−4(≈)− an−4(≈))

−Dσ(bn−5(≈)− an−5(≈))−Aan−1(≈) + B̄an−2(≈)

− Can−3(≈) +Dan−4(≈), n > 7

bn(≈) = (ran−1(≈)− bn−1(≈)) +A(ran−2(≈)− bn−2(≈))

− B̄(ran−3(≈)− bn−3(≈)) + C(ran−4(≈)− bn−4(≈)) (11)

−D(ran−5(≈)− bn−5(≈))−Abn−1(≈) + B̄bn−2(≈)

− Cbn−3(≈) +Dbn−4(≈), n > 6

cn(≈) = −Acn−1(≈) + B̄cn−2(≈)− Ccn−3(≈) +Dcn−4(≈), n > 5
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We say that the system (2.3) is a difference equations model for the
Lorenz system.

Notation: In [3], this system of difference equations (2.3) is used as
an initial system for constructing new systems of differential equations. In
this paper, we give the procedure for obtaining it as well as the computer
simulations for its local behavior.

If we look at the system (2.3) as a system of differential equations we
obtain the following system:

x(8) = σ(y(7) − x(7)) +Aσ(y(6) − x(6))− B̄σ(y(5) − x(5)) + Cσ(y(4) − x(4))
−Dσ(y(3) − x(3))−Ax(7) + B̄x(6) − Cx(5) +Dx(4)

y(7) = (rx(6) − y(6)) +A(rx(5) − y(5))− B̄(rx(4) − y(4)) + C(rx(3) − y(3))
−D(rx(2) − y(2))−Ay(6) + B̄y(5) − Cy(4) +Dy(3) (12)

z(6) = −Az(5) + B̄z(4) − Cz(3) +Dz(2)

with parameters σ, r, b and initial values a0 = x(0), b0 = y(0), c0 = z(0) = 0
and (1.8).

We say that the system (2.4) is a differential equations model for the
Lorenz system.

The definition of the system (2.4) directly implies that the coefficients in
the Maclaurin series for the solutions of the system (2.4) satisfy the system
(2.3).

The system (2.4) is a linear system and its behavior is far away from the
behavior of the Lorenz system. But, we have the opinion, that the local
behavior of the system (2.4) is a good model for the local behavior of the
Lorenz system.

3. Computer Simulations of the Local Behavior

In this section, we will give local behavior for the system of difference
equations (2.3) and for the system of differential equations (2.4). At this
moment the question of what conditions would imply the convergence of
these power series is open.

The system (2.3): For given parameters σ, r, b and initial values a0, b0, c0 =
0 and (1.8), and a positive integer m, we consider the polynomials:

Pm(a0, b0, c0)(t) = a0(≈) + a1(≈)t+ a2(≈)
t2

2!
+ · · ·+ am(≈)

tm

m!

Qm(a0, b0, c0)(t) = b0(≈) + b1(≈)t+ b2(≈)
t2

2!
+ · · ·+ bm(≈)

tm

m!

Rm(a0, b0, c0)(t) = c0(≈) + c1(≈)t+ c2(≈)
t2

2!
+ · · ·+ cm(≈)

tm

m!

Let T be a positive real number. We define the functions xT (t), yT (t), zT (T )
for t ∈ [0,∞) as follows: xT (t) = Pm(a0, b0, c0)(t), yT (t) = Qm(a0, b0, c0)(t), zT (t) =
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Rm(a0, b0, c0)(t), for t ∈ [0, T ]. Next, we continue by induction. We as-
sume that xT (t), yT (t), zT (t) are defined for t in [0, kT ]. We extend them
on [0, (k + 1)T ] by defining them for t ∈ [kT, (k + 1)T ]:

xT (t) = Pm(a0, b0, c0)(t− kT )

yT (t) = Qm(a0, b0, c0)(t− kT )

zT (t) = Rm(a0, b0, c0)(t− kT )

where a0 = xT (kT ), b0 = yT (kT ), c0 = zT (kT ) and the initial values
ap, bq, cs for p ∈ {1, 2, 3, 4, 5, 6, 7}, q ∈ {1, 2, 3, 4, 5, 6}, s ∈ {1, 2, 3, 4, 5} are
calculated by (1.8).

The system (2.4): For given parameters σ, r, b, the procedure for look-
ing at the local behavior of the system (2.4) is as follows. Let T be a
positive real number.

We take the solutions x(t), y(t), z(t) for t ∈ [0, T ] of the system (2.4)
obtained by the program Mathematica, for the initial values a0 = x(0), b0 =
y(0), c0 = z(0) = 0 and (8). Let x̄T (t) = x(t), ȳT (t) = y(t), z̄T (t) = z(t) for
t ∈ [0, T ]. Next, we continue in the same manner as for the system (2.3).

Let x̄T (t), ȳT (t), z̄T (t) be defined for t ∈ [0, kT ] . We extend them
on [0, (k + 1)T ] by defining them for t ∈ [kT, (k + 1)T ] as follows. We
take the solutions x(t), y(t), z(t) for t ∈ [0, T ] of the system (2.4) ob-
tained by the program Mathematica, for the initial values a0 = x(0) =
x̄T (kT ), b0 = y(0) = ȳT (kT ), c0 = z(0) = z̄T (kT ) and ap, bq, cs for p ∈
{1, 2, 3, 4, 5, 6, 7}, q ∈ {1, 2, 3, 4, 5, 6}, s ∈ {1, 2, 3, 4, 5} calculated by (1.8),
for these a0 = x(0), b0 = y(0), c0 = z(0) = 0 Then, we define:

x̄T (t) = x(t− kT ), ȳT (t) = y(t− kT ), z̄T (t) = z(t− kT )

In examples, by computer calculations, for given parameters and initial
conditions, for small values of T , we obtain the functions xT (t), yT (t), zT (t)
(for the system (2.3)) and the functions x̄T (t), ȳT (t), z̄T (t) (for the system
(2.4)). We compare these solutions with the solutions of the Lorenz system
(1.1), for the same parameters and initial conditions, obtained by the pro-
gram Mathematica, and we obtain that they are close. So, it seems that
the systems (2.3) and (2.4) are good models for the local behavior of the
Lorenz system.

Example 1: Parameters σ = 5, r = 25, b = 0, 8; the initial values
a0 = 0, b0 = 1, c0 = 0 and time interval [0, 8].

Figure 2 and figure 3 show that the local behavior of the systems (2.3)
and (2.4) for a small time step is close to the behavior the Lorenz system
(fig.1).
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Figure 1. Results obtained by the program Mathematica for
the system (1.1)
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Figure 2. The solutions xT (t), yT (t), zT (t) for the sistem (2.3),
for m = 15 and T = 0, 05.

Example 2: Parameters σ = 10, r = 23, b = 5; the initial values a0 =
−2, b0 = 3, c0 = 0 and time interval [0, 8].
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Figure 3. The solutions x̄T (t), ȳT (t), z̄T (t) for the sistem (2.4),
for T = 0, 05.
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Figure 4. Results obtained by the program Mathematica for
the system (1.1)

Figure 5 and figure 6 show that the local behavior of the systems (2.3)
and (2.4) for a small time step is close to the behavior the Lorenz system
(fig.4).
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Figure 5. The solutions xT (t), yT (t), zT (t) for the sistem (2.3),
for m = 15 and T = 0, 05.
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Figure 6. The solutions x̄T (t), ȳT (t), z̄T (t) for the sistem (2.4),
for T = 0, 05.
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