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Abstract
The Allchar Au-As-Sb-Tl deposit is situated in the western part of the Vardar zone, the main suture zone along 
the contact between the Adriatic and the Eurasian tectonic plates. It is spatially and temporally associated with 
a Pliocene (~5 Ma) postcollisional high-K calc-alkaline to shoshonitic volcano-plutonic center. 

The Allchar deposit shares many distinctive features with Carlin-type gold deposits in Nevada, including 
its location near a terrain-bounding fault in an area of low-magnitude extension and intense magmatism. The 
mineralization is mostly hosted in calcareous sedimentary rocks at intersections of high-angle faults in perme-
able stratigraphy. The alteration types (carbonate dissolution, silici�cation, and argillization), ore mineralogy 
(auriferous arsenian pyrite and marcasite, stibnite, realgar, orpiment, and lorandite), high Au/Ag ratios, and low 
base metal contents are also typical of Carlin-type gold deposits in Nevada. 

However, the Allchar deposit differs from Nevada Carlin-type gold deposits as follows: it is an isolated Au 
prospect with a close spatial and temporal relationship to a shoshonitic volcano-plutonic center in a mineral belt 
dominated by intrusion-related Cu-Au porphyry, skarn, and hydrothermal polymetallic deposits. The deposit is 
clearly zoned (proximal Au-Sb to distal As-Tl), it has a signi�cantly higher Tl content, trace elements in pyrite 
and marcasite are homogeneously distributed, and synore dolomitization is a widespread alteration type.

Gold mineralization is most abundant in the southern part of the deposit. It occurs mostly as invisible Au in 
disseminated pyrite or marcasite and as rare native Au grains. Gold mineralization is accompanied by intense 
decarbonatization and silici�cation. Fluid inclusions and the hydrothermal alteration mineral assemblage indi-
cate that Au was deposited from hot (>200°C), saline (up to ~21 wt % NaCl equiv), moderately acidic (pH <5) 
�uids that carried traces of magmatic H2S and CO2. In the calcareous host rocks, mixing of such �uids with cool, 
dilute, near-neutral groundwater triggered deposition of Au and Fe sul�des. In Tertiary tuff, isocon analysis 
shows that sul�dation of preexisting Fe minerals was a critical factor for deposition of Au and Fe sul�des. 

Antimony mineralization prevails in the central part of the deposit, and it is mostly associated with dark-gray 
to black jasperoid. Stibnite, the most common Sb mineral in the Allchar deposit, occurs as �ne-grained dissemi-
nations in jasperoid and as �ne- to coarsely crystalline masses that �ll vugs and fracture zones lined with drusy 
quartz. Fluid inclusions entrapped by stibnite-bearing jasperoid, quartz, and calcite crystals suggest that stibnite 
was deposited from more dilute and cooled �uids (aqueous-carbonic �uid inclusions: 6.0–3.5 wt % NaCl equiv, 
TH = 102°–125°C; aqueous �uid inclusions: 14.5 and 17.1 wt % NaCl equiv, TH = 120°–165°C). 

In contrast to stibnite, As sul�des (orpiment and realgar) and Tl mineralization are associated with argillic 
alteration. Fluid inclusions hosted by realgar, orpiment, dolomite, and lorandite record deposition from more 
dilute (2.6–6.9 wt % NaCl equiv) and relatively cold �uids (TH = 120°–152°C) enriched in K. Isocon diagrams 
show a tight link between Tl and the low-temperature argillic alteration as well as a signi�cant correlation 
between Tl and K. The spatial relationship of Tl mineralization with dolomite suggests that Tl deposition was 
also promoted by neutralization of acidic �uids. 

The δD and δ18O data obtained from gangue minerals and �uid inclusions indicate that magmatic �uid 
mixed with exchanged meteoric water at deep levels and with unexchanged meteoric water at shallow levels 
in the system. The δ13C and δ18O values of carbonate minerals and extracted �uid inclusions suggest mixing 
of carbonate rock buffered �uids with magmatic and atmospheric CO2. The sulfur isotope values of early dis-
seminated pyrite and marcasite show that H2S was initially derived from diagenetic pyrite in sedimentary rocks. 
In contrast, Sb and As mineralization indicate a strong input of magmatic H2S during the main mineralization 
stage. Late-stage botryoidal pyrite and marcasite are depleted in 34S, which indicates a diminishing magmatic 
in�uence and predominance of sulfur from sedimentary sources during the late-mineralization stage. Frac-
tionation of isotopically light sul�de species from isotopically heavy sulfates due to oxidation under increased 
oxygen fugacity cannot be excluded.
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Introduction
The Allchar Au-As-Sb-Tl deposit (also spelled Alshar and 
Alšar) is situated on the northwestern slopes of the Kožuf 
Mountains approximately 110 km southeast from Skopje, 
Republic of Macedonia (Fig. 1). Mining activities began ~800 
to 300 B.C. with the Ancient Greeks. In the 19th century, All-
char was an important source of As for the Ottoman Empire 
and in the mid-20th century it reopened as an Sb mine. Due 
to the elevated As content in the Sb concentrate, production 
ceased after fewer than 10 years. In 1980s and 1990s, the area 
was prospected for Tl and Au. In 1990, Percival reported a 
large Au anomaly in the central and southern portions of the 
deposit. Allchar is estimated to contain approximately 500 t 
of Tl, making it one of the largest Tl anomalies in the world 
(Janković and Jelenković, 1994; Percival and Radtke, 1994; 
Bačeva et al., 2014).

The deposit has distinctive features of Carlin-type gold 
deposits in Nevada such as (1) strong structural control of min-
eralization by faults and folds; (2) temporal and spatial associ-
ation with magmatism in an extensional setting; (3) calcareous 
sedimentary host rocks; (4) alteration types including decar-
bonatization, silici�cation, argillization, and sul�dation; (5) 

submicron gold in association with pyrite and marcasite; and 
(6) geochemical signatures of Au, As, Hg, Sb, and Tl (Radtke, 
1985; Hofstra and Cline, 2000; Muntean et al., 2011). How-
ever, it differs from Nevada Carlin-type gold deposits in sev-
eral ways, including the following: (1) it is signi�cantly smaller 
in size; (2) some of the mineralization is hosted in Tertiary 
tuff; (3) mineralization is spatially associated with shoshonitic 
magmatism; (4) there is a zonal distribution of metals in the 
deposit; (5) it includes homogeneous distribution of trace ele-
ments in Au-bearing pyrite and marcasite; (6) dolomitization 
is a widespread alteration type, especially in the northern part 
of the deposit; and (7) it has high Tl content.

This paper summarizes new and previously published data 
on the geotectonic evolution of the region, age constraints 
provided by alteration and mineralization in volcanic rocks, 
lithogeochemical characteristics of country rocks and min-
eralization, chemical composition of Fe-, Sb-, As-, and Tl 
sul�des, microthermometry of �uid inclusions, and stable iso-
topic compositions of ore and gangue minerals and entrapped 
�uid inclusions. These data are used to place Allchar into the 
metallogenic evolution of the region, determine the chemistry 
and origin of hydrothermal �uids and processes of mineraliza-
tion, and facilitate comparison to Carlin-type gold deposits in 
Nevada.

Geologic Setting

Regional geology

The Allchar Au-As-Sb-Tl deposit is situated in the western 
part of the Vardar zone, in close proximity to its contact with 
the Pelagonian crystalline basement (Fig. 1). The Vardar zone 
represents the main suture zone along the contact between 
the Adriatic and the Eurasian plate with elements of both 
continental and oceanic rock types (Karamata et al., 2000; 
Dimitrijević, 2001; Zelić et al., 2010; Robertson et al., 2013). 
It extends from northwest to southeast across the central part 
of the Balkan Peninsula and is situated between the Dina-
rides, Drina-Ivanjica terrain, Korab-Western Macedonian 
terrain, and Pelagonian crystalline basement on the west and 
the Serbo-Macedonian massif on the east (Fig. 1).

During the Late Permian to Middle Triassic, incipient rift-
ing affected metamorphosed Precambrian-Paleozoic terrains 
between the Pelagonian crystalline basement and the Serbo-
Macedonian massif. Rifting was followed by the development 
of a subsiding carbonate platform and formation of oceanic 
crust during Late Triassic-Early Jurassic time (Sharp and 
Robertson, 2006; Dilek et al., 2007; Robertson et al., 2013). 
The western (external) Vardar zone represents a complex zone 
that comprises ophiolites and ophiolitic mélange (Karamata 
et al., 1980). At several localities the ophiolitic masses, com-
posed of spinel lherzolite, harzburgite, and dunite, preserve 
evidence of metamorphic soles at their base. The K/Ar age 
between 160 and 123 Ma (Karamata et al., 2000) and Ar/Ar 
age between 175 and 170 Ma (Borojević Šoštarić et al., 2014) 
obtained from the metamorphic soles suggest emplacement 
of the ophiolites from Middle Jurassic to Early Cretaceous. 
The Jurassic-Cretaceous mélange of the western Vardar zone 
is composed of large blocks and fragments of Middle to Upper 
Triassic and Upper Jurassic limestones, terrigenous sediments 
(sandstone, graywacke), basalts, and cherts with Carnian to 
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Norian and Upper Jurassic radiolarians within an argillaceous 
to silty matrix (Sudar and Kovacs, 2006; Vasković and Matović, 
2010). In contrast, the eastern (internal) Vardar zone consists 
of weakly metamorphosed mélange of Jurassic age with pre-
dominantly basaltic fragments (Sudar and Kovacs, 2006, and 
references therein).

On the Balkan Peninsula, subduction-related igneous rocks 
of Upper Cretaceous age are exposed in the Timok Magmatic 
Complex and Ridanj-Krepoljin belt in eastern Serbia (Fig. 1; 
Janković, 1997; Karamata et al., 1997; von Quadt et al., 2005; 
Zimmerman et al., 2008). From the beginning of the Tertiary, 
the central Balkan Peninsula was affected by collisional to 
transpressive deformation followed by several postcollisional 
episodes of extension (Cvetković et al., 2004). 

Postcollisional igneous rocks of Oligocene-Pliocene age 
(29.0–1.8 Ma) occur at numerous localities along the Vardar 
zone in Serbia, Kosovo, Macedonia, and Greece (e.g., Kolios 
et al., 1980; Janković et al., 1997, Cvetković et al., 2004; Yanev 
et al., 2008, Lehmann et al., 2013). Magmatism occurred 
in an extensional tectonic setting and was accompanied by 
widespread hydrothermal activity that produced numerous 
porphyry, skarn, hydrothermal polymetallic replacement, and 
vein deposits (Fig. 1; Janković, 1995; Veselinović-Williams, 
2011; Borojević Šoštarić et al., 2013; Lehmann et al., 2013; 
Strmić Palinkaš et al., 2013).

Geology of the Kožuf massif

The Kožuf massif (Voras massif in Greece; Fig. 2) is situ-
ated on the border between the Republic of Macedonia and 
Greece. In the east, it occurs in fault contact with the Demir 
Kapija-Gevgelija ophiolite complex (Fig. 2). In the west, it is 
in fault contact with the Pelagonian massif (Fig. 1). The Kožuf 

massif basement is at least partly composed of Precambrian 
gneisses and marbles (Fig. 2) that are conformably overlain by 
Paleozoic metasedimentary rocks—mostly phyllites, schists, 
metasandstones, and marbles. The Mesozoic metasedimen-
tary complex comprises Triassic marbles, dolostones, and 
shales; Jurassic schists, quartzites, and cherts; and Cretaceous 
limestones and conglomerates. Upper Eocene basal conglom-
erates are overlain by �ysch sediments, late Miocene to Pleis-
tocene shoshonitic volcanic rocks (Yanev et al., 2008), and 
Pliocene lacustrine sediments (Rakičević and Pendžerkovski, 
1970; Mercier, 1973; Boev, 1988). 

Geology of the Allchar Au-As-Sb-Tl deposit

The Allchar Au-As-Sb-Tl deposit is hosted by the Meso-
zoic metasedimentary complex and unconformable Tertiary 
volcanic and carbonate rocks (Fig. 3; Ivanov, 1965; Percival 
and Radtke, 1994). The southwestern �ank of the district is 
bordered by tectonically emplaced Jurassic ophiolites and 
ophiolitic mélange (Fig. 2). The Mesozoic metasedimentary 
complex comprises Triassic marble, dolomite, and schists that 
are products of regional greenschist facies metamorphism. 
Marble is the most abundant pre-Tertiary rock in the district 
and consists of gray-white to bluish-gray, �ne- to medium-
grained equigranular calcite intercalated with minor detrital 
material. The dolomite is gray-white to tan, �ne to medium 
grained, and locally recrystallized to dolomitic marble. The 
schists vary in their composition from quartz-sericite and 
chloritic schists to graphitic schists. They are well exposed in 
the eastern part of the deposit (Percival and Radtke, 1994).

Tertiary dolomite is usually massive to �ne grained, and it 
lies above the Eocene unconformity on Mesozoic metasedi-
mentary rocks (Fig. 3; Percival and Radtke, 1994). The 
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unconformity is a zone with silt- to cobble-sized rocks of mixed 
characteristics. This porous and permeable zone is often 
altered and variably mineralized. The dolomite was deposited 
in a lacustrine basin and contains dispersed and intercalated 
tuffaceous debris. Numerous lacustrine basins were formed 
as a result of Miocene extensional tectonism in other areas 
underlain by carbonate and ultrama�c rocks along the Vardar 
zone (Ilić Jr., 1988; Dumurdzanov et al., 2004; Jurković et al., 
2012). Pliocene tuffaceous volcanic and volcaniclastic rocks 
overlie Tertiary dolomite and Mesozoic metasedimentary 
rocks (Fig. 3; Percival and Radtke, 1994).

Hypabyssal intrusions cut the Mesozoic and Tertiary rocks, 
except the Pliocene tuffaceous units that are probably con-
temporaneous with the intrusions. The intrusions are typically 
porphyritic and intensely altered. They range in composition 
from latite to andesite and commonly contain signi�cant 
amounts of sul�des. Similar hydrothermally altered intrusions 
occur in the underground antimony and arsenic-thallium 
mines (Fig. 3; Percival and Radtke, 1994).

N-, NW-, and NE-trending, steeply dipping fault sets in the 
Allchar deposit (Fig. 2) are characterized by sheared, brecci-
ated, and fractured wall rocks, stratigraphic juxtaposition, and 
topographic discontinuities and are commonly the locus of 
intense hydrothermal alteration and variable sul�de deposi-
tion. The Majdan River fault zone and associated N-trending 
structures (Fig. 2) located to the west of the antimony mines 
are de�ned by a major topographic discontinuity between per-
vasively altered and mineralized cliff-like outcrops of carbon-
ate rocks to the east and glacial till-covered, low-relief, rolling 
hills to the west. This structure is believed to have originated 
from north-south strike-slip movement along the Vardar zone. 
The NW- and NE-trending structures formed as dilational con-
jugate sets of faults in response to the north-south shearing. 
These faults are the most intensely brecciated and crackled car-
bonate rocks in the district and provided permeability and open 
spaces that facilitated movement of hydrothermal �uids.

Hydrothermal alteration

In the Allchar deposit, hydrothermal alteration is widespread 
and has a zonal distribution relative to the mineralization (Fig. 
3). The principal alteration types include (1) carbonate dis-
solution (decarbonatization), (2) silici�cation, (3) argillization, 
(4) dolomitization, (5) sul�dation, and (6) supergene altera-
tion of sul�de minerals (Janković, 1993; Percival and Radtke, 
1993a, 1994).

Carbonate dissolution (decarbonatization) represents the 
earliest type of hypogene alteration. It affected Triassic and 
Tertiary carbonate rock types, resulting in the removal of 
calcite and dolomite with resultant increases in porosity and 
permeability. Decarbonatization is typically accompanied by 
silici�cation and argillization, and it exhibits a lateral transi-
tion from fresh to bleached, partially altered, and completely 
altered rocks. In places, Tertiary dolomite was decarbon-
atized without accompanying silici�cation. Decarbonatization 
resulted in dissolution of the �ne-grained carbonate matrix, 
leaving predominantly granular dolomite sand, iron oxides, 
jarosite, and greenish to yellowish unidenti�ed secondary 
minerals. Similar textures have been described in other Car-
lin-type deposits hosted in dolomite (e.g., Hofstra and Cline, 
2000; Cline et al., 2003, 2005).

Pervasive silici�cation occurs in both pre-Tertiary and 
Tertiary rocks, and its intensity varies from weak to total 
replacement (jasperoid). Jasperoidal silici�cation is typically 
composed of dark-gray to black, �ne-grained, dense, micro-
crystalline quartz exhibiting xenomorphic and jigsaw textures 
that thoroughly obliterate original textures. Less silici�ed 
rocks contain varying proportions of argillic clays and sericite 
mixed with microcrystalline quartz that are crosscut by quartz 
veinlets containing disseminated pyrite, marcasite, and rare 
crystalline masses of stibnite, realgar, and barite. This type 
of silici�cation is most prevalent in the tuffaceous volcanic 
rocks and volcaniclastic horizons in the Tertiary carbonate 
sequence.

Argillic and sericitic alterations are voluminous and occur in 
volcanic and sedimentary rocks. Alteration is pervasive adja-
cent to faults and silici�ed zones and is strong in the Tertiary 
tuffs and tuffaceous dolomites. Argillic assemblages typically 
envelope silici�ed zones decreasing in intensity with increas-
ing distance from silici�cation (Fig. 3). X-ray diffraction stud-
ies of the clay-altered rocks indicate that they contain varying 
proportions of the following minerals: kaolinite, sericite, illite-
group minerals (including celadonite), hydromicas, pyrophyl-
lite, and subordinate chlorite (Percival and Radtke, 1994). 

Dolomitization of Triassic marble is spatially associated 
with mineralization (Fig. 3). Dolomitized rocks are typically 
lighter colored than the host marble and transitionally grade 
into undolomitized marble (Percival and Radtke, 1994). 

Supergene alteration is widespread and typical of humid 
environments. Pyrite and marcasite are replaced by Fe oxides 
and hydroxides; As, Sb, and Tl sul�des form oxides; and igne-
ous and sedimentary rocks are converted to mixtures of sec-
ondary clay minerals.

Mineralization

Mineralization in the Allchar deposit is zoned (Fig. 3). The 
southern part of the deposit is characterized by signi�cant 
amounts of siliceous Au mineralization. The Au content 
decreases northward. In the central part of the deposit, Sb-
bearing jasperoid prevails. The northernmost part of the 
deposit is characterized by As- and Tl-bearing minerals in 
strongly altered rocks.

Gold mineralization is hosted in weakly to moderately silici-
�ed Tertiary tuffs and Triassic marbles (Fig. 4A). Silici�ed 
ore contains �nely disseminated pyrite with minor amounts 
of stibnite, marcasite, and realgar. Gold occurs as submicron 
invisible Au in disseminated pyrite or marcasite (Fig. 4B) or 
as rare native micron-sized grains (Fig. 4C). Gold grades are 
variable and commonly vary from 0.5 to 10 g/t Au (Percival 
and Radtke, 1994).

Stibnite-bearing jasperoids were mined extensively for 
their Sb content (Janković, 1979). The jasperoids are dark-
gray to black and are composed of �ne-grained, mosaic-tex-
tured microcrystalline quartz (Fig. 5A). Most jasperoids are 
fractured and brecciated and contain veinlets and irregular 
masses of coarser crystalline, gray to white quartz. The micro-
crystalline quartz matrix contains �nely disseminated sul�des 
(1–5%), �ne-grained sericite, and silici�ed host-rock clasts 
containing sericite and sul�des. Pyrite is commonly the most 
abundant sul�de mineral. It occurs as �ne (<0.5 mm) dissemi-
nated grains, larger (>0.5 mm) subhedral to euhedral crystals, 



340 STRMIĆ PALINKAŠ ET AL.

and aggregates of coarse-grained crystals. Sparse, �nely crys-
talline arsenopyrite, marcasite, and stibnite are also present 
(Fig. 5B). The later coarse sul�de stage is characterized by 
coarse-grained sul�de minerals occurring as linings and in�ll-
ings of open spaces in breccia and fracture zones within jas-
peroidal silica. Marcasite and pyrite occur in banded veins 
and as botryoidal masses (Fig. 5C). Late stibnite occurs as 
�ne to coarsely crystalline masses, acicular crystals �lling vugs 
and fractures, and breccia cement (Fig. 5D). Paragenetically 
late realgar occurs as distinct crystals, crystallized aggregates, 
masses, and overgrowths on all other minerals (Fig. 5E). 
The stibnite-bearing jasperoids commonly contain from 1 to 
3 g/t Au, and locally the Au content exceeds 20 g/t (Percival 
and Radtke, 1994).

The arsenic mineralization is hosted in argillized tuffs, in 
Tertiary dolomite, and rarely in Triassic carbonate rocks distal 
to the zones of jasperoidal silici�cation. Host rocks are per-
vasively altered to clays and sericite mixed with sul�des and 
subordinate hydrothermal silica. The sul�de minerals typi-
cally compose >10 and up to 50 vol % of the host rock (Fig. 
6A). The sul�de assemblage includes disseminated marcasite 
and pyrite associated with abundant �nely to coarsely crystal-
lized realgar and subordinate orpiment, stibnite, and minor 
thallium-bearing sulfosalt minerals (Fig. 6B). The Au content 
is typically lower than the siliceous mineralization and usually 
varies from <1 to 3 g/t (Percival and Radtke, 1994).

The Tl-bearing mineralization is hosted by carbonate 
and tuffaceous rocks in the northern portion of the deposit 

(Fig. 7A). The most prominent Tl mineralization is con-
centrated within the Crven Dol orebody (Ivanov, 1986; 
Janković, 1993; Janković and Jelenković, 1994). This part 
of the deposit is strongly affected by argillic alteration. The 
mineralization is composed of mixtures of orpiment, real-
gar, pyrite, marcasite, lorandite (TlAsS2), and rare Tl-bear-
ing sulfosalt minerals including vrbaite (Tl4Hg3Sb2As8S20), 
picopaulite (TlFe2S3), rebulite (Tl5Sb5As8S22), simonite 
(TlHgAs3S6), bernardite (Tl[As,Sb]5S8), raguinite (TlFeS2), 
parapierrotite (Tl[Sb,As]5S8), jankovićite (Tl5Sb9[As,Sb]4S22), 
weissbergite (TlSbS2), fangite (Tl3AsS4), dorallcharite 
(Tl0.8K0.2Fe3[SO4]2[OH]6), and thalliumpharmacosiderite 
(TlFe4[(AsO4)3(OH)4]⋅4H2O) (Pavićević and El Goresy, 
1988; Percival and Radtke, 1993b, 1994; Balić-Žunić et al., 
1994; Frantz et al., 1994; Cvetković et al., 1995; Rumsey et 
al., 2014). Sul�de and sulfosalt minerals typically occur as dis-
seminations and as fracture, open space, and breccia in�ll-
ings (Fig. 7B). Locally, As-Tl mineral assemblages occur as 
massive sul�de (>5–30 vol %) replacements in the carbonate-
bearing rock (Fig. 7; Percival and Radtke, 1994).

Analytical Methods
This paper presents new data on mineral chemistry, stable 
isotopes, and �uid inclusions from the Allchar Au-As-Sb-Tl 
deposit and combines them with previously published geochro-
nological data (Table 1; Kolios et al., 1980; Jakupi et al., 1982; 
Lippolt and Fuhrmann, 1986; Boev, 1988; Troesh and Frantz, 
1994; Neubauer et al., 2009; Strmić Palinkaš et al., 2012), 

1 mA
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Py

Py

100 µmC

Au

Au

Fig. 4.  (A) Silici�ed Tertiary tuff in the southern part of the Allchar Au-As-Sb-Tl deposit. (B) Re�ected-light photomicro-
graph of the siliceous Au mineralization. Gold occurs as invisible Au, usually as an enrichment in disseminated pyrite or 
marcasite. (C) Scanning electron photomicrograph of rare individual Au grains disseminated within silici�ed tuff. Abbrevia-
tions: Py = pyrite.
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Fig. 5.  (A) Hand specimen of jasperoid composed of 
�ne-grained, mosaic-textured microcrystalline quartz. (B) 
Re�ected-light photomicrograph of disseminated sul�de 
minerals hosted by jasperoid. (C) The later coarse-grained 
stibnite crystalized in open spaces of breccia and fracture 
zones within jasperoidal silica. (D) Scanning electron 
photomicrograph of sul�de minerals hosted by jasperoid. 
Late-stage sul�des are represented by botryoidal masses of 
marcasite and pyrite and coarse-grained stibnite crystalized 
in open spaces. (E) Distinct crystals of paragenetically late 
realgar. Abbreviations: Mrc = marcasite, Py = pyrite, Rlg = 
realgar, Sb = stibnite.
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Fig. 6.  (A) Arsenic mineralization hosted by argillized Tertiary tuff. (B) Re�ected-light photomicrograph of arsenic mineral-
ization. Abbreviations: Orp = orpiment, Rlg = realgar.
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lithogeochemical data (Electronic App. 1; Percival and Radtke, 
1994; Yanev et al., 2008; Boev and Jelenković, 2012), Pb isotope 
data (Electronic App. 2; Frantz et al., 1994), stable isotope data 
(Tables 2, 3; Janković, 1993; Frantz et al., 1994; Volkov et al., 
2006), and �uid inclusion data (Strmić Palinkaš et al., 2012).

Microanalyses of sul�de minerals were conducted using 
laser ablation-inductively coupled plasma-mass spectrometry 
(LA-ICP-MS; Ridley and Lichte, 1998) at the U.S. Geological 
Survey (USGS), Denver, Colorado, to investigate the siting of 
Au and the distribution of major and trace elements includ-
ing As, Bi, Co, Fe, Ga, Ge, Hg, In, Mn, Mo, Ni, Pb, Re, S, 
Sb, Se, Te, Tl, U, W, and Zn. Where Au, Ag, and Sb in sul�de 
minerals were near or below the detection limits of the micro-
probe, LA-ICP-MS was used. Fe, S, and As concentrations 
measured by microprobe analysis were used to standardize 
between methods.

Stable isotope studies of hydrogen, carbon, oxygen, and sul-
fur were carried out in the stable isotope laboratory at the 
USGS. Carbonate minerals were analyzed by reaction with 
100% phosphoric acid at 25°C based on McCrea (1950). The 
acid fractionation factors of Friedman and O’Neil (1977) were 
used. Sulfur isotope analyses were carried out using a con-
tinuous �ow method similar to that described by Giesemann 
et al. (1994). Hydrogen, carbon, and oxygen isotope analyses 
were also performed on �uid inclusion extracts liberated by 
thermal decrepitation in stainless steel tubes. Isotopic compo-
sitions of gases were measured using either a Finnigan MAT 
252 or a Micromass Optima isotope ratio mass spectrometer. 
Isotopic compositions are reported in δ notation relative to 
Vienna-standard mean ocean water (V-SMOW) for oxygen 
and hydrogen, Pee-Dee belemnite (PDB) for carbon, and 
Canyon Diablo Troilite (CDT) for sulfur.

Rlg
Orp

A 1 cm

Rlg

2 mmB

Fig. 7.  (A) The Tl-bearing mineralization is hosted by brecciated Tertiary dolomite. (B) Lorandite crystals deposited along 
fractures of brecciated Tertiary dolomite. Abbreviations: Orp = orpiment, Rlg = realgar.

Table 1.  Geochronological Data from the Allchar Au-As-Sb-Tl Deposit, Republic of Macedonia

Mineralogy Host rock/mineralization Locality Age (Ma) Method Reference

Biotite High-K calc-alkaline to  Kožuf massif  1.9 ± 0.1–5.0 ± 0.2 K/Ar Kolios et al. (1980)
  shoshonitic volcanic rocks
K-feldspar High-K calc-alkaline to  Kožuf massif  1.8 ± 0.1– 4.5 ± 0.2 K/Ar Kolios et al. (1980)
  shoshonitic volcanic rocks
Whole rock High-K dacitic lava Kožuf massif  4.6 ± 0.2 K/Ar Kolios et al. (1980)
Biotite Latite Kožuf massif  1.8 ± 0.1–5.0 ± 0.2 K/Ar Boev (1988)
Biotite Qtz latite Kožuf massif  6.5 ± 0.2 K/Ar Boev (1988)
Biotite Andesite Kožuf massif  4.8 ± 0.2 K/Ar Boev (1988)
Whole rock Qtz latite Kožuf massif  4.62 ± 0.19 K/Ar Strmić Palinkaš et al. (2012)
Amphibole Qtz latite Kožuf massif  5.79 ± 0.21 K/Ar Strmić Palinkaš et al. (2012)
Biotite Qtz latite Kožuf massif  5.61 ± 0.20 K/Ar Strmić Palinkaš et al. (2012)
K-feldspar Qtz latite Kožuf massif  5.15 ± 0.21 K/Ar Strmić Palinkaš et al. (2012)

Orpiment  Tl mineralization Crven dol, Allchar deposit 5 Fission track Jakupi et al. (1982)
K-feldspar Andesite Crven dol, Allchar deposit 4.8 ± 1.9 K/Ar Lippolt and Fuhrmann (1986)
Biotite Andesite Crven dol, Allchar deposit 5.1 ± 1.9 K/Ar Lippolt and Fuhrmann (1986)
Whole rock Andesite Crven dol, Allchar deposit 3.9 ± 0.2 K/Ar Lippolt and Fuhrmann (1986)
K-feldspar Tuff Crven dol, Allchar deposit 4.4 ± 0.5–4.6 ± 0.4 K/Ar Lippolt and Fuhrmann (1986)
Biotite Tuff Crven dol, Allchar deposit 4.1 ± 0.7–4.4 ± 0.4 K/Ar Lippolt and Fuhrmann (1986)
K-feldspar Andesite Crven dol, Allchar deposit 4.2 ± 0.1 40Ar/39Ar Troesh and Frantz (1992)
Amphibole Latite  Allchar deposit 4.8 ± 0.2 40Ar/39Ar Neubauer et al. (2009)
Biotite Latite  Allchar deposit 4.6 ± 0.2–4.8 ± 0.2 40Ar/39Ar Neubauer et al. (2009)
K-feldspar Latite  Allchar deposit 3.3–4.0 40Ar/39Ar Neubauer et al. (2009)
Biotite Tuff Vitačovo, Allchar deposit 5.1 ± 0.1–5.1 ± 0.1 40Ar/39Ar Neubauer et al. (2009)
K-feldspar - Rudina, Allchar deposit 4.31 ± 0.02 40Ar/39Ar Neubauer et al. (2009)
Sericite and  Sericite-quartz Allchar deposit 119.8 ± 1.2–125.1 ±1.8 40Ar/39Ar Neubauer et al. (2009)
 K-feldspar  alteration zone

Abbreviations: Qtz = quartz
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Table 2.  Carbon and Oxygen Isotope Data of Country Rock, Gangue Minerals, and Fluid Inclusions from the the Allchar Au-As-Sb-Tl Deposit

Sample Mineralogy  δ13C (‰ V-PDB) δ18O (‰ V-SMOW) Reference

1 Calcite  2.4 14.9 Volkov et al. (2006)
2 Calcite  3.4 28.7 Volkov et al. (2006)
3 Calcite  2.7 20.7 Volkov et al. (2006)
4 Calcite  3.1 26.2 Volkov et al. (2006)
5 Calcite  3.9 21.6 Volkov et al. (2006)
6 Calcite  2.0 24.1 Volkov et al. (2006)
ADP-232 Tertiary sanded dolomite  3.5 30.0 This study
100 Tertiary dolomite, barren  3.7 29.4 This study
Ad-823 Tertiary dolomite, barren  3.5 29.2 This study
Tl-Adit Mineralized dolomite with orpiment  1.1 19.8 This study
TR-ADP-49 Triassic marble, barren  2.8 19.6 This study
Adit I Mineralized Triassic marble with realgar  3.3 16.1 This study
Adit River Late calcite with stibnite  4.7 13.5 This study
S2 Late calcite  0.7 10.4 This study
5NE 1/4 Late calcite within marble  –8.6 –4.5 This study
CD-7 orp Fluid inclusions in orpiment  4.3 9.0 This study
SM-Adit bar Fluid inclusions in barite  –4.2 10.4 This study

Abbreviations: V-PDB = Vienna-Pee Dee belemnite, V-SMOW = Vienna-standard mean ocean water

Table 3. Sulfur Isotope Data of Sul�des from the Allchar Au-As-Sb-Tl Deposit

  δ34S    δ34S
Sample Mineralogy (‰ V-CDT) Reference Sample Mineralogy (‰ V-CDT) Reference

Marc Marcasite –4.7 Jankovic (1993)
Real/Orp max Realgar/orpiment –1.6 Jankovic (1993)
Real/Orp min Realgar/orpiment –3.8 Jankovic (1993)
Real/Orp mean Realgar/orpiment –2.2 Jankovic (1993)
Stb max Stibnite 0.4 Jankovic (1993)
Stb min Stibnite –5.6 Jankovic (1993)
Stb mean Stibnite –2.2 Jankovic (1993)
Lor-823 Lorandite –5.7 Frantz et al. (1994)
Real-823 Realgar –1.7 Frantz et al. (1994)
Marc-823 Marcasite –1.7 Frantz et al. (1994)
Lor-817 Lorandite –2.1 Frantz et al. (1994)
Real-817 Realgar –2.6 Frantz et al. (1994)
Orp-817 Orpiment –2.6 Frantz et al. (1994)
Lor-800 Lorandite –2 Frantz et al. (1994)
Real-800 Realgar –2.7 Frantz et al. (1994)
Orp-800 Orpiment –2.2 Frantz et al. (1994)
Lor-763 Lorandite –2 Frantz et al. (1994)
Orp-763 Orpiment –2.5 Frantz et al. (1994)
14564 Stibnite 0.4 Volkov et al. (2006)
14565 Stibnite –0.3 Volkov et al. (2006)
14566 Stibnite –0.4 Volkov et al. (2006)
14567 Stibnite –4.7 Volkov et al. (2006)
14568 Stibnite –5.6 Volkov et al. (2006)
14569 Stibnite –1.8 Volkov et al. (2006)
14571 Stibnite –5.2 Volkov et al. (2006)
14576 Stibnite –3.6 Volkov et al. (2006)
16 Stibnite –2.7 Volkov et al. (2006)
17 Stibnite –2.7 Volkov et al. (2006)
14572 Realgar –1.6 Volkov et al. (2006)
14573 Realgar –3.8 Volkov et al. (2006)
20 Realgar –0.2 Volkov et al. (2006)
21 Realgar –1.5 Volkov et al. (2006)
14574 Orpiment –3.7 Volkov et al. (2006)
14570 Marcasite –6.8 Volkov et al. (2006)
18 Marcasite –0.7 Volkov et al. (2006)
19 Marcasite –0.9 Volkov et al. (2006)
Al-9 marc Botryoidal 
  marcasite/pyrite –5.5 This study
C.a. riv1 Botryoidal 
  marcasite/pyrite –8 This study
C.a. riv2 Botryoidal 
  marcasite/pyrite –9.8 This study

B1 Botryoidal 
  marcasite/pyrite –4.9 This study
B2 Botryoidal 
  marcasite/pyrite –4.7 This study
Py1 Disseminated 
  pyrite/marcasite –3.2 This study
Py2 Disseminated 
  pyrite/marcasite –4.1 This study
Py3 Disseminated 
  pyrite/marcasite –3.7 This study
Py4 Disseminated 
  pyrite/marcasite –4.7 This study
ADP-275 Disseminated 
  pyrite/marcasite –3.8 This study
AI-9 py-1 Disseminated 
  pyrite/marcasite –4.7 This study
AI-9 py-2 Disseminated 
  pyrite/marcasite –5.2 This study
CD-5 orp Orpiment –2.4 This study
CD-7 orp Orpiment –2.9 This study
Tl-Adit orp A Orpiment –0.8 This study
Tl-Adit orp B1 Orpiment –1.6 This study
Tl-Adit orp B2 Orpiment –1.9 This study
AD-2 real Realgar –3.1 This study
Adit I real1 Realgar –0.9 This study
Adit I real2 Realgar –3.1 This study
ADP-58A real1 Realgar –4.2 This study
ADP-58B real1 Realgar –3.6 This study
ADP-58A real2 Realgar –4.4 This study
ADP-58B real2 Realgar –3.8 This study
ALH-3 real1 Realgar –0.5 This study
ALH-3 real2 Realgar –0.1 This study
Alsh  real Realgar –2.1 This study
Highgr. real Realgar –0.7 This study
A-1 stb Stibnite –4.7 This study
ADP-275 stb Stibnite –2.5 This study
Al-11 Stibnite –3.7 This study
ALP-21 Stibnite –2.9 This study
Alsh SbS3 Stibnite –4.9 This study
Alsh Stb blad Stibnite –4.9 This study
C.a. riv stb Stibnite –2.4 This study
Highgr. stb Stibnite –3.5 This study

Abbreviations: V-CDT = Vienna-Canyon Diablo Troilite
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Microthermometric measurements of �uid inclusions 
within transparent minerals were performed at the Univer-
sity of Zagreb. Double polished, ~0.5-mm-thick, transparent 
mineral wafers were used. Measurements were carried out 
on a Linkam THMS 600 stage mounted on an Olympus BX 
51 microscope using 10× and 50× Olympus long-working 
distance objectives for visible light. Two synthetic �uid inclu-
sion standards (SYN FLINC; pure H2O and mixed H2O-CO2) 
were used to calibrate the equipment. The precision of the 
system was ±2.0°C for homogenization temperatures and 
±0.2°C in the temperature range between –60° and 10°C.

Geochronology
The geochronology data obtained from altered and mineral-
ized samples as well as associated volcanic rocks are summa-
rized in Table 1. The K/Ar, 40Ar/39Ar, and �ssion track ages 
suggest that hydrothermal activity was contemporaneous 
with Pliocene calc-alkaline to shoshonitic volcanism (~5 Ma). 
Exceptions are 40Ar/39Ar data collected on sericite and K-feld-
spar from a sericite-quartz alteration zone spatially associated 
with Tl mineralization that yielded Cretaceous ages between 
119.8 ± 1.2 and 125.1 ± 1.8 Ma (Neubauer et al., 2009). The 
paragenetic and geochemical relationships, described in the 
hydrothermal alteration and mineralization sections, sug-
gest that this alteration zone was overprinted by the Pliocene 
hydrothermal �uids that introduced Au, Sb, As, and Tl. 

Lithogeochemistry
The mineralization at the Allchar Au-As-Sb-Tl deposit is spa-
tially associated with Pliocene hypabyssal intrusions and volca-
nic rocks that are well exposed throughout the Kozuf Mountains 
(Janković et al., 1997; Yanev et al., 2008; Boev and Jelenković, 
2012). These rocks are felsic to intermediate in composition 

(52 and 66 wt % SiO2; Electronic App. 1) with high-K calc-
alkaline to shoshonitic af�nities (Fig. 8A-C). In the major ele-
ment classi�cation of Le Bas et al. (1986) and the trace element 
classi�cation of Hastie et al. (2007), the volcanic rocks of the 
Kozuf Mountains plot in the �eld of basaltic trachyandesite, 
trachyandesite, andesite, and trachyte/trachydacite (Fig. 8A, 
C). Their TiO2, MgO, Fe2O3, and MnO contents show pro-
nounced negative correlations with the SiO2 concentration. 
Aluminum oxide, K2O, and P2O5 do not show clear trends, and 
Na2O shows a positive correlation (Fig. 9). The Pliocene igne-
ous rocks of the area are mostly characterized by high Sr/Y and 
La/Yb ratios (Fig. 8D, E). Their multielement patterns show 
high large ion lithophile element/high �eld strength element 
(LILE/HFSE) ratios with strong depletions of Nb, Ta, and Ti 
and pronounced U and Pb peaks (Fig. 8F). The chondrite-
normalized rare earth element (REE) patterns display an 
enrichment in light rare earth elements (LREEs) compared to 
heavy rare earth elements (HREEs) and weak to pronounced 
negative Eu anomalies (Fig. 8G). The lithogeochemical char-
acteristics of igneous rocks associated with the Allchar Au-As-
Sb-Tl deposit (high Sr/Y, La/Yb, LILE/HFSE, and LREE/
HREE ratios; depletions in Nb, Ta, and Ti; and enrichment in 
U and Pb) are characteristic of subduction-related magmatism 
(e.g., Stolz et al., 1996; Gao et al., 2007; Booden et al., 2011). 
Tertiary igneous rocks with identical geochemical signatures 
have been described at numerous localities along the Vardar 
zone and the Serbo-Macedonian massif of the Balkan Penin-
sula (Fig. 1). They are usually associated with base and/or pre-
cious metal occurrences that formed in an extensional tectonic 
regime (e.g., Crnac Pb-Zn-Ag deposit, Borojević Šoštarić et al., 
2012; Buchim Cu-Au deposit, Lehmann et al., 2013; Trepca 
Pb-Zn-Ag deposit, Strmić Palinkaš et al., 2016). The late Ter-
tiary igneous rocks of the Balkan Peninsula have generally been 
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Fig. 8.  Lithogeochemical data obtained from the Pliocene magmatic rocks spatially associated to the Allchar Au-As-Sb-Tl 
deposit (Janković et al., 1997; Yanev et al., 2008; Boev and Jelenković, 2012). (A) Total alkali vs. SiO2 diagram (according to Le 
Bas et al., 1986). (B) K2O vs. SiO2 classi�cation diagram (according to Peccerillo and Taylor, 1976). (C) Th vs. Co classi�ca-
tion diagram (according to Hastie et al., 2007). (D) Sr/Y vs. Y classi�cation diagram (according to Castillo et al., 1999). (E) 
(La/Yb)N vs. YbN classi�cation diagram (according to Martin, 1999). (F) Primitive mantle-normalized multivariation diagram 
(according McDonough and Sun, 1995). G. Chondrite-normalized rare earth element pattern (according to Boynton, 1984).
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attributed to postcollisional collapse of the Dinaride orogen fol-
lowed by extension of the Pannonian (Miocene) and Aegean 
areas (Eocene-Pliocene) (Cvetković et al., 2000, 2004; Prelević 
et al., 2005; Jolivet and Brun, 2010; Koroneos et al., 2011; Sche-
fer et al., 2011; Borojević Šoštarić et al., 2012; Lehmann et al., 
2013; Melfos and Voudouris, 2017). Available Sr and Nd iso-
tope data from the Kozuf Mountains area (87Sr/86Sr = 0.7085–
0.7093; 143Nd/144Nd = 0.51230–0.51233) suggest signi�cant 
assimilation of continental crust (Yanev et al., 2008). 

The mineralization at the Allchar Au-As-Sb-Tl deposit is 
hosted by various rock types including Triassic marble, Ter-
tiary dolomite, Tertiary tuff, and the basal unconformity 
between Tertiary and Triassic rocks (Janković, 1993; Percival 
and Radtke, 1994). The whole-rock geochemical data obtained 
on host rocks and their unaltered equivalents published by 
Percival and Radtke (1994) are summarized in Electronic 
Appendix 1. Isocon analysis (Grant, 2005) has been applied 
to mineralized rocks and their unaltered equivalents (Fig. 10).
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In silici�ed and argillized Triassic marble, TiO2, Al2O3, 
MnO, Ag, Bi, Pb, Cu, and Zn are relatively immobile and Ca, 
Na, Sr, and Y are depleted (Fig. 10A). Magnesium is depleted 
in silici�ed rocks and introduced in argillized rocks. Although 
Au, Co, Cr, Fe, Hg, Ni, Sb, Se, Te, and Zr are introduced 
in each alteration type, silici�ed rocks are more enriched in 
these elements than argillized rocks. In contrast, argillic alter-
ation is more strongly enriched in Tl, Rb, and K2O than silici-
�ed rocks (Fig. 10A).

In Tertiary dolomite, argillic alteration is associated with 
the introduction of Fe2O3, As, Tl, Pb, Sb, Hg, and Ag and 
depletion of CaO, MgO, Al2O3, Na2O, K2O, and Sr (Fig. 
10B); TiO2 is immobile. In contrast, silici�cation is associ-
ated with depletion of CaO, MgO, Na2O, MnO, and Sr and 
introduction of SiO2, K2O, Fe2O3, Rb, As, Sb, Cr, Tl, and Hg 
(Fig. 10B).

In Pliocene tuff, altered rock is depleted in CaO, Na2O, Ba, 
and Sr and enriched in Hg, Te, Mo, As, Sb, Tl, Ag, and Au 
(Fig. 10C). The Au, Ag, and Hg enrichments are more pro-
nounced in silici�ed tuff than in argillized tuff, whereas Tl is 
more enriched in argillized tuff (Fig. 10C).

In a Pliocene subvolcanic intrusion, the altered rock is 
depleted in CaO, K2O, MgO, FeO, P2O5, MnO, Cu, Zn, Sr, 
and Co. It is enriched in Hg, Te, Tl, Ag, Au, As, and Sb. Silica, 
Al2O3, TiO2, Cr, Ni, Bi, and Mo are relatively immobile (Fig. 
10D).

In all altered host rocks (Fig. 10), Au/Ag ratios are relatively 
high (100–10,000) and the abundance of base metals is low 
(Cu + Zn + Pb + Mo + Co + Ni <1,000 ppm), suggesting that 
the solubility of Ag and base metals was suppressed by a high 
activity of H2S in ore �uids (e.g., Hofstra and Cline, 2000). 
The isocon diagrams reveal hydrothermal solutions at the 
Allchar deposit introduced much more Fe, Mg, and K than 
hydrothermal �uids in Nevada Carlin-type gold deposits (e.g., 
Hofstra and Cline, 2000).

Mineral Chemistry
LA-ICP-MS multielement analyses of pyrite grains in miner-
alized samples from the Allchar Au-As-Sb-Tl deposit reveal 
that the grains are enriched in Mn, Te, Sn, Cu, W, Cs, Pb, 
and Au without signi�cant chemical zonation (Fig. 11A, B, 
D). On the Au vs. As diagram, some of the pyrite samples plot 
in the Carlin pyrite �eld, but the majority are in the diagenetic 
pyrite or intrusion-related pyrite �elds. All data plot below the 
Au saturation line (Fig. 12) with Au concentrations less than 
1,000 ppm.

Stibnite is enriched in Se and Te and has detectable amounts 
of Tl, Hg, Ag, and Pb (Fig. 11E, F). Some stibnite crystals 
have rims with elevated concentrations of As and Cu (Fig. 
11E). Orpiment and lorandite contain signi�cant amounts of 
Sn, Pb, Sb, and Hg (Fig. 11G). Realgar shows a zonal trace 
element distribution with cores enriched in Sb and Te and 
rims enriched in Tl and Pb. It also contains detectable con-
centrations of Sn and Hg (Fig. 11C ).

The geochemical signature characterized by elevated con-
centrations of Se, Te, Hg, As, Sb, Cu, Sn, Pb, Mn, and Cs in 
these sul�des may be indicative of a magmatic source. It is 
also possible that Pb, Sn, and W were leached from under-
lying continental crust, whereas Mn could be derived from 
ophiolites that occur near the Allchar deposit (Fig. 2). 

Lead Isotope Data
Lead isotope compositions of sul�de minerals and country 
rocks associated with the mineralization at the Allchar Au-As-
Sb-Tl deposit are listed in Electronic Appendix 2 and plotted 
in Figure 13. The Pb isotope compositions of two Pliocene 
subvolcanic intrusions are very similar to one another and 
plot in the mature arc or upper continental crust �elds (Fig. 
13). They mostly overlap with the average values obtained for 
galena and volcanic rocks from the Belo Brdo Pb-Zn hydro-
thermal deposit in Kosovo (Veselinovic-Williams, 2011) and 
the average values for galena from the Inkaya Cu-Pb-Zn pros-
pect, northwestern Turkey (Ozen and Arik, 2015). Both the 
Belo Brdo deposit and the Inkaya prospect have been inter-
preted as products of voluminous postcollisional calc-alkaline 
to ultrapotassic magmatism that followed closure of the Vardar 
ocean in Oligocene to early Miocene time (Erkul and Erkul, 
2010; Veselinovic-Williams, 2011; Ozen and Arik, 2015).

In contrast, sul�de minerals are similar to Tertiary dolo-
mite, and most are widely scattered across the oceanic island 
volcanic rock �eld on the 208Pb vs. 206Pb diagram and the 
upper continental crust �eld on the 207Pb vs. 206Pb diagram. 
The distribution of data suggests that the Pb in ore minerals 
was derived primarily from the country rocks.

Stable Isotope Studies
To determine the source of water, CO2, and H2S in ore �u-
ids, new and previously published stable isotope data (δD, 
δ18O, δ13C, δ34S) on hydrothermal minerals and �uid inclu-
sions were synthesized. Hydrogen and oxygen isotope data 
were used to constrain the source of water and to estimate 
water-rock ratios. Sulfur isotope data re�ect the source of H2S 
and, in samples where isotopic equilibrium was achieved, the 
temperature of mineral precipitation. Carbon and oxygen iso-
topes can potentially discriminate between sedimentary car-
bonates, organic matter, and magmatic sources of CO2.

The δD and δ18O data obtained from gangue minerals and 
�uid inclusions are listed in Table 4. The calculated and mea-
sured δDH2O and δ18OH2O values de�ne a triangular �eld that 
extends from the primary magmatic water box toward the 
meteoric water line (Fig. 14). The data indicate that magmatic 
�uid mixed with exchanged meteoric water at deep levels and 
with unexchanged meteoric water at shallow levels in the sys-
tem (Fig. 14). 

The δ13C and δ18O values of barren and altered host rocks, 
vein calcite, and �uid inclusion extracts are listed in Table 4. 
The δ13C value of barren Triassic marble is within the range 
of Phanerozoic marine carbonates (Veizer and Hoefs, 1976), 
and its δ18O value is consistent with Triassic marine carbon-
ate values (Claypool et al., 1980), indicating that the original 
isotopic composition of the Triassic limestone was not signi�-
cantly disturbed by metamorphic recrystallization (Fig. 15). 
The δ13C values of barren Tertiary dolomite are similar to 
Phanerozoic marine carbonate (Veizer and Hoefs, 1976), but 
their δ18O values are higher than average Tertiary marine car-
bonate (Fig. 15). The calculated isotopic composition of �uid 
in equilibrium with altered and mineralized marble and dolo-
mite, vein calcite, and inclusion �uid extracted from orpiment 
and barite de�nes a �eld that extends between three sources: 
carbonate rock-buffered �uid, magmatic �uid, and meteoric 
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water (Fig. 15). The calcite vein with the lowest δ18O and δ13C 
values may contain CO2 produced by the oxidation of organic 
carbon in the host rocks. 

The sulfur isotope data are summarized in Table 3 and 
Figure 16. The absence of hypogene sulfate minerals and 

dissolution of calcite and dolomite as well as precipitation of 
marcasite and kaolinite point to a low redox potential and low 
pH values of hydrothermal �uids associated with deposition 
of siliceous Au mineralization. Under such Eh-pH condi-
tions, H2S predominates over other sulfur species. Early-stage 
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disseminated pyrite and marcasite have calculated δ34SH2S

values between –5.0 and –7.0‰, suggesting that H2S was 
initially derived from diagenetic pyrite in sedimentary rocks 
(Ohmoto and Rye, 1979). In contrast, stibnite, orpiment, 
and realgar have calculated δ34SH2S values between –2.7 and 

2.6‰, re�ecting a strong input of magmatic H2S during the 
main mineralization stage. Late-stage botryoidal pyrite and 
marcasite, depleted in δ34S and with calculated δ34SH2S values 
between –6.5 and –11.6‰, point to diminishing in�uence of 
magmatic volatiles and predomination of H2S from sedimen-
tary sources during the late-mineralization stage. Presence 
of barite in the later stages of the mineralization indicates 
increase in oxygen fugacity that could have contributed to 
partial oxidation of bulk sulfur and resulted in fractionation of 
isotopically light sul�de from isotopically heavy sulfate (e.g., 
Ohmoto, 1972; Kesler et al.,1981). 

Fluid Inclusion Studies
Microthermometric measurements of �uid inclusions in vari-
ous minerals from different stages of ore deposition in the 
Allchar Au-As-Sb-Tl deposit document changes in the temper-
ature and salinity of hydrothermal �uids. Fluid inclusions were 
classi�ed as primary, pseudosecondary, or secondary according 
to petrographic features proposed by Roedder (1984).

Quartz crystals selected from siliceous Au mineralization 
host several generations of two-phase, liquid + vapor �uid 
inclusions, but only primary inclusions were large enough to 
allow reliable microthermometric measurements (Fig. 17A). 
The uniform degree of �ll (F) around 0.85 suggests entrap-
ment of a single-phase �uid. The great majority of the �uid 
inclusions have �rst melting temperatures (eutectic tempera-
ture, Te) between –44° and –58°C (Fig. 18A) that are charac-
teristic of the H2O-NaCl-CaCl2 ± MgCl2 system. Final melting 
temperature of hydrohalite (Tm hyd1) was recorded in the tem-
perature interval between –24.2° and –42.0°C (Fig. 18B). Ice 
melting temperatures (Tm ice) from –2.4° to –18.1°C (Fig. 18C) 
correspond to salinities between 4 and 21.3 wt % NaCl equiv. 
Homogenization (Th) by vapor disappearance occurred from 
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131° to 200°C (Fig. 18D). Several �uid inclusions nucleate a 
recognizable clathrate phase that melted between –0.5° and 
3°C, suggesting the presence of CO2 and salinities between 
12.6 and 16 wt % NaCl equiv. Homogenization temperatures 
for this type of �uid inclusion were recorded between 185° 
and 202°C. 

The physicochemical characteristics of mineralizing �uids 
associated with stibnite-bearing jasperoids were estimated 
from primary �uid inclusions hosted by jasperoid, quartz, 
and rare calcite crystals (Fig. 18). Jasperoid hosts aqueous-
carbonic and hydrocarbon-bearing �uid inclusions (Fig. 
17B). At room temperature, the aqueous-carbonic inclusions 
contain two immiscible liquids and a vapor phase. Melting 
of clathrates occurred from 2.4° to 7.0°C corresponding to 
salinity between 6.0 and 13.5 wt % NaCl equiv. The CO2

homogenization to vapor phase is recorded between 31.0° and 
33.0°C. Total homogenization to liquid phase was recorded 
between 102° and 125°C (Fig. 18). 

The hydrocarbon-bearing inclusions contain one or more 
immiscible liquids or solid phases (Fig. 17C). They remain 
unfrozen at the minimum �uid inclusion stage temperature 
of –180°C. During subsequent heating, the only recorded 
change was a reduction in size or shape of some of the com-
ponents without complete phase transitions. None of these 
inclusions homogenized before decrepitation, which occurred 
at temperatures from 170° to 180°C. Ultraviolet �uorescence 
of hydrocarbon-bearing �uid inclusions is in yellow and green 
colors, suggesting immature organic matter (e.g., Hagemann 
and Hollerbach, 1986; McLimans, 1987; Bodnar, 1990). The 
intensity of �uorescence increases with the size of inclusions. 

Quartz and calcite associated with the stibnite-bearing 
mineralization usually host primary inclusions that, at room 
temperature, have two phases (L + V) and a uniform degree 
of �ll around 0.85 (Fig. 17D, E). The initial melting tempera-
ture between –50° and –56°C indicates presence of divalent 
cations (Fig. 18). Final melting of hydrohalite (Tm hyd1) was 
recorded between –27.2° and –39.0°C (Fig. 18). Ice melt-
ing temperatures (Tm ice) from –10.5° to –13.1°C (Fig. 18) 
suggest the salinity between 14.5 and 17.1 wt % NaCl equiv. 
Homogenization into liquid phase occurred from 120° to 
165°C (Fig. 18).

Microthermometric measurements carried out on primary 
L + V inclusions hosted by realgar, orpiment, dolomite, and 
lorandite (Fig. 17F-I) have �rst melting temperatures (Te) 
between –50° and –54°C, indicating the presence of divalent 
cations (Fig. 18). Melting runs between –35° and 0°C pro-
vide evidence for the existence of two hydrates. Melting of 
the �rst hydrate (Tm hyd1; sylvite) occurred between –22.0° and 
–24.5°C (Fig. 18). The �nal melting of the second hydrate 
(Tm  hyd2; hydrohalite) was recorded between –11.0° and 
–15.4°C (Fig. 18). The �nal ice melting temperature (Tm ice) 
interval between –1.5° and –4.1°C (Fig. 18) corresponds to a 
salinity of 2.6 to 6.9 wt % NaCl equiv. The molar K/Na ratio 
calculated from hydrate melting temperatures varies between 
0.19 and 0.21 (Hall et al., 1988). Homogenization of inclu-
sions hosted by realgar and dolomite occurred into liquid 

Table 4.  Hydrogen and Oxygen Isotope Data of Country Rock, Gangue Minerals, and Fluid Inclusions from the Allchar Au-As-Sb-Tl Deposit

Sample Mineralogy δDH2O (‰ V-SMOW) δ18Omineral (‰ V-SMOW) δ18OH2O (‰ V-SMOW) Reference

AD-2 Fluid inclusions, realgar –99   This study
SM-Adit Fluid inclusions, barite –97 10.4 2.6 This study
CD-7 Fluid inclusions, orpiment –75  9.0 This study
5NE 1/4 Fluid inclusions, late calcite –114 –4.5 –12.3 This study
FI-2 Fluid inclusions, milky quartz vein –71 8.0 –3.6 This study
AD-2 Jasperoid 11.5 –0.1 This study
AD-2 Quartz 8.6 –3 This study
ADP-275 Jasperoid 10.7 –0.9 This study
ADP-275 Quartz 8.2 –3.4 This study
ADP-145 Jasperoid 10.4 –1.2 This study
AI-1 Quartz  10.4 –1.2 This study
High gr. Jasperoid 9.6 –2 This study
ALP-21 Quartz 9.9 –1.7 This study
AI-9 Jasperoid 11.5 –0.1 This study
AI-11 Jasperoid   10.3 –1.3 This study

Abbreviations: V-SMOW = Vienna-standard mean ocean water
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Fig. 14.  Isotopic composition of water in equilibrium with, or extracted from, 
hydrothermal minerals relative to seawater (SW), meteoric water line (MWL) 
and primary magmatic water (PMW). Mixing and water/rock (W/R) exchange 
lines are shown in blue. The results suggest the deposit formed from mixtures 
of magmatic water and variably exchanged meteoric water.
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phase between 120° and 152°C (Fig. 18). Similar microther-
mometry data from realgar were published by Beran et al. 
(1990). The temperature of total homogenization within orpi-
ment and lorandite was not recorded due to massive decrepi-
tation of �uid inclusions at lower temperatures.

To identify major elements in hydrothermal �uids, scanning 
electron microscope-energy dispersive analyses of evaporate 
mounds produced by the thermal decrepitation of �uid inclu-
sions were carried out according to the procedure described 
by Kontak (2004). Evaporate mounds that formed on the 
surfaces of quartz, realgar, and orpiment wafers were com-
posed primarily of Cl, Na, and K. Traces of Ca were detected 
as well. Some inclusions hosted by realgar contain measur-
able amounts of Al and Si, probably indicating the presence of 
accidentally entrapped clay minerals.

Since no evidence of boiling was observed in the �uid 
inclusion assemblages studied, we infer that all were trapped 
in the one phase �eld along isochores that emanate from 
the solvus in the H2O-NaCl-KCl-CaCl2 ± CO2 system. The 
wide range of Th (102°–202°C) and salinities (2.6–21.3 wt % 
NaCl equiv) within and across the alteration zonation pat-
tern is a clear evidence of mixing between saline and dilute 
liquids with different temperatures at the sites of ore deposi-
tion (Fig. 19). The occurrence of CO2 in low- and high-tem-
perature inclusions with different salinities probably re�ects 
condensation of CO2-rich vapor into aqueous liquids. The 
CO2-rich vapor may have been produced by phase separa-
tion of ascending magmatic �uids and/or by dissolution of 
the carbonate host rocks by acid magmatic volatiles (e.g., 
HCl, SO2 => H2SO4 + H2S).
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Chemical Reactions and Modeling
The isocon diagrams for the carbonate host rocks show that 
Au and Fe were introduced by hydrothermal solutions. 
Since Fe resides primarily in pyrite, S must also have been 
introduced (Fig. 10). As indicated by the absence of hypo-
gene sulfate minerals, dissolution of calcite ± dolomite, and 
precipitation of marcasite and kaolinite, Eh-pH conditions 
favored H2S° over other S species. According to experimen-
tal data published by Stefansson and Seward (2004), in acid 
hydrothermal solutions with high aCl–/aHS– ratios, Au chloride 
complexes predominate over Au bisul�de complexes. The fol-
lowing equation illustrates coprecipitation of Au and pyrite 
from a single �uid containing dissolved Au, Fe, and S:

AuCl2– + FeCl2 + 2H2S(aq) 
 ↔ Au0 + FeS2 + 4H+ + 4Cl–  ∆rH << 0. (1)

At lower aCl–/aHS– ratios the stability of Au bisul�de com-
plexes is promoted, and Au and pyrite may precipitate by mix-
ing between contrasting �uids, such as condensed magmatic 
vapor containing Au bisul�de complexes and saline liquids 
containing Fe chloride complexes:

Au(HS)2
– + FeCl2 ↔ 

 Au0 + FeS2 + 2H+ + 2Cl–  ∆rH << 0. (2)

In both cases, the neutralization of ore-forming �uids by 
the host carbonates will drive the reactions forward and pro-
mote deposition of Au and pyrite. These reactions would also 
be driven forward by an increase in pH produced by dilution 
with near-neutral groundwaters (Fig. 20).

In contrast, the isocon diagram for tuff shows that Fe was 
immobile (Fig. 10C), suggesting that sul�dation of preexisting 
Fe minerals, such as magnetite, in tuff was a critical factor for 
deposition of Au and pyrite:

3Au(HS)2
– + Fe3O4 + 2H+ 

 ↔ 3Au0 +3FeS2 + 4H2O  ∆rH << 0. (3)

Whereas all three reactions are exothermic over a wide 
range of pressures and temperatures, mixing of hot ore-bear-
ing �uids with cold groundwaters will contribute to coprecipi-
tation of Au and pyrite (Fig. 20).

In most hydrothermal solutions, As and Sb are transported 
by hydroxyl complexes (Pokrovski et al., 2002; Zotov et al., 
2003; Seward et al., 2014), and their mobility depends on 
temperature, pressure, sulfur fugacity, redox potential, and 
pH value of the solution. The isocon diagrams indicate that 
deposition of As and Sb was accompanied by both silici�cation 
and argillic alteration. However, deposition of these minerals 
was more effective during low-temperature argillic alteration 
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(Fig. 10). Since stibnite, orpiment, and realgar have prograde 
solubility, this relationship suggests that cooling, acidi�cation, 
and an increase in sulfur fugacity were key factors for precipi-
tation of Sb and As sul�de minerals (Fig. 21): 

As(OH)3(aq) + H2S(aq) + H+ 
 ↔ AsS + 3H2O  ∆rH << 0 (4)
              (realgar)

2As(OH)3(aq) + 3H2S(aq) 
 ↔ As2S3 + 6H2O  ∆rH << 0 (5)
              (orpiment)

2Sb(OH)3(aq) + 3H2S(aq) 
 ↔ Sb2S3 + 6H2O  ∆rH << 0. (6)
              (stibnite)

Although Au, Sb, and As occur together in hydrothermal 
solutions, differences in the stability of their complexes as 
hydrothermal conditions change affects their solubility (Auso-

lubility << Sbsolubility < Assolubility; Figs. 20, 21), which may account 
for the geochemical zonation observed at Allchar (Fig. 3).

Although the chemical properties of Tl are well known, its 
behavior in geologic processes is still vague. Thallium is an 
incompatible heavy metal that in aqueous solutions mostly 
exists in monovalent (thallous) oxidation state, although the 
trivalent (thallic) oxidation state is stable under extremely 
oxidizing conditions. Monovalent Tl+ behaves like alkali 
metals (e.g., K+), and it is mobile under acid to near-neutral 

hydrothermal conditions. In contrast, Tl3+ behaves similar to 
Al3+ and shows very limited mobility under hydrothermal con-
ditions (e.g., Kemper and Bertram, 1991; Sobott, 1993). Mon-
ovalent Tl+ prevails in reducing environments characterized 
by the predomination of sul�de over sulfate. Complexing of 
Tl+ in hydrothermal solution greatly depends on temperature 
and pH conditions (Bebie et al., 1998; Xiong, 2007). Accord-
ing to thermodynamic data published by Xiong (2007) for 
200°C, Tl+ is the dominant species in acidic solutions, TlHS0

is dominant in the neutral to moderate alkaline pH range, 
whereas TlCO3

− and TlOH0 prevail in extremely alkaline solu-
tions. Lorandite is the major solubility-controlling phase in 
As-bearing hydrothermal systems (Xiong, 2007). 

The lack of Tl enrichment in the Au-rich part of the All-
char deposit suggests that sul�dation of Tl+ at low pH and 
relatively high temperature was not an effective precipitation 
mechanism:

Tl+ + Au(HS)2
– + As(OH)3 + H+ 

 ↔ Au + TlAsS2 + 3H2O (7)
                    (lorandite).

The isocon diagrams show a tight link between Tl and the 
low-temperature argillic alteration as well as signi�cant cor-
relation between Tl and K (Fig. 10). Fluid inclusion data also 
suggest that the Tl-bearing mineralization was deposited from 
cooled and diluted �uids (Fig. 18) enriched in KCl. The Tl 
mineralization is spatially related to dolomite suggesting that, 
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in addition to cooling, an increase in the pH of mineralizing 
�uids was critical to deposition of Tl:
Tl+ + As(OH)3 + 2H2S(aq) 

 ↔ TlAsS2 + 3H2O + H+ (8)
                    (lorandite).

This reaction is driven forward by neutralization of acid 
hydrothermal �uids by carbonate rocks and hydrolysis of 
framework silicates.

Discussion

Model for the formation of the Allchar Au-As-Sb-Tl deposit

After collision of the Adriatic and Euroasian plates along the 
Vardar zone, overprinting Cretaceous subduction-related mag-
matism, early Tertiary contraction, exhumation, and formation 

of an Eocene erosion surface, the Vardar zone tectonic mélange 
was the site of Oligocene to Pleistocene episodes of extensional 
faulting and calc-alkaline to shoshonitic magmatism that pro-
duced an assortment of Cu-Au porphyry, skarn, hydrothermal 
polymetallic (Pb-Zn ± Ag) replacement, and epithermal depos-
its. Field relationships and geochronology show that the All-
char Au-Sb-As-Tl deposit is spatially and temporally associated 
with a Pliocene (~5 Ma) shoshonitic volcano-plutonic center 
on the northern side of a NE-trending volcanic �eld with min-
eralization hosted in Pliocene tuff and subvolcanic intrusions, 
tuffaceous dolomite, and Triassic marble (Fig. 3). Stable iso-
topic, �uid inclusion, and trace element data suggest that con-
cealed intrusions in this center were the source of metal- and 
ligand-bearing �uids and heat that drove circulation of mete-
oric ground water. Although isotopic data show that some lead 
and sulfur were leached from country rocks, the abundance 
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Fig. 20.  The solubility of Au as a function of (A) temperature, 
(B) pH value, and (C) salinity of hydrothermal solutions, assum-
ing coprecipitation of native Au and pyrite (see eq. 1, 2). The 
solubility of Au as a function of (D) temperature and (E) pH 
value of hydrothermal solutions, assuming sul�dation of preex-
isting Fe minerals as a critical factor for Au deposition (see eq. 
3). The stabilities of Au complexes were constructed after the 
thermodynamic data published by Helgeson et al. (1978), Shock 
et al. (1997), and Sverjensky et al. (1997) and using the SUPCRT 
model and database (Johnson et al., 1992).
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of Cu, Sn, Te, and Se in stibnite, orpiment, realgar, and loran-
dite suggests that these metalloids were derived from mag-
mas. The zonation from southern Au and Sb mineralization to 
northern As and Tl mineralization is perpendicular to the axis 
of the volcanic �eld and, together with variations in the �uid 
inclusion and isotopic data, suggests that �uid �ow was from 
south to north. Mineralization appears to have occurred at the 
interface between ascending magmatic �uids and convecting 

groundwater on the northern side of the system. The localiza-
tion of jasperoids and mineralization at structural intersections 
within fault breccias and fracture zones and along the Eocene 
unconformity shows that �uid �ow was controlled by perme-
able structures and stratigraphy (Fig. 3B). 

Fluid inclusion studies preclude boiling as a depositional 
mechanism but provide evidence that �uids with different 
salinities and temperatures mixed at the site of ore deposi-
tion. Isocon diagrams and chemical modeling suggest that 
decarbonatization, silici�cation, argillic alteration, and Au, 
Sb, As, and Tl mineralization formed in response to cooling 
and neutralization of acidic ore �uids by reactions with car-
bonate rocks and external ground water. Auriferous arsenian 
pyrite precipitated by cooling, mixing, and neutralization in 
carbonate host rocks and by sul�dation of Fe in tuff. Quartz 
and stibnite precipitated in response to cooling, realgar and 
orpiment by cooling and acidi�cation, and lorandite by cool-
ing and neutralization. The acidic character of the ore �uids 
was probably due to the condensation of magmatic vapor and 
dissociation of acid volatiles (CO2, SO2, HCl) into cool rocks 
and ground water. Quaternary faulting, uplift, and erosion 
exposed the deposits at the surface. 

Comparison with Carlin-type gold deposits in Nevada

The Allchar deposit is similar to Nevada Carlin-type gold 
deposits in that it occurs near a terrain-bounding fault (Var-
dar zone) in an area of low-magnitude extension and intense 
magmatism. It is mostly hosted in subvolcanic calcareous and 
dolomitic sedimentary rocks, and mineralization occurs at 
intersections of high-angle faults and permeable stratigraphy 
(e.g., Eocene unconformity). It has similar alteration types 
(carbonate dissolution, silici�cation, argillization), ore minerals 
(auriferous arsenian pyrite and marcasite, stibnite, realgar, orpi-
ment, lorandite), high Au/Ag ratios, and low base metal con-
tents (e.g., Radtke, 1985; Hofstra and Cline, 2000; Muntean 
et al., 2011). It lacks �uid inclusion evidence of boiling, some 
of the ore pyrite precipitated by sul�dation of tuff, late-stage 
minerals precipitated primarily by cooling, and the late-stage 
minerals contain S and Pb derived from country rocks. 

It differs in that it is an isolated Au prospect with a close spa-
tial and temporal relationship to a shoshonitic volcano-plutonic 
center in a mineral belt dominated by intrusion-related Cu-Au 
porphyry, skarn, and hydrothermal polymetallic deposits. It is 
clearly zoned (proximal Au-Sb to distal As-Tl), has more dolo-
mitization and sericitic alteration, has more introduced Fe, Mg, 
K, and Tl and less Au in ore pyrite, and contains more Cu, Sn, 
Te, and Se in stibnite, realgar, orpiment, and lorandite. It has 
lower-temperature and higher-salinity �uid inclusions and clear 
isotopic evidence for magmatic water, CO2, and H2S, and most 
of the ore pyrite in carbonate rocks precipitated by �uid mix-
ing (e.g., Radtke et al., 1980; Holland et al., 1988; Groff, 1996; 
Hofstra, 1997; Hofstra and Rye, 1998; Cline and Hofstra, 2000; 
Emsbo et al., 2003; Lubben et al., 2012). These differences 
suggest that it is the very shallow and/or distal manifestation 
of a concealed porphyry system and is best classi�ed as a distal 
disseminated gold deposit. 

Conclusions
The evidence presented in this article con�rm that Carlin-
style gold deposits can form in the shallow/distal part of 
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Fig. 21.  The solubility of realgar (eq. 4), orpiment (eq. 5), and stibnite (eq. 
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in hydrothermal solutions. The solubility curves were constructed after the 
thermodynamic data published by Helgeson et al. (1978), Pokrovski et al. 
(1996), Zotov et al. (2003), and Perfetti et al (2008) and using the SUPCRT 
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intrusion-centered hydrothermal systems. Gold, Sb, As, and 
Tl were introduced by hot (>200°C), saline (up to ~ 21 wt % 
NaCl equiv), moderately acidic (pH <5) �uids that carried 
traces of magmatic H2S and CO2. The mineral and chemical 
zonation in the district is a result of different transport mecha-
nisms of Au, Sb, As, and Tl under hydrothermal conditions 
and may indicate a potential for additional gold mineralization 
under cover at the southern end of the district. The evidence 
from Allchar also suggests that Tl mineralization may be pres-
ent in the most distal neutralized portions of other intrusion-
centered hydrothermal systems.
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Roller-Lutz, Z., Mandić, M., and Genser, J., 2013, Silver-base metal epi-
thermal vein and listwanite hosted deposit, Crnac, Rogozna Mts., Kosovo, 
part II: A link between magmatic rocks and epithermal mineralization: Ore 
Geology Reviews, v. 50, p. 98–117.
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(As, Sb) 4S22, a new TI sulfosalt from Allchar, Macedonia: Mineralogy and 
Petrology, v. 53, p. 125–131.
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Janković, S., Boev, B., and Sera�movski, T., 1997, Magmatism and Tertiary 
mineralization of the Kozuf metallogenetic district, Republic of Macedonia, 
with particular reference to the Allchar deposit: University of Belgrade Fac-
ulty of Mining and Geology, Special Publication, v. 5, 262 p.

Johnson, J.W., Oelkers, E.H., and Helgeson, H.C., 1992, SUPCRT92: A soft-
ware package for calculating the standard molal thermodynamic properties 
of minerals, gases, aqueous species, and reactions from 1 to 5,000 bar and 
0° to 1,000°C: Computers and Geosciences, v. 18, p. 899–947.

Jolivet, L., and Brun, J.-P., 2010, Cenozoic geodynamic evolution of the 
Aegean region: International Journal of Earth Sciences, v. 99, p. 109–138.
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Zelić, M., Agostini, S., Marroni, M., Pandol�, L., and Tonarini, S., 2010, Geo-
logical and geochemical features of the Kopaonik intrusive complex (Vardar 
zone, Serbia): O�oliti, v. 35, p. 33–47.

Zimmerman, A., Stein, H.J., Hannah, J.L., Koželj, D., Bogdanov, K., and 
Berza, T., 2008, Tectonic con�guration of the Apuseni-Banat-Timok-Sred-
nogorie belt, Balkans-South Carpathians, constrained by high precision 
Re-Os molybdenite ages: Mineralium Deposita, v. 43, p. 1–21.

Zotov, A.V., Shikina, N.D., and Akin�ev, N.N., 2003, Thermodynamic proper-
ties of the Sb(III) hydroxide complex Sb(OH)3(aq) at hydrothermal condi-
tions: Geochimica et Cosmochimica Acta, v. 67, p. 1821–1836.






