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Abstract. In this research, the connection between some mathematical topics as combinatorics, congruency and 

algebra groups and their application in music and music production will be emphasized.  We will make a 

demonstration of the mathematical techniques applied in dodecaphony (twelve-tone music) – specific technique 

of composing music, in which by the help of mathematical matrix, an equal importance is given to all the 12 

tones in the chromatic scale. 
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        Introduction 

        The application of mathematics in other sciences and disciplines is enormous. A lot of people ask them, 

and are probably wondering if there is mathematics in the music or music in the mathematics. Sounds 

interesting, doesn’t it? But it’s not simple. Mathematics is everywhere, obvious or not. The researches have 

shown that although seemingly different, these two disciplines are connected for more than two thousand years. 

The music is really very mathematical, and the mathematics is characteristically for lot of basic ideas in the 

theory of music (See: [2], [3], [4], [7]). The music theoreticians, as experts in other disciplines, used 

mathematics to develop, express and transfer their ideas. In this research, will be emphasized the connection 

between some mathematical topics as combinatorics, congruency and algebra groups and their application in 

music and music production. We will make a demonstration of the mathematical techniques applied in the 

twelve-tone music - a specific technique of composing music, in which by the help of mathematical matrix, 

equally important is given to all the 12 tones in the chromatic scale. Also, the reader can look at it [1], [4] [5] 

 

        Combinatorics 

 

 Let there be a finite set  An =  a1, a2 , a3 , … , an  whose elements could be persons, objects, plants, animals, 

numbers, signs, events. From the given finite set, variously ordered sets and subsets can be formed in different 

ways. In some of these sets, some elements can be repeated i.e. can show several times. For one set An =
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 a1, a2 , a3 , … , an  we say that is finite, if it is empty or if there is natural number n, so that to each element of 

the set A one unique element of the set {1,2,3,…,n} can be attached. 

       Part of the mathematics that studies the formation of these sets and subsets and the possible order and line 

of the elements is called combinatorics. 

Every ordering of the elements of one finite set in which no element repeats is called permutation without 

repetition. 

        The number of permutations without repetition of n elements is P n = n! 
 

        Transposition, inversion, retrograding 

 

Definition 2.1: Let n be an integer by module 12. The function  Tn : Z12 → Z12, given with 

 

Tn x = x + n (mod12) 

is called transposition for n. 

 

Example:  

Т4: 𝑍12 → 𝑍12 

𝑇4 5 = 5 + 4 = 9 

𝑇4 8 = 8 + 4 = 0 

𝑇4 10 = 10 + 4 = 2 

        For example, the transposition of the accord  0,4,7  for 7 steps is T7 0,4,7 =  7,11,2 .  In other words, the 

transposition of the sequences of note classes x for n semitones is the sequences T
n
(x), in which, each tone of 

that sequences is moved for n semitones. For example if  

 

x = 3 0 8  we get  T
4
(x) = 7 4 0. 

 

        Mathematically, the translation is in correspondence with the transposition. When we have repetition of the 

same sequences of note classes, it is regarded as a horizontal translation, and if we have vertical movement of 

the tones, in fact movement for several semitones, then it is a vertical translation. 

 

        Definition 2.2: Let n be an integer by module 12. The function In : Z12 → Z12, given with 

 

In x = −x + n mod12  
 is called inversion for n. 

 

        Example: Let    

𝐼5:𝑍12 → 𝑍12  

𝐼5 4 = −4 + 5 = 1 

𝐼5 8 = −8 + 5 = −3 = 9 

𝐼5 10 = −10 + 5 = −5 = 7 

For example, the inversion of the segment  0,0,4,4,7,7,4,5,5,2,2,11,11,7  around 0 would be  

 

I0 0,0,4,4,7,7,4,5,5,2,2,11,11,7 =  0,0,8,8,5,5,7,7,10,10,1,1,5  
 

The inversion I(x) of the sequences x transforms it in sequences, in which each member n from the sequences x 

replicates in 12-n. 

 

        For example for x = 3 0 8,   I(x) = 9 0 4. 
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        The sequences T
n
I(x) is considered as an inversion of x as well. For x = 3 0 8, we get  T

6
I(x) = 3 6 10. The 

inversion in music is in correlation with the horizontal or vertical symmetry in mathematics. The axis of 

symmetry in the horizontal symmetry will be the axis which goes through every tone of the sequences or the line 

of the staff, on the other hand, the axis at the vertical symmetry goes through the tact line or through some tone 

from the sequences. 

 

Definition 2.3: Retrograding R(x) for the sequences x is the sequences consisting of the members of x, in 

reverse order. 

 

For  x = 3 0 8,  R(x) = 8 0 3.  

For the operators T,I and R the following relations  are given:  

 T
12

 = e, T
n
R = RT

n
, T

n
I = IT

−n
, RI = IR, where e is an identical operator, it doesn’t change the tone or Т

0
. 

In the theory of groups, the operation T
n
(0 ≤ n ≤ 11) forms the cyclic group Z12. The operation R, together with 

the identical operator, forms the cyclic group Z2. The operations T and R are commutative. [4]  

        That means that we can say that there are 4 forms of the tone string. The basic form is the original form of 

the sequences of tones, transposition T
n
(x), inversion T

n
I(x) and retrograding form T

n
R(x). Finally, here we can 

add the retrograding inversion T
n
RI(x).  

 

       Congruency and musical scales 

 

For easier mathematical analysis of the musical compositions, there was a need of “translation” of the notes 

into mathematical language, i.e. correspondence between the pitch classes and the integers. The following 

“equation” of pitch classes and the numbers:  

                          

 C=0 

  C#=D♭=1 

  D=2 

  D#=E♭=3 

  E=4 

F=5 

F#=G♭=6 

G=7 

G#=A♭=8 

A=9 

A#=B♭=10 

This means, for example, when we discuss about the accord {C, E, G}, actually we analyze the set   {0 ,4, 7}. If 

we talk about the theme consisting of the following tones  

 

 C, C, E, E, G, G, E, F, F, D, D, B, B, G , 
 

that mathematically written with set of numbers is  0,0,4,4,7,7,4,5,5,2,2,11,11,7  These brackets very often are 

used in the music writings in order to emphasize the subordination of the notes. [2] 

        Congruency by module 12 is a segment of musical theory, where we use the numbers from 0 to 11 

(12 ≡ 0(mod12)). Choosing these elements will be presented with the help of the table: 
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+ 0 1 2 3 4 5 6 7 8 9 10 11 

0 0 1 2 3 4 5 6 7 8 9 10 11 

1 1 2 3 4 5 6 7 8 9 10 11 0 

2 2 3 4 5 6 7 8 9 10 11 0 1 

3 3 4 5 6 7 8 9 10 11 0 1 2 

4 4 5 6 7 8 9 10 11 0 1 2 3 

5 5 6 7 8 9 10 11 0 1 2 3 4 

6 6 7 8 9 10 11 0 1 2 3 4 5 

7 7 8 9 10 11 0 1 2 3 4 5 6 

8 8 9 10 11 0 1 2 3 4 5 6 7 

9 9 10 11 0 1 2 3 4 5 6 7 8 

10 10 11 0 1 2 3 4 5 6 7 8 9 

11 11 0 1 2 3 4 5 6 7 8 9 10 

 

From this table we can see the addition in this set is closed operation, so the set with these elements and the 

operation addition present a group and that is abelian (commutative) group. [4]   This group will be marked Z12, 

0 is a neutral element, inverse of  

i, 0 ≤ i ≤ 11 is the element 12 − i. 
         

        Definition 4.1: Group  G,∙  is set G, together with the operation„∙“, if the following conditions a fulfilled: 

i) G is closed above the operation „∙“, i.e.  a ∙ b ∈ G), (∀a, b ∈ G) 

ii) The operation „∙“ is associative, i.e.  a ∙ b ∙ c = a ∙ (b ∙ c), (∀a, b, c ∈ G) 

iii) There is a neutral element e ∈ G, than  e ∙ a = a ∙ e, (∀a ∈ G) 

iv) Each element a ∈ G has inverse element a−1, than  a−1 ∙ a = a ∙ a−1 = e 

 

 

        Twelve-tone music  

 

        At the beginning of the XX century, Arnold Shoenberg (1874-1951) created the twelve-tone technique for 

composing, method in which all 12 tones of the chromatic scale are equal to their appearance in the 

composition. This way of composing music, after its founding in the first half of the XX century, was continued 

by his students Anton Webern (1883-1945) Alban Berg (1885-1935), while in the 50’s of the XX century this 

technique of composing became very popular and widely used by Milton Babbitt (1916-2011), Luciano Berio 

(1925-2003), Pierre Boulez (1925-2016)…  

        In this method of creating music, there is no scales or tonal center and the consonance is nearly abandoned 

in favor of the combinatorics [7]. This presents one type of musical serialism which is construed of classes of 

notes, which, by forming tone series, create unique melodic and harmonic structures. The composition created 

with this 12-tone system, is made with the help of the row chart with 12 rows and 12 columns, where they have 

the following characteristics: firstly, each row and each column consists of all 12 notes only once, without 

repetition [7].  The first row is called basic row or prime row. It is filled by all 12 tones appearing precisely 

once, which means that it can be whichever sequences of 12 different tones with free order. The number of 

possible basic rows is 12! = 12 ∙ 11 ∙ 10 ∙ … ∙ 3 ∙ 2 ∙ 1, which is equal to 479 001 600 unique row forms. So, that 

is why great opportunities for composition appear.  

        The first column consists the sequences of notes received by inversion of the first row. That means that the 

inverse of the second row is the second column, i.e. to the i-row inverse is the i-column, for 0 ≤ i ≤ 11. The 
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rows are created with the help of transposition, which is construed with the help of the two elements that are on 

the position (1,1) and (2,1). From this, we can determine what type of transposition it is for the second row, so 

from (1,1) and (3,1) for the transposition of the third row etc. from (1,1) and (I,1) for the i-row, for 0 ≤ i ≤ 11.    
When the table is filled in this way, it can be noticed that the rows read from right to left are retrograding 

sequences, according to each row, and the columns read from down to up are retrograding inversion. 

    

        For example, let the sequences {C, A, G, D#, E, F, D, B, B♭, G#, C#, F#} be a substitute for the basic 

sequences of tones. We fill in the table according to the explained rule: 

 

 I
0 

I
9 

 

I
7 

I
3 

I
4 

I
5 

I
2 

I
11 

I
10 

I
8 

I
1 

I
6 

 

T
0 

C A G D# E F D B B♭ G# C# F# R
0 

T
3 

D# C B♭ F# G G# F D C# B E A R
3 

T
5 

F D C G# A B♭ G E D# C# F# B R
5 

T
9 

A F# E C C# D B G# G F B♭ D# R
9 

T
8 

G# F D# B C C# B♭ G F# E A D R
8
 

T
7 

G E D B♭ B C A F# F D# G# C# R
7 

T
10 

B♭ G F C# D D# C A G# F# B E R
10 

T
1 

C# B♭ G# E F F# D# C B A D G R
1 

T
2 

D B A F F# G E C# C B♭ D# G# R
2 

T
4 

E C# B G G# A F# D# D C F B♭ R
4 

T
11 

B G# F# D D# E C# B♭ A G C F R
11 

T
6 

F# D# C# A B♭ B G# F E D G C R
6 

 RI
0 

RI
9 

RI
7 

RI
3 

RI
4 

RI
5 

RI
2 

RI
11 

RI
10 

RI
8 

RI
1 

RI
6 

 

 

 

        Equivalent set to the basic sequences of tones from the example is the set 

{ 0, 9, 7, 3, 4, 5, 2, 11, 10, 8, 1, 6 }. 

This sequence is the first row in the table. The first column is created by its inversion. Hence, the elements from 

the first column will be the elements from the following set   

{ 0, 3, 5, 9, 8, 7, 10, 1, 2, 4, 11, 6 }. 

From the fact that on position (1,1) is to tone C and on position (2,1) is the tone D#, we get that the second row 

is a transposition for 3 semitones because D # =3, and C = 0, we have 0 + n = 3 (mod 12), from where we get 

that n=3. Now, we order the following tones in the second row, with transposition of each tone, accordingly. 

Similar to this, from the tone F = 5 on position (3,1), we get that the third row is created with translation for 5 

semitones, because from 0 + n = 5 (mod 12), we get that n = 5. The procedure is repeated to rows until filling all 

table. After filling of the whole table, it can be seen that each column is really the inversion of the according 

row, the first column to the first row, the second column is the inverse to the second row etc. In the same way, it 

is noticed that if we read the rows from right to left they a retrograding inversions to the rows and columns, 

reading them from down to up they are retrograding inversions of the according rows. 

        Analogically to the table, filled with tones, we have the table filled with numbers, from where we can 

clearly see that it in fact is an algebra group. 
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 I
0 

I
9 

 

I
7 

I
3 

I
4 

I
5 

I
2 

I
11 

I
10 

I
8 

I
1 

I
6 

 

T
0 

0 9 7 3 4 5 2 11 10 8 1 6 R
0 

T
3 

3 0 10 6 7 8 5 2 1 11 4 9 R
3 

T
5 

5 2 0 8 9 10 7 4 3 1 6 11 R
5 

T
9 

9 6 4 0 1 2 11 8 7 5 10 3 R
9 

T
8 

8 5 3 11 0 1 10 7 6 4 9 2 R
8
 

T
7 

7 4 2 10 11 0 9 6 5 3 8 1 R
7 

T
10 

10 7 5 1 2 3 0 9 8 6 11 4 R
10 

T
1 

1 10 8 4 5 6 3 0 11 9 2 7 R
1 

T
2 

2 11 9 5 6 7 4 1 0 10 3 8 R
2 

T
4 

4 1 11 7 8 9 6 3 2 0 5 10 R
4 

T
11 

11 8 6 2 3 4 1 10 9 7 0 5 R
11 

T
6 

6 3 1 9 10 11 8 5 4 2 7 0 R
6 

 RI
0 

RI
9 

RI
7 

RI
3 

RI
4 

RI
5 

RI
2 

RI
11 

RI
10 

RI
8 

RI
1 

RI
6 

 

 

        This is an example of a short melody with combination of sequences of tones from a few rows and 

columns: 

 

In this example we can see that besides the basic sequence of tones (from the original row), with which the 

main melody begins, there are a few other rows and columns. It means that besides Т
0
,  the  11th row R

11
 is 

taken, retrograding of the transposition Т
11

, the first column RI
0  

which is a retrograding inversion of the basic 
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(first) row, the sixth column RI
5
, retrograding inversion of the sixth row and the fourth column I

3
 inversion of 

the fourth row. 

 

        Conclusion   

 

  We can conclude that there is an application of mathematics in music. Mathematics helps in creation of 

music and in listening to music. With this research we show that by applying of mathematical combination of 

sequences of tones we can create music, which will sound beautifully and the same is very pleasant for listening. 

It shows that the transposition, inversion and retrograding in the music have some mathematical characteristics. 

We could say that mathematics as a science completes the music as art and they are in direct correlation. 
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