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Abstract: The Sasa Pb-Zn-Ag deposit belongs to the group of distal base metal skarn deposits. The
deposit is located within the Serbo-Macedonian massif, a metamorphosed crystalline terrain of
Precambrian to Paleozoic age. The mineralization, hosted by Paleozoic marbles, shows a strong
lithological control. It is spatially and temporally associated with the calc-alkaline to shoshonitic
post-collisional magmatism that affected the Balkan Peninsula during the Oligocene–Miocene time
period and resulted in the formation of numerous magmatic–hydrothermal ore deposits. The
mineralization at the Sasa Pb-Zn-Ag deposit shows many distinctive features typical for base
metal skarn deposits including: (1) a carbonate lithology as the main immediate host of the
mineralization; (2) a close spatial relation between the mineralization and magmatic bodies of
an intermediate composition; (3) a presence of the prograde anhydrous Ca-Fe-Mg-Mn-silicate and
the retrograde hydrous Ca-Fe-Mg-Mn ± Al-silicate mineral assemblages; (4) a deposition of base
metal sulfides, predominately galena and sphalerite, during the hydrothermal stage; and (5) a
post-ore stage characterized by the deposition of a large quantity of carbonates. The relatively simple,
pyroxene-dominated, prograde mineralization at the Sasa Pb-Zn-Ag skarn deposit represents a
product of the infiltration-driven metasomatism which resulted from an interaction of magmatic
fluids with the host marble. The prograde stage occurred under conditions of a low water
activity, low oxygen, sulfur and CO2 fugacities and a high K+/H+ molar ratio. The minimum
pressure–temperature (P–T) conditions were estimated at 30 MPa and 405 ◦C. Mineralizing fluids
were moderately saline and low density Ca-Na-chloride bearing aqueous solutions. The transition
from the prograde to the retrograde stage was triggered by cooling of the system below 400 ◦C
and the resulting ductile-to-brittle transition. The brittle conditions promoted reactivation of old
(pre-Tertiary) faults and allowed progressive infiltration of ground waters and therefore increased
the water activity and oxygen fugacity. At the same time, the lithostatic to hydrostatic transition
decreased the pressure and enabled a more efficient degassing of magmatic volatiles. The progressive
contribution of magmatic CO2 has been recognized from the retrograde mineral paragenesis as well
as from the isotopic composition of associated carbonates. The retrograde mineral assemblages,
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represented by amphiboles, epidote, chlorites, magnetite, pyrrhotite, quartz and carbonates, reflect
conditions of high water activity, high oxygen and CO2 fugacities, a gradual increase in the sulfur
fugacity and a low K+/H+ molar ratio. Infiltration fluids carried MgCl2 and had a slightly higher
salinity compared to the prograde fluids. The maximum formation conditions for the retrograde
stage are set at 375 ◦C and 200 MPa. The deposition of ore minerals, predominantly galena and
sphalerite, occurred during the hydrothermal phase under a diminishing influence of magmatic CO2.
The mixing of ore-bearing, Mg-Na-chloride or Fe2+-chloride, aqueous solutions with cold and diluted
ground waters is the most plausible reason for the destabilization of metal–chloride complexes.
However, neutralization of relatively acidic ore-bearing fluids during the interaction with the host
lithology could have significantly contributed to the deposition. The post-ore, carbonate-dominated
mineralization was deposited from diluted Ca-Na-Cl-bearing fluids of a near-neutral pH composition.
The corresponding depositional temperature is estimated at below 300 ◦C.

Keywords: Sasa Pb-Zn-Ag deposit; skarn; magmatic-hydrothermal ore deposits; fluid inclusions;
stable isotopes; EBSD; Serbo-Macedonian massif; postcollisional magmatism

1. Introduction

Although skarn deposits represent products of interaction of a silicate melt (proximal skarns) or
magmatic fluids (distal skarns) with a carbonate rich lithology, hydrothermal fluids play a significant
role in evolution of all types of skarn deposits. Late hydrothermal overprints particularly affect the
skarn deposit geometry, type of alteration products and ore distribution [1–4].

The Sasa Pb-Zn-Ag deposit is a typical distal skarn deposit and has been selected as a site to
study processes that involve transport of base metals by magmatic and hydrothermal fluids as well as
physicochemical factors that control the deposition of base metal-bearing mineral phases. The Sasa
deposit (42.0◦ N, 22.5◦ E) is located on the Balkan Peninsula, approximately 150 km east from Skopje,
Republic of Macedonia (Figure 1). It consists of three ore-bearing localities: Svinja Reka, Golema Reka
and Kozja Reka (Figure 2a). The deposit hosts approximately 23.4 million metric tons of ore at 7.5%
of Pb and Zn and up to 22 g/t Ag. Mining activities in the area date back to ancient times. The first
geological investigations began in the 19th century and industrial production started in 1966. Since
November 2017, the deposit is operated by Central Asia Metals.

The Sasa Pb-Zn-Ag skarn deposit is hosted by the Serbo-Macedonian massif, a large elongate
basement complex situated along the eastern part of the Balkan Peninsula. It extends southward
from Serbia through Kosovo, Macedonia and Bulgaria to the Chalkidiki Peninsula in northern Greece
(Figure 1) and holds numerous economically important ore deposits of Cu, Au, Pb and Zn (e.g., Bor and
Majdanpek, Serbia; Toranica, Sasa and Bucim, Macedonia; Osogovo, Bulgaria; Skouries, Greece [5–9]).

The Sasa deposit is spatially and temporally associated with the Tertiary calc-alkaline
magmatism [10]. It comprises prograde and retrograde mineral assemblages hosted by a sequence
of Paleozoic marbles intercalated with quartz–graphite schists [11]. The prograde mineralization is
represented by anhydrous Ca-Fe-Mn-silicate minerals (pyroxenes and pyroxenoids). A subsequent
retrograde stage contains amphiboles, epidote, chlorites and ilvaite [12]. The principal ore minerals,
galena and sphalerite, are accompanied by variable amounts of hydrothermal quartz and carbonates.

This study presents the mineral chemistry, fluid inclusion and stable isotope data obtained on the
skarn and hydrothermal mineral assemblages to give an insight into the evolution of the mineralizing
fluids, to constrain the physiochemical conditions during the skarn formation and ore deposition and
to refine the metallogenic model of the deposit.
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Figure 1. Regional geologic setting of the Sasa Pb-Zn-Ag skarn deposit, Republic of Macedonia,
within the Balkan Peninsula (according to [13,14]). The locations of the most prominent Pb-Zn ± Ag
hydrothermal and Cu-Au porphyry deposits are also marked. Abbreviations: RKB = Ridanj–Krepoljin
belt, TMC = Timok magmatic complex.

2. Geological Setting

2.1. Regional Geology

The Serbo-Macedonian massif is a N–S trending crystalline belt outcropping between the Vardar
ophiolite zone in the west and the Rhodope massif in the east (Figure 1). This Precambrian to
Paleozoic terrain consists of two main tectonostratigraphic units, the Lower unit (also known as the
Lower complex in Serbia and Macedonia, the Ograzhden unit in Bulgaria and the Vertiskos unit
in Greece) and the Upper unit (the Vlasina unit in Serbia and Macedonia or the Morava unit in
Bulgaria), usually distinguished by their metamorphic grade. The Lower unit was metamorphosed
up to medium- to lower-amphibolite facies metamorphism, whereas the Upper unit underwent
greenschist facies conditions [13–16]. The Lower unit is composed predominately of gneisses,
micaschists, quartzites, amphibolites, and occasionally marbles and migmatites. This unit has been
considered as a metamorphosed volcano–sedimentary sequence formed in the late Neoproterozoic to
the earliest Cambrian along the active margin of north Gondwana that underwent the amphibolite
facies metamorphism during the Variscan orogeny [13,17,18]. In contrast, the Upper unit is mostly
composed of the late Neoproterozoic ocean floor sediments and igneous rocks, overlaid by a Lower
Ordovician to Lower Carboniferous sedimentary sequence metamorphosed to various schists, phyllites,
quartzites and marbles [13,19,20].
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In the Cretaceous to Tertiary period, the Serbo-Macedonian massif as well as the adjunct
Vardar zone were affected by considerable magmatic activity related to the Alpine orogeny and
post-collisional collapse of the Alpine orogen, followed by extension of the Pannonian (Miocene)
and Aegean areas (Eocene–Pliocene) [21–24]. The magmatism had an intermediate, mostly andesitic
to trachytic, character and resulted in the formation of numerous ore deposits including porphyry
Cu-Mo-Au and subordinate epithermal gold deposits (e.g., Bor, Majdanpek and Veliki Krivelj in Serbia;
Buchim and Borov Dol in Macedonia; Skouries [8,9,25–28]) and Pb-Zn-Ag hydrothermal deposits (e.g.,
Srebrenica in Bosnia and Herzegovina; Cer and Boranja in Serbia; Trepca, Crnac and Belo Brdo in
Kosovo; Sasa, Toranica and Zletovo in Macedonia; Olympias in Greece; [29–35], Figure 1a). The age of
magmatism decreases from approximately 84 Ma in the north to 19 Ma in the southernmost part of the
Serbo-Macedonian massif [36,37].

2.2. Geology of the Deposit

The Sasa Pb-Zn-Ag skarn deposit is hosted by a Paleozoic metamorphic complex composed
of marble horizons intercalated with quartz–graphite schist and surrounded by Precambrian gneiss
(Figure 2). The cross-section through the Pb-Zn-Ag Sasa skarn deposit reflects the strong lithological
control on ore deposition revealing that carbonate rich lithology, i.e. marble, was almost completely
replaced by the mineralization whereas other country rocks, including schists, gneisses and magmatic
rocks, are mostly barren (Figure 2). The mineralized strata dip at approximately 35◦ to south-west
and range in thickness from 2 m to 30 m. Rare lenses of preserved marble are characterized by a
uniform calcite grain size and fine intercalations of grey mica, classifying this marble to the cipollino
marble variety (Figure 3a). The dark, medium grained and foliated quartz–graphite schist consists
predominately of graphite, quartz and minor sericite (Figure 3b,c). The Precambrian gneiss is strongly
foliated, with ductile deformed chlorite and quartz grains and brittle deformed amphiboles (Figure 3d).
The mineralization is spatially associated with magmatic rocks (Figure 2), mostly of trachytic to
trachydacitic composition (Figure 3e,f) and the K/Ar age is between 31 Ma and 24 Ma [38,39].
A relatively high 87 Sr/86 Sr ratio (0.7095–0.7113, [38]) suggests a significant crustal contamination
common for the Oligocene–Miocene calc-alkaline to shoshonitic post-collisional magmatism of the
Balkan Peninsula [40,41]. Although the mineralization is lithologically controlled, old structures,
reactivated during the Tertiary post-collisional extension, might have played a significant role in
emplacement of magmatic bodies (Figure 2).
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Figure 2. (a) Geologic map of the Sasa Pb-Zn-Ag skarn deposit area; (b) Longitudinal section through
the Svinja Reka locality (from [39]). Abbreviation: AMSL — above mean sea level.
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The mineralization consists of skarn and hydrothermal parageneses. The skarn parageneses are
characterized by the presence of Mn-enriched calc-silicate minerals, including pyroxenes, pyroxenoids,
garnets, epidote, chlorites and ilvaite. The hydrothermal parageneses are mostly superimposed
onto the skarn assemblages, and contain galena, sphalerite and pyrite, as well as minor pyrrhotite,
chalcopyrite and magnetite. Carbonates and quartz are the most abundant gangue minerals.
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Figure 3. (a) Cross-cut section of a core drilled through cipollino marble; (b) Hand specimen
of quartz–graphite schist; (c) Transmitted light photomicrograph of quartz–graphite schist (cross
polars); (d) Transmitted light photomicrograph of Precambrian gneiss (plane polarized light);
(e) Transmitted light photomicrograph of trachyte associated with the Sasa Pb-Zn-Ag mineralization
(plane polarized light); (f) Transmitted light photomicrograph of trachyte associated with the Sasa
Pb-Zn-Ag mineralization (crossed polars). Abbreviations: Cal—calcite; Mc—mica; Qtz—quartz;
Gr—graphite; Amp—amphiboles; Chl—chlorites; Py—pyrite; Cpx—clinopyroxene; Bt—biotite;
Ms—muscovite; Afs—alkali feldspars.
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3. Materials and Methods

A total of 30 samples were collected from the Svinja Reka locality, an active underground mine
at the Sasa deposit. The representative samples of host rocks, associated magmatic rocks and ore
mineralization were selected for further mineralogical and geochemical studies.

Paragenetic relationships were studied in thin polished sections by transmitted and reflected
polarized light microscopy. The X-ray powder diffraction (XRD) was conducted at the University
of Zagreb on a Philips PW 3040/60 X’Pert PRO powder diffractometer (45 kV, 40 µA), with
CuKα-monochromatized radiation (λ = 1.54056 Å) and θ–θ geometry. The area between 4◦ and 63◦ 2θ,
with 0.02◦ steps, was measured with a 0.5◦ primary beam divergence. Compound identifications were
based on a computer program X’ Pert high score of 1.0 B and literature data.

The textural features and semi-quantitative analyses of mineralized samples were examined
by a Zeiss Merlin Compact VP field emission Scanning Electron Microscope (SEM) equipped with
an Energy-Dispersive X-Ray (EDX) spectrometer and an Electron Backscattered Diffraction (EBSD)
detector at UiT The Arctic University of Norway. EDX analyses were conducted with an X-Max80 EDX
detector by Oxford instruments at a working distance of 8.5 mm, using an accelerating voltage of 20 kV
and an aperture of 60 µm. The samples were mechanically polished and carbon-coated. The retrieved
data were further processed by applying the AZtec software also provided by Oxford instruments.
EBSD analyses for phase identification and distribution were conducted on a Nordlys EBSD detector
in combination with the Aztec data processing software, both provided by Oxford instruments. The
analyzed samples were mechanically and chemically polished with a colloidal silica solution and
coated with a carbon layer. The samples were tilted to 70◦. An acceleration voltage of 20 kV was
applied in combination with a 240 µm aperture. Step sizes for EBSD mapping were from 4.5 µm to
6 µm; six bands were detected with refined accuracy as indexing mode. Indexing rates were from
74.0% to 88.4%. A camera exposure time of 21 ms was applied in both cases.

Petrographic and microthermometric measurements of fluid inclusions within transparent
minerals (quartz, calcite, sphalerite and pyroxene) were performed at the University of Zagreb and at
UiT The Arctic University of Norway. Double polished, 0.1 mm to 0.3 mm thick, transparent mineral
wafers were studied. Measurements were carried out on Linkam THMS 600 stages mounted on an
Olympus BX 51 (University of Zagreb) and an Olympus BX 2 (UiT) using 10× and 50× Olympus
long-working distance objectives. Two synthetic fluid inclusion standards (SYN FLINC; pure H2O and
mixed H2O–CO2) were used to calibrate the equipment. The precision of the system was ±2.0 ◦C for
homogenization temperatures, and ± 0.2 ◦C in the temperature range between −60◦ and +10 ◦C.
Microthermometric measurements were made on carefully defined fluid inclusion assemblages,
representing groups of inclusions that were trapped simultaneously. The fluid inclusion assemblages
were identified based on petrography prior to heating and freezing. If all of the fluid inclusions within
the assemblage showed similar homogenization temperature, the inclusions were assumed to have
trapped the same fluid and to have not been modified by leakage or necking; these fluid inclusions
thus record the original trapping conditions [42–44].

Carbon and oxygen isotope analyses of calcite separated from the host marble, as well as from
skarn and hydrothermal mineral associations, were performed at the University of Lausanne and at UiT
The Arctic University of Norway. In both laboratories, calcite powder was extracted from hand-picked
samples using a dentist’s drill. A mass of 250 µg of powder was loaded in sealed reaction vessels, then
flushed with helium gas and reacted at 72 ◦C with phosphoric acid. The evolved carbon dioxide was
sampled using a ThermoFinnigan Gas-Bench and isotope ratios were measured in continuous flow
mode using a ThermoFinnigan Delta + XP mass spectrometer. Data was extracted to an EXCEL file
by using the ISODAT NT EXCEL export utility and further calculation steps were carried out using a
predefined EXCEL Worksheet. Linearity corrections were applied based on the relationships between
the intensity of the first sample peak (m/z 44) and δ 18O value of the standards. Due to calibration
based directly on standard, which were part of each run (Carrara marble), correction for calcite runs
was unnecessary. The stable carbon and oxygen isotope ratios are reported in the delta (notation as
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per mil (h) deviation relative to the Vienna Standard Mean Ocean Water (V-SMOW) for oxygen and
Vienna Pee Dee Belemnite (V-PDB) for carbon. The analytical reproducibility was better than ±0.05h
for δ 13C and ± 0.1h for δ 18O.

4. Results

4.1. Petrography

The paragenetic sequence of the Sasa Pb-Zn-Ag skarn deposit (Figure 4) illustrates that the
mineralization was deposited as a result of several mineralizing events, similar to other skarn deposits
worldwide [45–47]. Marble layers represent the main immediate host rock, and they are usually
completely replaced by the mineralization. Textural features of the skarn parageneses, including
rhythmic banding, scalloping and fingering, reflect infiltration-driven replacement as the main
mechanism of their formation (Figure 5, [48]). The prograde stage has an anhydrous character with
prevailing Ca-Fe-Mn pyroxenes and minor pyroxenoids and garnets. Pyroxenes form fibroradial
aggregates (Figure 5). The retrograde stage resulted in a complex mineral assemblage that consists
of a mixture of amphiboles, ilvaite, epidote, chlorites, magnetite, pyrrhotite, carbonates and quartz.
It texturally mimics the fibroradial texture inherited from the prograde mineralization (Figure 5).
The superimposed hydrothermal mineral assemblages predominantly occur as replacements and
open-space fillings. They contain galena, sphalerite, pyrite and minor chalcopyrite, as well as syn-ore
and post-ore gangue carbonates and quartz (Figure 6).
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Figure 5. (a) Hand-specimen showing the transition from the prograde (anhydrous silicate-dominated)
stage to the retrograde (hydrous silicate- dominated) stage; (b) Hand-specimen showing the rhythmic
bedding of the retrograde/hydrothermal mineral paragenesis; (c) Transmitted light photomicrograph
of the retrograde mineralization mimicking prograde fibroradial texture (plane polarized light);
(d) Transmitted light photomicrograph of the retrograde mineralization mimicking prograde fibroradial
texture (crossed polars); (e) Transmitted light photomicrograph of prograde pyroxene partly replaced
by pyrrhotite (plane polarized light); (f) Transmitted light photomicrograph of prograde pyroxene
partly replaced by pyrrhotite (crossed polars). Abbreviations: Px—pyroxene; Amph—Amphibole;
Chl—chlorite; Sph—Sphalerite; Ep—epidote; Po—pyrrhotite; Py—Pyrite.
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Figure 6. (a) The rhythmic banding of the prograde mineralization with the retrograde and
hydrothermal mineral parageneses suggests that replacement processes were important mechanisms for
the development of retrograde alterations, as well as for deposition of the hydrothermal mineralization;
(b) Hand-specimen showing a typical hydrothermal paragenesis composed of pyrrhotite, chalcopyrite,
sphalerite and quartz; (c) Hand-specimen consisting of pyrite, galena and carbonates reflects the
open-space deposition of the hydrothermal mineralization; (d) Post-ore bladed calcite; (e) Reflected light
photomicrograph of hydrothermal mineral paragenesis consisting of magnetite, chalcopyrite, galena
and sphalerite; (f) Reflected light photomicrograph showing chalcopyrite disease in Fe-rich sphalerite.
This texture is often interpreted as a diffusion-controlled replacement of the Fe-rich sphalerite mostly
along crystal planes or controlled by compositional variabilities within the sphalerite. Abbreviations:
Px—pyroxene; Amph—Amphibole; Chl—chlorite; Gn—Galena; Sph—Sphalerite; Cpy—Chalcopyrite;
Po—Pyrrhotite; Mt—Magnetite; Qtz—Quartz; Carb—Carbonates.

4.2. X-ray Diffraction (XRD)

Hydrothermally altered skarn assemblages are characterized by very fine-grained textures
that preclude determination of their mineral composition by optical microscopy techniques and,
alternatively, the XRD method was applied. The representative XRD patterns presented in
Figure 7 suggest that prograde mineral assemblages composed mostly of pyroxenes from the
hedenbergite–johannsenite series, which are altered to amphiboles from the actinolite–ferroactinolite
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series, serpentine, minerals from the epidote group, chlorites of the clinochlore type, magnetite,
carbonates and quartz. In addition, ore minerals, including pyrite, galena, sphalerite and chalcopyrite,
have been recorded.
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Figure 7. Representative X-ray Diffraction (XRD) patterns reveal a complex mineral composition of
retrograde alterations: (a) Prograde pyroxene (hedenbergite) partly altered to a mixture of ferroactinolite
and serpentine and overprinted by the hydrothermal mineralization composed of galena, chalcopyrite
and quartz; (b) Completely altered prograde mineralization into a mixture of epidote, piemontite
and serpentine. Hydrothermal pyrite and quartz are also present; (c) Completely altered prograde
mineralization into a mixture of ferroactinolite, actinolite, magnetite, carbonate and quartz. Galena and
sphalerite have been recorded as well.
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4.3. Electron Back Scattered Diffraction (EBSD)

The EBSD method was utilized to determine the spatial distribution of retrograde alteration
products. The EBSD maps presented in Figures 8 and 9 suggest that prograde pyroxenes have been
altered to various degrees during the infiltration of hydrothermal fluids. Sharp alteration zones
composed of a mixture of hydrous calc-silicate minerals, predominantly amphiboles, chlorites, epidote
and ilvaite point to an increase in water activity (Figure 8). In contrast, mixtures of quartz and
carbonates usually overprint individual pyroxene grains, mimicking the prograde fibroradial texture
and reflecting an increase in the CO2 fugacity (Figure 9). Carbonates from both the calcite and dolomite
groups have been identified. Fine grained sulfide minerals suggest an increase in the sulfur fugacity.
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Figure 8. The Electron Back Scattered Diffraction (EBSD) maps illustrating the retrograde alterations
of prograde pyroxene under high water activity: (a) Band contrast EBSD map; (b) Distribution of
prograde clinopyroxene and retrograde hydrous silicates; (c) Distribution of prograde clinopyroxene
and retrograde/hydrothermal carbonates and quartz; (d) Distribution of prograde clinopyroxene and
hydrothermal sulfide mineralization. The EBSD mapping step size was 4.5 µm and the indexing rate
was 74.0%.
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Table 1. Chemical composition of pyroxenes from the Sasa Pb-Zn-Ag skarn deposit. Hd—
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Sample Point CaO FeO MnO MgO SiO2 Hd Jo Di 
  wt. % % 

SA-101 Px-1 24.6 22.2 5.1 0.5 47.6 79.8 18.4 1.8 
 Px-2 25.1 20.5 4.3 1.1 49.0 79.1 16.5 4.4 
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 Px-5 25.0 21.2 5.7 0.7 47.5 77.0 20.6 2.4 

Figure 9. The EBSD maps illustrating the retrograde alterations of prograde pyroxene under an
increased CO2 fugacity: (a) Band contrast EBSD map; (b) Distribution of prograde clinopyroxene and
retrograde hydrous silicates; (c) Distribution of prograde clinopyroxene and retrograde/hydrothermal
carbonates and quartz; (d) Distribution of prograde clinopyroxene and hydrothermal sulfide
mineralization. The EBSD mapping step size was 6 µm and the indexing rate was 88.4%.

4.4. Mineral Chemistry

The major element composition of pyroxenes, analyzed by the EDS/SEM technique, is listed
in Table 1 and plotted in the diopside–johannsenite–hedenbergite ternary diagram (Figure 10).
Hedenbergite, with 74–80 mol %, represents the main pyroxene constituent. The johannsenite content
varies between 16–21 mol % and diopside between 1–6 mol %.

The EDS/SEM analyses of sulfides revealed that sphalerite owes its black color to an enrichment
of iron (>10 wt. % of Fe, Table 2). Sphalerite also contains detectable amounts of cadmium, manganese
and copper (Table 2). Galena carries significant amounts of bismuth (up to 4.7 wt. % of Bi). Indium
and silver have been detected as well (Table 2). Variations in the trace element content of sphalerite
and galena are presented in Figure 11.
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Table 1. Chemical composition of pyroxenes from the Sasa Pb-Zn-Ag skarn deposit. Hd—hedenbergite;
Jo—johannsenite; Di—diopside.

Sample Point CaO FeO MnO MgO SiO2 Hd Jo Di

wt. % %

SA-101 Px-1 24.6 22.2 5.1 0.5 47.6 79.8 18.4 1.8
Px-2 25.1 20.5 4.3 1.1 49.0 79.1 16.5 4.4
Px-3 24.4 21.8 4.7 0.8 48.3 79.8 17.2 3.0
Px-4 22.8 21.2 5.6 1.0 49.4 76.3 20.1 3.7
Px-5 25.0 21.2 5.7 0.7 47.5 77.0 20.6 2.4
Px-6 24.0 22.8 5.1 0.7 47.4 79.7 17.9 2.4
Px-7 23.2 19.7 4.9 0.8 51.5 77.5 19.5 3.0
Px-8 23.1 21.2 6.0 0.8 49.0 75.7 21.3 3.0
Px-9 23.9 20.2 5.2 1.0 49.6 76.4 19.8 3.8
Px-10 22.7 19.1 5.2 1.6 51.5 73.9 20.1 6.0

SA-102 Px-11 25.2 21.1 5.2 0.6 47.9 78.6 19.2 2.1
Px-12 25.4 19.8 5.3 0.7 48.8 76.8 20.5 2.8
Px-13 25.4 18.9 5.3 0.7 49.6 75.7 21.4 2.9
Px-14 23.9 21.2 5.6 0.4 48.8 77.9 20.4 1.6
Px-15 24.0 21.0 5.5 0.4 49.1 78.2 20.4 1.3
Px-16 24.6 20.4 4.6 0.9 49.4 78.9 17.8 3.4
Px-17 23.4 20.3 4.6 1.6 50.1 76.5 17.5 5.9
Px-18 23.0 22.8 5.3 1.0 48.0 78.4 18.1 3.4
Px-19 24.6 19.8 5.0 0.7 49.9 77.3 19.7 2.9
Px-20 22.5 19.8 5.4 0.7 51.6 76.6 20.8 2.5
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   Pb 77.76 82.26 80.23 1.52 
   Bi 4.02 4.69 4.36 0.23 
   Ag 0.02 0.62 0.16 0.21 
   In 0.15 0.31 0.21 0.06 
   S 12.12 12.57 12.37 0.18 

      Total 94.30 99.22 97.33 1.69 

Sasa-17 Sphalerite 4           
   Zn 58.44 59.34 58.86 0.39 
   Fe 10.18 10.38 10.25 0.09 
   Mn 0.28 0.34 0.32 0.03 
   Cd 0.43 0.58 0.51 0.08 
   Cu <d.l. <d.l.   

   S 28.37 28.93 28.62 0.26 
   Total 97.85 99.55 98.56 0.79 

Figure 10. Jo-Di-Hd (Mn-Mg-Fe) ternary diagram showing compositional variations of pyroxenes
from the Sasa Pb-Zn-Ag skarn deposit. End members are Di = diopside, Hd = hedenbergite, and
Jo = johannsenite.
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Table 2. Semi-quantitative composition of sulfides from the Sasa Pb-Zn-Ag skarn deposit. n—number
of point analyses per sample; <d.l.—below detection limit; STD—standard deviation.

Sample Mineralogy n Element Minimum Maximum Mean STD

Sasa-17 Galena 7 wt.%

Pb 77.76 82.26 80.23 1.52
Bi 4.02 4.69 4.36 0.23
Ag 0.02 0.62 0.16 0.21
In 0.15 0.31 0.21 0.06
S 12.12 12.57 12.37 0.18

Total 94.30 99.22 97.33 1.69

Sasa-17 Sphalerite 4

Zn 58.44 59.34 58.86 0.39
Fe 10.18 10.38 10.25 0.09
Mn 0.28 0.34 0.32 0.03
Cd 0.43 0.58 0.51 0.08
Cu <d.l. <d.l.
S 28.37 28.93 28.62 0.26

Total 97.85 99.55 98.56 0.79

Sasa-20 Galena 11

Pb 83.12 84.75 83.96 0.59
Bi 2.97 3.55 3.25 0.19
Ag <d.l. 0.77 0.36 0.27
In <d.l. 0.28 0.12 0.08
S 12.48 12.69 12.55 0.07

Total 99.33 101.13 100.25 0.59

Sasa-20 Sphalerite 12

Zn 57.56 59.95 58.85 0.92
Fe 5.11 5.83 5.47 0.34
Mn 0.43 0.47 0.45 0.01
Cd 0.45 0.66 0.55 0.07
Cu <d.l. 59.92 5.01 17.29
S 32.15 32.73 32.51 0.21

Total 96.53 98.89 97.88 0.81

Sasa-24 Galena 7

Pb 82.06 83.73 82.87 0.56
Bi 3.15 3.85 3.44 0.24
Ag 0.03 0.14 0.09 0.04
In 0.16 0.35 0.28 0.07
S 12.36 12.55 12.44 0.08

Total 98.47 100.25 99.11 0.68

Sasa-24 Sphalerite 4

Zn 55.21 57.95 56.39 1.17
Fe 9.76 10.48 10.02 0.32
Mn 0.35 0.43 0.39 0.03
Cd 0.58 0.63 0.61 0.02
Cu <d.l. 0.10 0.03 0.08
S 30.21 31.19 30.49 0.47

Total 96.24 100.50 97.92 1.83

4.5. Fluid Inclusion Studies

Fluid inclusions entrapped within skarn and hydrothermal minerals preserve information
about mineralizing fluids in a magmatic-hydrothermal system and reveal variations of
pressure–temperature–chemical composition (P–T–X) conditions over time. Fluid inclusion data
collected from pyroxenes, quartz and carbonates from the Sasa Pb-Zn-Ag skarn deposit are summarized
in Table 3.



Geosciences 2018, 8, 444 15 of 28

Table 3. Summary of the fluid inclusion data obtained from the Sasa Pb-Zn-Ag skarn deposit.
Px—pyroxene; Qtz—quartz; Cc—calcite; F—Degree of fill; L—Liquid phase; V—Vapor phase.

Mineralization
Type Prograde Retrograde Hydrothermal

Host Mineral Px Qtz Syn-ore Qtz Syn-ore Qtz Post-ore Cc Post-ore Cc
Fluid Inclusion

Type Primary Primary Primary Secondary Primary Secondary

Phases (at 25 ◦C) L+V L+V L+V L+V L+V L+V
F (at 25 ◦C) 0.6 0.7–0.8 0.7 0.8–0.9 0.7–0.8 0.9

Composition NaCl-CaCl2-
H2O

NaCl-MgCl2-
H2O

NaCl-MgCl2-
H2O or FeCl2-

H2O

NaCl-CaCl2-
H2O

NaCl-CaCl2-
H2O

NaCl-CaCl2-
H2O

Salinity
(wt% NaCl equ.) 7.5–9.6 9.3–10.9 3.9–9.1 4.2–6.3 4.8–8.8 2.2–2.9

Th (◦C) 403–433 237–390 240–394 125–239 242–297 130–145
Density (g/cm3) 0.5270.598 0.680–0.899 0.612–0.890 0.852–0.966 0.820–0.856 0.944–0.951

Primary fluid inclusions entrapped by pyroxene are usually found in isolated clusters or along
growth zones. The inclusions come in a variety of shapes, mostly elongated, squared and irregular.
Their size ranges from <2–20 µm. At room temperature, they contain liquid (L) and vapor (V) phases
and are characterized by a uniform degree of fill around 0.6 (Figure 12a,b). The eutectic temperature
(Te) recorded near −50 ◦C reveals NaCl and CaCl2 as the principal dissolved salts [49]. The final ice
melting temperature in the range between −6.3 ◦C and −4.7 ◦C corresponds to the salinity between
7.5–9.6 wt. % NaCl equ. [50]. Homogenization to liquid phase was obtained between 403–433 ◦C.
The calculated bulk density spans from 0.527–0.598 g/cm3. Secondary inclusions occur along healed
fractures. Their size of <2 µm precludes reliable microthermometric measurements.

Quartz associated with retrogradely altered skarn assemblages hosts visible primary fluid
inclusions. Primary fluid inclusions occur within clusters. They are mostly rounded or of irregular
shape and range in size up to 20 µm. At room temperature, these types of inclusions contain liquid and
vapor phases (Figure 12c). The eutectic temperature around −31 ◦C indicates that the mineralizing
fluids were enriched in MgCl2 [49]. The final ice melting temperature between −7.5 ◦C and −6.1 ◦C
corresponds to the apparent salinity between 9.3–10.9 wt. % NaCl equ. [50]. Homogenization to liquid
phase was recorded in the wide temperature range from 237–390 ◦C.

Syn-ore quartz entrapped primary fluid inclusions mostly along its growth zones. The inclusions
are two-phase (L and V), have irregular shapes and their size varies up to 25 µm. The degree
of fill is estimated around 0.7 (Figure 12d). The eutectic temperature around −35 ◦C suggests a
MgCl2-NaCl-H2O or FeCl2-H2O system [49]. The final ice melting temperature between −2.3 ◦C and
−5.9 ◦C points to the apparent salinity between 3.9–9.1 wt. % NaCl equiv. The total homogenization
by the vapor phase disappearance is recorded in the temperature interval between 240–394 ◦C. The
calculated fluid density spans from 0.665–0.858 g/cm3. Secondary inclusion trails crosscut mineral
grains and contain two-phase (L and V) inclusions of irregular shape with the degree of fill between
0.8 and 0.9 (Figure 12e). They entrapped moderate salinity fluids (4.2–6.3 wt. % NaCl equ.) and exhibit
homogenization into the liquid phase between 125–239 ◦C.

The post-ore stage of the mineral parageneses is characterized by deposition of a significant
amount of carbonates, predominantly calcite, and a minor amount of quartz. Primary inclusions in
post-ore carbonates commonly occur in isolated clusters and show negative crystal shapes. Their size
ranges from 5–50 µm. They contain two phases (L and V) and have the degree of fill between 0.7 and
0.8 (Figure 12f). Obtained microthermometric data indicate that post-ore minerals were deposited
from cooler CaCl2-NaCl-H2O solutions of moderate salinity (Te ≈ −52 ◦C; salinity = 4.8–8.8 wt. %
NaCl equiv; Th = 242−297 ◦C). Rare secondary inclusions revealed that diluted and relatively cold
fluids (salinity = 2.2–2.9 wt. % NaCl equiv; Th = 130–145 ◦C) were circulating in the area even when
the mineralizing processes had terminated.
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Figure 12. Photomicrographs of fluid inclusions from the Sasa Pb-Zn-Ag skarn deposit; (a) Primary
two-phase (L and V) fluid inclusions hosted along growth zones of hedenbergite; (b) Isolated primary
two-phase fluid inclusions in hedenbergite; (c) Primary two-phase (L and V) fluid inclusions hosted by
retrograde quartz; (d) Primary fluid inclusions hosted by syn-ore quartz; (e) Trail of secondary fluid
inclusions within syn-ore quartz; (f) Primary fluid inclusions hosted by post-ore calcite.

4.6. Stable Isotope Data

The δ13C and δ18O values obtained from different generations of calcite are listed in Table 4 and
shown in Figure 13. The barren host cipollino marble has δ13C and δ18O values of 1.4h V-PDB and
26.3h V-SMOW, respectively. Calcite associated with skarn mineral parageneses have δ13C values
between −7.4h and −7.2h V-PDB and δ18O values between 5.7h and 7.0h V-SMOW. Syn-ore and
post-ore hydrothermal calcite exhibit mostly overlapping δ13C and δ18O values in the range between
−6.4h and −4.1h V-PDB and 13.9h and 15.4h V-SMOW, respectively.
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Table 4. Carbon and oxygen isotope composition of calcite from the Sasa Pb-Zn-Ag skarn deposit.
V-SMOW = Vienna Standard Mean Ocean Water. V-PDB = Vienna Pee Dee Belemnite.

Sample Type of Mineralization δ13C (h. V-PDB) δ18O (h. V-SMOW)

Sa-1-C Cippolino marble 1.4 26.3
Sa-101 Altered skarn −7.4 5.7

Sa-101-1 Altered skarn −7.3 6.4
Sa-102 Altered skarn −7.2 7.0
Sa-103 Altered skarn −7.3 6.4
Sa-15 Hydrothermal ore −4.7 14.6

Sa-15-2 Hydrothermal ore −4.8 14.4
Sa-15-3 Hydrothermal ore −4.8 14.6
Sa-16-C Hydrothermal ore −5.1 14.7

Sa-17 Hydrothermal ore −6.0 14.3
Sa-17-0 Hydrothermal ore −5.6 15.4
Sa-17-1 Hydrothermal ore −5.8 14.7

Sa-17-M1 Hydrothermal ore −4.1 13.9
Sa-17-M2 Hydrothermal ore −4.2 13.9
Sa-17-C Hydrothermal ore −5.6 14.7
Sa-18-O Hydrothermal ore −6.4 8.3

Sa-19 Hydrothermal ore −6.0 14.4
Sa-19-C Hydrothermal ore −5.0 14.8
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5. Discussion

Geological, mineralogical and geochemical features of the Sasa Pb-Zn-Ag deposit classify this
deposit to the group of calcic Pb-Zn skarn deposits [45]. Although the mineralization is closely
associated with magmatic rocks, direct contacts between the mineralization and the magmatic rocks
are obscure (Figure 2), suggesting a distal character of the deposit and the interaction of mineralizing
fluids with the host carbonate rocks (cipollino marble) as the major mineralizing mechanism.

Geochemical features (trachytic to trachydacitic composition; calc-alkaline character; Na2O/K2O
< 1; high large-ion lithophile element to high field strength element ratios (LILE/HFSE); strong
enrichment in K, Pb and U) as well as their K/Ar age (31–24 Ma) suggest that magmatic rocks
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associated with the Sasa deposit are a product of the calc-alkaline to shoshonitic post-collisional
magmatism that affected the Balkan Peninsula during the Oligocene–Miocene period [21,23,38–41,53],
resulting in the formation of numerous magmatic–hydrothermal ore deposits along the Vardar Zone
and the Serbo-Macedonian Massif (Figure 1; [25–35,54]).

The paragenetic sequence (Figure 4) indicates that, during its formation, the Sasa Pb-Zn-Ag
deposit underwent three main stages similar to other known skarn deposits worldwide: (1) a stage
of isochemical metamorphism; (2) an anhydrous prograde stage and (3) a retrograde/hydrothermal
stage [1,55,56]. As the deposit is hosted by a highly metamorphosed terrain, it is difficult to distinguish
the regional metamorphic signature from the metamorphism associated with the emplacement of
Tertiary magmatic bodies. However, the isotopic composition of preserved lenses of the host marble
overlap with values typical for marine carbonates, suggesting that the metamorphism has not disturbed
its primary isotopic composition.

The prograde mineral assemblage is marked by the presence of anhydrous Ca-Fe-Mg-Mn silicates,
predominantly pyroxenes from the hedenbergite–johannsenite series. The predominance of anhydrous
minerals reflects a low water activity, whereas the prevalence of pyroxene (hedenbergite) over garnets
(andradite) suggests a high ferrous/ferric ratio and a relatively reductive environment [57]. Absence of
Fe-sulfides indicates a low sulfur fugacity during the prograde stage. Although our SEM/EDS analyses
(Table 1) revealed that pyroxenes are characterized by a relatively high and uniform FeO/MnO ratio,
previously published data [12,58] suggest greater variations in the pyroxene composition among
different ore bodies and local predomination of Mn-rich pyroxenes. The variations may be controlled
by periodical variations in the chemistry of infiltrating magmatic fluids:

CaCO3 (calcite) + 2 H4SiO4 + Fe2+
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In contrast to the carbonate component of the host cipollino marble that was replaced by

pyroxenes, grey mica has not been significantly affected by metasomatic processes during the prograde
stage of the mineralization, probably due to the insufficient water activity and a relatively high K+/H+
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2 KAl2(AlSi3O10)(OH)2 (kaolinite) + 3 H2O + 2 H+
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According to the fluid inclusion data, the prograde stage occurred at temperatures above 405 ◦C
and at pressures above 30 MPa under the influence of moderate salinity and low density Ca-Na-chloride
bearing aqueous fluids. The absence of liquid CO2 indicates that XCO2 was below 0.1 [61–63]. Due to
absence of any reliable independent geothermometer and/or geobarometer, only the minimum P-T
conditions can be set (Figure 14).

Textural relations (Figures 5, 8 and 9) indicate that pyroxenes were replaced by mixtures of
hydrous silicates, carbonates, quartz and magnetite, reflecting an increase in water activity and oxygen
and/or CO2 fugacities:

5 CaFeSi2O6 (hedenbergite) + H2O +3 CO2 (g)
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(5)



Geosciences 2018, 8, 444 19 of 28

CaFeSi2O6 (hedenbergite) + 2 H2O + CO2 (g)

Geosciences 2018, 8, x FOR PEER REVIEW  18 of 28 

 

associated with the Sasa deposit are a product of the calc-alkaline to shoshonitic post-collisional 

magmatism that affected the Balkan Peninsula during the Oligocene–Miocene period [21,23,38–41,53], 

resulting in the formation of numerous magmatic–hydrothermal ore deposits along the Vardar Zone 

and the Serbo-Macedonian Massif (Figure 1; [25–35,54]). 

The paragenetic sequence (Figure 4) indicates that, during its formation, the Sasa Pb-Zn-Ag 

deposit underwent three main stages similar to other known skarn deposits worldwide: (1) a stage 

of isochemical metamorphism; (2) an anhydrous prograde stage and (3) a retrograde/hydrothermal 

stage [1,55,56]. As the deposit is hosted by a highly metamorphosed terrain, it is difficult to 

distinguish the regional metamorphic signature from the metamorphism associated with the 

emplacement of Tertiary magmatic bodies. However, the isotopic composition of preserved lenses of 

the host marble overlap with values typical for marine carbonates, suggesting that the metamorphism 

has not disturbed its primary isotopic composition. 

The prograde mineral assemblage is marked by the presence of anhydrous Ca-Fe-Mg-Mn 

silicates, predominantly pyroxenes from the hedenbergite–johannsenite series. The predominance of 

anhydrous minerals reflects a low water activity, whereas the prevalence of pyroxene (hedenbergite) 

over garnets (andradite) suggests a high ferrous/ferric ratio and a relatively reductive environment [57]. 

Absence of Fe-sulfides indicates a low sulfur fugacity during the prograde stage. Although our 

SEM/EDS analyses (Table 1) revealed that pyroxenes are characterized by a relatively high and 

uniform FeO/MnO ratio, previously published data [12,58] suggest greater variations in the pyroxene 

composition among different ore bodies and local predomination of Mn-rich pyroxenes. The 

variations may be controlled by periodical variations in the chemistry of infiltrating magmatic fluids: 

CaCO3 (calcite) + 2 H4SiO4 + Fe2+ ↔ CaFeSi2O6 (hedenbergite) + 3 H2O + CO2 + 2 H+ (1) 

CaCO3 (calcite) + 2 H4SiO4 + Mn2+ ↔ CaMnSi2O6 (johansennite) + 3 H2O + CO2 + 2 H+ (1) 

and/or in local temperature oscillations: 

CaFeSi2O6 (hedenbergite) + Mn2+ ↔ CaMnSi2O6 (johannsenite) + Fe2+ 

rH25 °C, 1atm = −7 kJ/mole * 

(2) 

* Calculated for standard conditions using thermodynamic data published by [59,60]. 

In contrast to the carbonate component of the host cipollino marble that was replaced by 

pyroxenes, grey mica has not been significantly affected by metasomatic processes during the 

prograde stage of the mineralization, probably due to the insufficient water activity and a relatively 

high K+/H+ molar ratio: 

2 KAl2(AlSi3O10)(OH)2 (kaolinite) + 3 H2O + 2 H+ ↔ 3 Al2Si2O5(OH)4 (mica) + 2 K+ (3) 

According to the fluid inclusion data, the prograde stage occurred at temperatures above 405 °C 

and at pressures above 30 MPa under the influence of moderate salinity and low density Ca-Na-

chloride bearing aqueous fluids. The absence of liquid CO2 indicates that XCO2 was below 0.1 

[61–63]. Due to absence of any reliable independent geothermometer and/or geobarometer, only the 

minimum P-T conditions can be set (Figure 14). 

Textural relations (Figures 5, 8 and 9) indicate that pyroxenes were replaced by mixtures of 

hydrous silicates, carbonates, quartz and magnetite, reflecting an increase in water activity and 

oxygen and/or CO2 fugacities: 

5 CaFeSi2O6 (hedenbergite) + H2O + 3 CO2 (g) ↔ Ca2Fe5Si8O22(OH)2 (ferroactinolite) + 3 

CaCO3 (calcite)+ 2 SiO2 (quartz) 
(4) 

CaFeSi2O6 (hedenbergite) + 2 H2O + CO2 (g) ↔ Ca2Fe3(SiO4)3(OH) (piemontite) + CaCO3 

(calcite) + 3 SiO2 (quartz) + 3 H+ 
(5) 

Ca2Fe3(SiO4)3(OH) (piemontite) +
CaCO3 (calcite) + 3 SiO2 (quartz) + 3 H+ (6)
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Although minerals formed during the prograde phase do not incorporate Al, the retrograde
mineral paragenesis contains aluminosilicates (mostly chlorites and epidote group minerals). The
presence of carbonates points to near-neutral pH conditions and a limited capability for hydrothermal
transport of aluminum [64]. However, layers of grey mica within the host cipollino marble might have
served as a local source of Al:

15 CaMgSi2O6 (dioside) + 2 KAl2(AlSi3O10)(OH)2 (mica) + 5 H2O + 15 CO2 + 10 H+
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6 CaFeSi2O6 (hedenbergite) + 2 KAl2(AlSi3O10)(OH)2 (mica) + H2O
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The stable isotope composition of the carbonates revealed a significant contribution of magmatic
CO2 during the retrograde stage of the Sasa deposit (Figure 13). The fluid inclusion studies suggest
that infiltrating fluids were Mg-Na-chloride or Fe2+-chloride solutions. Their salinities are slightly
greater compared to the prograde fluids and the homogenization temperatures point to the gradual
cooling of the system. The coexistence of rhodonite, rhodochrosite and quartz implies that temperature
and pressure did not exceed 375 ◦C and 200 MPa (Figure 14). Cooling of the system below 400 ◦C
resulted with the ductile-to-brittle transition [65–67], promoted reactivation of old (pre-Tertiary) faults
and shifted the system from the lithostatic to hydrostatic regime. Such conditions allowed progressive
infiltration of ground water and therefore increased the water activity and oxygen fugacity. At the
same time, due to the lithostatic to hydrostatic transition, the pressure dropped by approximately
2.7 times, triggering a more efficient degassing of the emplaced magmatic body and increasing fugacity
of numerous volatiles including H2O, CO2, H2S and/or SO2. The progressive contribution of magmatic
CO2 has been recognized from the retrograde mineral paragenesis (Equations (5)–(9); Figure 4), as well
as from the isotopic composition of associated carbonates (Table 4; Figure 13). As Cl preferentially
partitions into the fluid phase [68,69], fluxes of magmatic fluids will increase the total salinity of the
circulating fluids. This increase in the salinity during the retrograde stage has been recorded by fluid
inclusions entrapped by retrograde quartz, i.e., quartz that crystallized as the retrograde alteration
product after prograde pyroxenes (Figure 15). The greater salinity promoted the metal–chloride
complexing which, together with the higher water activity in the system, enhanced the hydrothermal
transport of base metals, including Pb and Zn [64], and moved the Sasa deposit to the hydrothermal
ore-forming stage (Figure 4).

The retrograde stage is marked by an increase in the sulfur fugacity that resulted in a replacement
of Fe-silicates, mostly hedenbergite, by pyrrhotite during the early retrograde stage and by pyrite
during the later retrograde stage and the hydrothermal stage (Figure 4). The previously published
sulfur isotope data show that sulfur is predominantly magmatic in origin [70]. The textural features
also point to a slight time lag between intensive degassing of magmatic CO2 and S-bearing volatiles,
probably controlled by the difference in solubility of CO2 and S in silicate melts [71].
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Figure 14. Pressure–temperature (P–T) diagram showing the ranges of isochores obtained from fluid
inclusions that host prograde fluids (primary fluid inclusions in pyroxene), retrograde fluids (primary
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synore quartz), hydrothermal/post-ore fluids (primary fluid inclusions in post-ore calcite) and a very
late hydrothermal (secondary) fluid inclusion in post-ore calcite. The trapping conditions for the
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The isotopic composition of hydrothermal carbonates reflects diminishing influence of magmatic
CO2 and more significant contribution of the host cipollino marble (Figure 13). The fluid inclusions
studies revealed that the syn-ore mineralization was deposited from Mg-Na-chloride or Fe2+-chloride
hydrothermal fluids. The wide range of recorded homogenization temperatures, together with the
variable salinities (Figure 15), suggest cooling under the influence of cold ground waters as a plausible
mechanism for the ore deposition:

PbCl2 (aq) + H2S (aq)
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However, neutralization of the mineralizing fluids in reactions with host carbonates contributed
to the ore deposition (Figure 16):

PbCl2 (aq) + H2S (aq) + 2 CaCO3
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The post-ore stage is marked by the abundant deposition of calcite, revealing near-neutral pH
conditions. The isotopic composition of post-ore carbonates overlaps with the values obtained from
syn-ore carbonates (Figure 13). The fluid inclusion data suggest deposition temperatures below 300 ◦C
from relatively diluted Ca-Na-Cl-bearing fluids.

6. Comparison with Other Distal Pb-Zn-Ag Skarn Deposits

The mineralization at the Sasa Pb-Zn-Ag deposit shows many distinctive features typical of
base metal skarn deposits including: (1) a carbonate lithology as the main immediate host of the
mineralization; (2) a close spatial relation between the mineralization and magmatic bodies of an
intermediate composition; (3) a presence of the prograde anhydrous Ca-Fe-Mg-Mn-silicate and the
retrograde hydrous Ca-Fe-Mg-Mn ± Al-silicate mineral assemblages; (4) a deposition of base metal
sulfides, predominately galena and sphalerite, during the hydrothermal stage; and (5) a post-ore stage
characterized by the deposition of a large quantity of carbonates [62,72,73].

However, mineralogical, geochemical and isotope characteristics of the Sasa Pb-Zn-Ag deposit
differ in some details from similar deposits elsewhere, including the Trepca Pb-Zn-Ag deposit which
represents a product of the same magmatic event (Figure 2; [31]):

(1) Although the prograde mineralization of the Sasa Pb-Zn-Ag deposit can be described as a
Ca-Fe-Mg-Mn-system, the retrograde mineralization shows a significant hydrothermal input
of Al, plausibly reflecting a contribution of the aluminosilicate component within the host
cipollino marble.

(2) Prograde skarn mineralization of the great majority of skarn deposits indicates a dominance
of high temperature hypersaline magmatic fluids, whereas the later retrograde stage usually
reflects mixing with lower temperature and lower salinity fluids of a meteoric origin [4,62,72,
73]. However, fluid inclusions and stable isotope data obtained from the retrograde mineral
assemblage of the Sasa Pb-Zn-Ag deposit suggest that in this deposit, magmatic fluids played a
significant role during the retrograde stage.

(3) The transition from the prograde to the retrograde stage in different skarn deposits can be
triggered by various reasons, including brecciation [31] and reactivation of old fractures [62].
In the Sasa Pb-Zn-Ag deposit, the transition was initiated by cooling of the system below 400 ◦C
and the resulting ductile-to-brittle transition.

7. Conclusions

The geological setting of the Sasa Pb-Zn-Ag skarn deposit and previously published geochemical
studies on the associated magmatic rocks (trachytic to trachydacitic composition; calc-alkaline
character; Na2O/K2O < 1; high LILE/HFSE ratios; strong enrichment in K, Pb and U; the K/Ar age of
31–24 Ma) suggest that the Sasa deposit is a product of the calc-alkaline to shoshonitic post-collisional
magmatism that affected the Balkan Peninsula during the Oligocene–Miocene period and resulted
in formation of numerous magmatic-hydrothermal ore deposits along the Vardar Zone and the
Serbo-Macedonian Massif.

The relatively simple, pyroxene-dominated, prograde mineralization at the Sasa Pb-Zn-Ag skarn
deposit resulted from an interaction of magmatic fluids with the host cipollino marble. The absence
of direct contacts between the mineralization and the magmatic rocks as well as the textural features
of the skarn paragenesis reflect the infiltration-driven metasomatism. Obtained mineralogical and
geochemical data suggest that the prograde stage occurred under conditions of low water activity,
low oxygen, sulfur and CO2 fugacities and a high K+/H+ molar ratio. Fluid inclusion data set the
minimum P–T conditions at 30 MPa and approximately 405 ◦C. Mineralizing fluids were moderately
saline and low density Ca-Na-chloride bearing aqueous solutions.

The transition from the prograde to the retrograde stage was initiated by cooling of the system
below 400 ◦C and the associated ductile-to-brittle transition that shifted the system from the lithostatic
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to hydrostatic regime. The retrograde mineral assemblages reflect conditions of a high water activity,
high oxygen and CO2 fugacities, a gradual increase in the sulfur fugacity and a low K+/H+ molar ratio.
The isotopic composition of retrograde carbonates revealed a significant contribution of magmatic
CO2. Infiltration fluids carried MgCl2 and had a slightly higher salinity compared to the prograde
fluids. The maximum formation conditions are set to 375 ◦C and 200 MPa.

The deposition of ore minerals (predominantly Bi, In and Ag- enriched galena and Fe and
Mn-bearing sphalerite) occurred during the hydrothermal phase under a diminishing influence of
magmatic CO2. The mixing of ore-bearing (Mg-Na-chloride or Fe2+-chloride) aqueous solutions with
cold and diluted ground waters is the most plausible reason for the destabilization of metal–chloride
complexes. However, neutralization of relatively acidic ore-bearing fluids in the interaction with the
host lithology could have significantly contributed to the deposition.

The post-ore, predominantly carbonate, mineralization was deposited from diluted
Ca-Na-Cl-bearing fluids of a near-neutral pH composition. The depositional temperature is estimated
to be below 300 ◦C.

Author Contributions: Conceptualization, S.S.P., Z.P. and L.P.; Data curation, S.S.P., G.T., D.Š., K.R., J.E.S. and
K.N.; Formal analysis, D.Š., K.R., J.E.S. and K.N.; Funding acquisition, S.S.P. and L.P.; Methodology, S.S.P., J.E.S.
and K.N.; Project administration, S.S.P.; Resources, Z.P., G.T. and T.S.; Supervision, S.S.P. and L.P.; Validation, T.S.,
K.N. and L.P.; Visualization, S.S.P., Z.P., D.Š. and K.R.; Writing–original draft, S.S.P.; Writing–review and editing,
Z.P., G.T., T.S., D.Š., K.R., J.E.S., K.N. and L.P.

Funding: The early stages of this study were conducted as a part of the project “Geochemical characteristics of
hydrothermal ore deposits in the Republic of Macedonia” funded by Croatian Ministry of Science, Education and
Sport and Macedonian Ministry of Science. The final part of the study was funded by the project A31566 at UiT
The Arctic University of Norway.

Acknowledgments: We would like to thank the staff at the Sasa mine, Makedonska Kamenica, for all their support
during the multiple sampling campaigns. Matteus Lindgren is greatly appreciated for help in obtaining the stable
isotope data. A special thank goes to Vasilios Melfos and Panagiotis Voudouris for handling the manuscript as
well as to three anonymous reviewers whose comments substantially improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Meinert, L.D.; Hedenquist, J.W.; Satoh, H.; Matsuhisa, Y. Formation of anhydrous and hydrous
skarn in Cu-Au ore deposits by magmatic fluids. Econ. Geol. 2003, 98, 147–156.
Available online: https://pubs.geoscienceworld.org/segweb/economicgeology/article-abstract/98/1/
147/22314/formation-of-anhydrous-and-hydrous-skarn-in-cu-au?redirectedFrom=fulltext (accessed on
28 September 2018). [CrossRef]

2. Baker, T.; Van Achterberg, E.; Ryan, C.G.; Lang, J.R. Composition and evolution of ore
fluids in a magmatic-hydrothermal skarn deposit. Geology 2004, 32, 117–120. Available
online: https://pubs.geoscienceworld.org/gsa/geology/article-abstract/32/2/117/103697/composition-
and-evolution-of-ore-fluids-in-a?redirectedFrom=fulltext (accessed on 28 September 2018). [CrossRef]

3. Shu, Q.; Lai, Y.; Sun, Y.; Wang, C.; Meng, S. Ore genesis and hydrothermal evolution of the Baiyinnuo’er
zinc-lead skarn deposit, northeast China: Evidence from isotopes (S, Pb) and fluid inclusions. Econ. Geol.
2013, 108, 835–860. Available online: https://pubs.geoscienceworld.org/segweb/economicgeology/article-
abstract/108/4/835/128539/ore-genesis-and-hydrothermal-evolution-of-the?redirectedFrom=fulltext
(accessed on 28 September 2018). [CrossRef]
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for ore-forming processes. Geol. Croat. 2016, 69, 121–142. Available online: http://www.geologia-croatica.
hr/ojs/index.php/GC/article/view/GC.2016.10 (accessed on 28 September 2018). [CrossRef]
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