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FIXING GENOMIC DATA DECOMPRESSION ERRORS 

Done Stojanov 

Faculty of Computer Science, Goce Delcev University, Stip, Macedonia  
done.stojanov@ugd.edu.mk  

Abstract: The problem of genomic data compression/decompression is considered in this paper. Unlike 
current research that depends on reference sequence or template, a new hash-based methodology that 
does not depend on reference sequence is proposed. By applying the hashing formula that was proposed 
by Reneker and Shyu, 9 bytes of compression gain per zipped read is possible. However, the main 
emphasis in this paper is put on the correction of errors in genomic data decompression that happen if 
Renker-Shyu formula is applied.        

Keywords: DNA, data, errors, correction.  

1. Introduction 
Current sequencing projects have revealed a variety of genomic data. Genomic data is tracked, 

annotated, classified and offered though public DNA databases. Since new data is sequenced and submitted 
on daily basis, it is very likely that DNA databases will face up storage deficiency in near future. This 
conclusion has motivated the scientific community to develop efficient genomic data compression 
algorithms.         

The general approach to genomic data compression relies on reference sequence. This means that the 
compression is done by tracking the positions of difference between the sample that has to be compressed 
and the reference sequence or the template. Further compression gain is also possible if entropy coding is 
applied to the positions of difference, based on HUFFMAN [1] or GOLOMB [2] code. However, we must 
admit that this approach proposed in 2009 by Brandon [3] has limited application since it can be applied 
only to samples that do not significantly differ. The solution to this problem relies on using more than one 
template. 

SNPs (single-nucleotide polymorphisms) and mutation history are provided as additional information 
in some works for better compression gain. Utilizing SNPs information, Christley [4] and Pavlichin [5] 
managed to compress the James-Watson’s genome small enough to be sent by mail. Christley [4] 
compressed the genome down to 4 MB, while further compression down to 2.5 MB was reported by 
Pavlichin [5].  

GRS [6] was the first known software tool that was able to compress genomic data without additional 
data. However, this application runs slow, it cannot be applied to all samples and the compression gain is 
not high at all. All these drawbacks are overcame by GreEn [7]. GreEn runs at a higher speed than GRS, 
has better compression rate and can be applied to any sequence.  

Straightforward application of HUFFMAN code was reported by Tembe [8]. While more than 65% of 
compression gain was measured in that research, some researchers such as Deorowicz and Grabowski [9] 
proposed a limitation upon the compression pattern to be exclusively applied to samples that come from 
the same species. 

All these methods rely on reference sequence and, without it, data compression would not be possible. 
Therefore, in this paper we consider the application of hash function for genomic data compression that 
makes the compression process independent of reference sequence.  

Compressing data applying Renker and Shyu hashing formula [10] can be done without any problem, 
but when it comes to decompression, errors in terms of accuracy are likely to happen. We found that these 
errors happen in hashed C(X) (C-cytosine, X-random nucleotide) pairs and C…C cytosine tracts 
(uninterrupted chains of cytosine) and they happen because one of the nucleotides is hashed to the same 
value as the radix in the hashing formula. Appropriate solutions are proposed and that resulted in 0 errors 
in genomic data decompression.         

UDC: 004.62.052.4:575.111
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2. Materials and methods 
In 2005, Reneker and Shyu proposed a unique hashing formula based on equations (1) and (2) that 

translates genomic string over the alphabet ∑ = {A, C, T, G} into number. Equation (1) translates nucleotides 
into positive numbers, which are afterwards used to compute the hash of random genomic read R according 
to equation (2).  

f(A) → 1, f(T) → 2, f(G) → 3, f(C) → 4              (1)    (A: adenine, T: thymine, G: guanine, C: cytosine) 

H(R) = f(R: a0a1 … an−2an−1)=∑ f(ai) × 4in−1
i=0 = f(a0) × 40 + f(a1) × 41 + ⋯+ f(an−2) × 4n−2 +

f(an−1) × 4n−1                                                            (2)   

This concept is suitable for genomic data compression and here we are going to explain why. 

 Storing DNA sequence as an array of characters requires 1 B (byte) per nucleotide (character). If the 
sequence contained n nucleotides, n B (bytes) would be required. In terms of the request for storage, the 
previous is not a problem when it comes to short reads or partial mRNA, but it may be a problem when we 
deal with human chromosome or even the entire human genome of 3.000.000.000 bp (base pairs). 

Applying equations (1) and (2) we can compress short genomic reads of 15 base pairs into a single 
integer of 4 B (bytes) that results in 11 bytes of compression gain per read. Rather than random, the length 
of the reads was chosen upon the hash of the read of 15 cytosines which equals 1.431.655.764, which is the 
maximum that can be stored into a single variable of inter type without overflow. According to equation 
(1), all other nucleotide translations (f(A), f(T), f(G)) are less than 4 (f(C)) what grants that any other read 
of 15 base pairs can be also zipped into a single integer of 4 bytes without overflow.  

After read’s compression, we must know how to decompress/decrypt a part of the read or even the 
entire read (decompression/decryption means transforming the hash into a string). To do that, we have to 
know how to decompress nucleotide ak given the hash of the read H(R) and the position of decryption k as 
input.  

Perhaps one can say that this can be easily done by applying equation (3), but errors in decryption are 
likely to happen if only this equation is applied and, as we said before, these errors happen because cytosine 
(C) is hashed to the same value as the radix in equation (2) which equals 4. 

𝐟𝐟(𝐚𝐚𝐤𝐤)𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 = (𝐇𝐇(𝐑𝐑)
𝐦𝐦𝐤𝐤⁄ )𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦     (3)    

To prove equation (3) we can write equation (2) into equation (4) in terms of 4k as a common factor. 

From equation (4) we get that H(R)
4k⁄  equals equation (5). If we rewrite equation (5) in terms of 4 as a 

common factor, we get equation (6), wherefrom we get equation (7) that equals equation (3). 

H(R) = f(a0) × 40 + ⋯+ f(ak−1) × 4k−1 + 4k × (f(ak) + f(ak+1) × 41 + ⋯+ f(an−1) × 4n−k−1)                                                                   
(4) 

H(R)
4k⁄ = f(ak) + f(ak+1) × 41 + ⋯+ f(an−1) × 4n−k−1                                   (5) 

H(R)
4k⁄ = f(ak) + 4 × (f(ak+1) + f(ak+2) × 4 … + f(an−1) × 4n−k−2)               (6) 

(H(R)
4k⁄ )mod4 = f(ak)mod4                                                                              (7) 

So, we get that if (H(R)
4k⁄ )mod4 = 1 then ak = ′A′(Adenine), if (H(R)

4k⁄ )mod4 = 2 then ak =

′T′(Thymine), if  (H(R)
4k⁄ )mod4 = 3 then ak = ′G′(Guanine) and if (H(R)

4k⁄ )mod4 = 0 then ak =
′C′(Cytosine). 

Done STOJANOV
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The first time when the accuracy of decryption is undermined is when ak is preceded by Cytosine 
or ak−1 = ′C′. In such a case, instead of equation (3), equation (8) must be applied to decrypt correctly ak. 

𝐟𝐟(𝐚𝐚𝐤𝐤)𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 = (𝐇𝐇(𝐑𝐑)
𝐦𝐦𝐤𝐤⁄ − 𝟏𝟏)𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦  (8) 

To prove equation (8) we shall consider once again equation (2) under ak−1 = ′C′, f(ak−1) = 4. In 
such a case, equation (2) transforms into equations (9) and (10).  

H(R) = f(a0) × 40 + ⋯+ f(ak−2) × 4k−2 + 4 × 4k−1 + f(ak) × 4k + f(ak+1) × 4k+1 + ⋯+
f(an−1) × 4n−1              

 (9) 

H(R) = f(a0) × 40 + ⋯+f(ak−2) × 4k−2 + 4k + f(ak) × 4k + f(ak+1) × 4k+1 + ⋯+ f(an−1) ×
4n−1                                (10) 

If we take 4k out of parenthesis in equation (10), this equation becomes equation (11). 

H(R) = f(a0) × 40 + ⋯+f(ak−2) × 4k−2 + 4k × (1 + f(ak) + f(ak+1) × 4 + ⋯+ f(an−1) ×
4n−k−1)                           (11) 

According to equation (11) H(R)
4k⁄  equals 1 + f(ak) + f(ak+1) × 4 + ⋯+ f(an−1) × 4n−k−1. The 

further transformation of H(R)
4k⁄  in terms of 4 as a common factor results in equations (12) and (13).  

H(R)
4k⁄ = 1 + f(ak) + 4 × (f(ak+1) + ⋯+ f(an−1) × 4n−k−2)            (12)  

H(R)
4k⁄ − 1 = f(ak) + 4 × (f(ak+1) + ⋯+ f(an−1) × 4n−k−2)            (13) 

From equation (13) we get that (H(R)
4k⁄ − 1)mod4 = f(ak)mod4.  

Since we cannot know in advance if ak is preceded by cytosine or not, an additional test (14) must be 
conducted. Given that test (14) is true, equation (8) must be applied to decrypt correctly ak and if false 
equation (3) is applied instead. In fact, test (14) checks if ak is preceded by cytosine or not upon the hash 
of the read 𝐇𝐇(𝐑𝐑) and the position of decryption 𝐤𝐤 as input.  

𝐼𝐼𝐼𝐼(𝐻𝐻(𝑅𝑅) 𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘−1 = 𝐻𝐻(𝑅𝑅) 𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘) 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑎𝑎𝑘𝑘−1 =′ 𝐶𝐶′:𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑡𝑡𝐸𝐸𝑚𝑚𝑒𝑒 (8) 𝐸𝐸𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝑒𝑒𝑚𝑚   (14) 

Test (14) can be also proved. For that purpose, we consider once again equation (9), which is a special 
case of equation (2) given that ak−1 = ′C′. If we take 4k−1out of parenthesis in equation (9), we get equation 
(15). 

H(R) = f(a0) × 40 + ⋯+f(ak−2) × 4k−2 + 4k−1 × (4 + f(ak) × 4 + f(ak+1) × 42 + ⋯+ f(an−1) ×
4n−k)        (15) 

According to equation (15) H(R)mod 4k−1 = f(a0) × 40 + ⋯+f(ak−2) × 4k−2 and if we look back at 
equation (11), we get that H(R)mod 4k also equals f(a0) × 40 + ⋯+f(ak−2) × 4k−2 and this happens only 
if ak is preceded by Cytosine.  

    Until now, we know that if test (14) returns true ak is preceded by cytosine and equation (8) must 
be applied to decrypt correctly ak, on the other hand equation (3) has to be applied. However, there is one 
more case that is critical when test (14) returns false but instead of equation (3), equation (8) must be 
applied. This situation happens if cytosine tract (C…C) before ak. 

To discuss this situation, we consider the case when  ak is preceded by cytosine being also preceded 
by cytosine(…𝐂𝐂𝐂𝐂𝐚𝐚𝐤𝐤 …). In this situation,  H(R)  equal equations (15), (16) and (17). Equations (16) and 
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(17) equal equation (15), but they are written in terms of 4k−1 and  4k as common factors. From equations 
(16) and (17) we get that condition (14) is not satisfied because H(R)mod 4k−1 and H(R)mod 4k  mutually 
differ, i.e. H(R)mod 4k−1 = ⋯+ f(ak−3) × 4k−3 and H(R)mod 4k = ⋯+ f(ak−3) × 4k−3 + 4k−1 but 
since ak is preceded by Cytosine, equation (8) must be applied to decrypt correctly ak. 

H(R) = ⋯+ f(ak−3) × 4k−3 + f(C) × 4k−2 + f(C) × 4k−1 + f(ak) × 4k + ⋯ 

= ⋯+ f(ak−3) × 4k−3 + 4 × 4k−2 + 4 × 4k−1 + f(ak) × 4k + ⋯ 

= ⋯+ f(ak−3) × 4k−3 + 4k−1 + 4k + f(ak) × 4k + ⋯                      (15) 

H(R) = ⋯+ f(ak−3) × 4k−3 + 4k−1 × (1 + 4 + f(ak) × 4 + ⋯ )    (16) 

H(R) = ⋯+ f(ak−3) × 4k−3 + 4k−1 + 4k × (1 + f(ak) + ⋯ )           (17) 

If test (14) returns false, we conduct an additional test (18), for which if it is true, equation (8) must be 
applied. This test (18) we derived from equations (16) and (17) and it covers the case when ak is preceded 
by cytsoine tract (C…C). From equations (16) and (17) we get that H(R)mod 4k−1 = ⋯+ f(ak−3) × 4k−3 
and H(R)mod 4k = ⋯+ f(ak−3) × 4k−3 + 4k−1, i.e. H(R)mod 4k = H(R)mod 4k−1 + 4k−1 . 

𝐼𝐼𝐼𝐼(𝐻𝐻(𝑅𝑅)𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘 = 𝐻𝐻(𝑅𝑅)𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘−1 + 4𝑘𝑘−1) ∶  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝐸𝐸 (8) 𝐸𝐸𝑖𝑖 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝑎𝑎𝑚𝑚  (18) 

This discussion was summarized into algorithm that is presented below.  

output: char 𝒂𝒂𝒌𝒌 algorithm: Nucleotide Decompression (input: int 𝑯𝑯(𝑹𝑹),𝒌𝒌) 
{ 

        if (𝐻𝐻(𝑅𝑅)𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘−1 == 𝐻𝐻(𝑅𝑅) 𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘)  
              𝑓𝑓(𝐸𝐸𝑘𝑘) ← (𝐻𝐻(𝑅𝑅)

4𝑘𝑘⁄ − 1)𝑚𝑚𝑚𝑚𝑚𝑚4 
         else{ 

       if (𝐻𝐻(𝑅𝑅)𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘 == 𝐻𝐻(𝑅𝑅)𝑚𝑚𝑚𝑚𝑚𝑚 4𝑘𝑘−1 + 4𝑘𝑘−1) 
                   𝑓𝑓(𝐸𝐸𝑘𝑘) ← (𝐻𝐻(𝑅𝑅)

4𝑘𝑘⁄ − 1)𝑚𝑚𝑚𝑚𝑚𝑚4 
         else 
           𝑓𝑓(𝐸𝐸𝑘𝑘) ← (𝐻𝐻(𝑅𝑅)

4𝑘𝑘⁄ )𝑚𝑚𝑚𝑚𝑚𝑚4 
          } 

if(𝑓𝑓(𝐸𝐸𝑘𝑘)= =1) 
𝐸𝐸𝑘𝑘=’A’ 
    else if (𝑓𝑓(𝐸𝐸𝑘𝑘)= =2) 
        𝐸𝐸𝑘𝑘=’T’ 
         else if (𝑓𝑓(𝐸𝐸𝑘𝑘)= =3) 
              𝐸𝐸𝑘𝑘=’G’ 
            else 
                𝐸𝐸𝑘𝑘=’C’ 
                 return 𝐸𝐸𝑘𝑘 

                                              } 
 

3. Results and discussion 
A short reads compression/decompression program was written in C#, Figure 1. This program accepts 

short reads as input (upper text control Figure 1), computes its hash (middle text control Figure 1)  and 
upon the hash decrypts the read, either by applying only equation (3) (middle text control Figure 1) or/and 
by applying tests (14) and (18) and the additional correction equation (8) (lower text control Figure 1). 
Short reads decompression is made by the previous algorithm for all positions in the reads. 

We made five tests on 11-b.p (base pairs) reads on Acer Aspire 5570Z computer with Genuine Intel 
T2080 @ 1.73 GHz and 2 GB RAM, Table 1. Four of the reads contain critical CT-tandem repeats (record 
1-record 4 Table 1) while the last sample contained Cytosine tract before Thymine, Table 1. 

Done STOJANOV
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Applying only equation (3) Thymine nucleotides in CT-tandem repeats were not accurately decrypted 
(Table 1, red-labeled nucleotides, record 1- record 4). In addition, five base pairs were not accurately 
decrypted near/in the Cytosine tract (Table 1, red-labeled nucleotides record 5). The total number of errors 
equaled 15, Figure 2. Applying proposed tests (14) and (18) and the additional correction equation (8), all 
these 15 errors were solved that resulted in 0 errors in genomic data decompression (Table 1, blue-labeled 
nucleotides).  

 

Figure 1. Screenshot of the application 

Table 1: Decryption results  

Input Hash Value Applying eq. 3 

Applying tests (14) 
and (18) and 

correction eq. (8) Errors 
ACTGTATAAGA 1926897 ACGGTATAAGA ACTGTATAAGA 1 
ACTCTATAAGA 1926961 ACGCGATAAGA ACTCTATAAGA 2 
ACTCTCTAAGA 1930033 ACGCGCGAAGA ACTCTCTAAGA 3 
ACTCTCTCTGA 2044721 ACGCGCGCGGA ACTCTCTCTGA 4 
ACCCCCTAAGA 1930577 ACAAAAGAAGA ACCCCCTAAGA 5 
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Figure 2. Number of base pairs errors per short read  

 

Concluding remarks 
We considered the problem of genomic data compression/decompression by applying the hashing 

formula that was proposed by Reneker and Shyu. We showed that using this formula short reads of 15 base 
pairs can be zipped into a single integer of 4 bytes that results in 11 bytes or around 73 % of compression 
gain per read. This compression is possible without having to use reference sequence, which is a common 
practice in all current research of genomic data compression. However, we should be very careful when 
applying this formula for data decompression since errors are likely to happen due to the fact that one of 
the nucleotides is mapped to the same value as the radix. We noticed this case and we proposed a solution 
that works based on two tests and one additional equation that eliminated the possibility of errors in genomic 
data decompression.  
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