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Solutions and comments on 101.I, 101.J, 101.K, 101.L (November 2017).

101.I (Michel Bataille)
Let  be the side-lengths of a triangle ,  its inradius and  its

circumradius.  Prove that
a, b, c ABC r R

2r
R

≤
a (b + c − a) + b (c + a − b) + c (a + b − c)

a + b + c
≤ 1.

This refinement of Euler's inequality  was clearly enjoyed by
solvers.  The right-hand inequality is quick to establish: the AM-GM
inequality shows that

R ≥ 2r

a (b + c − a) + b (c + a − b) + c (a + b − c)

≤ 1
2 (b + c + c + a + a + b)

= a + b + c,
as required.

Solvers used a variety of methods for the harder left-hand inequality.
The shortest proofs were trigonometric ones along the following lines.

From the half-angle formula , since

.  The left-hand inequality is thus equivalent to 

cos
A
2

=
s (s − a)

bc
=

a (s − a)
4Rr

abc = 4Rrs

2Rr
s (cos

A
2

+ cos
B
2

+ cos
C
2 ) ≥

2r
R

or .cos
A
2

+ cos
B
2

+ cos
C
2

≥
s
R

This result can be found in the literature.  Martin Lukarevski proved it
as follows:

By the AM-GM inequality 
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since .s = 4R cos A
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It then suffices to show that  or ; but this is

immediate from Jensen's inequality: 
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= sin A + sin B + sin C ≤ 3 sin (A + B + C
3 ) =

3 3
2

.

Correct solutions were received from: S. Dolan, M. G. Elliott, GCHQ Problem Solving Group,
G. T. Q. Hoare, G. Howlett, A. Li, M. Lukarevski (2 solutions), J. A. Mundie, P. Nüesch,
V. Schindler, I. D. Sfikas, G. B. Trustrum, L. Wimmer (2 solutions) and the proposer Michel
Bataille.
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