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Abstract: Enzymes are used in modern wine technology for various biotransformation reactions
from prefermentation through fermentation, post-fermentation and wine aging. Industrial enzymes
offer quantitative benefits (increased juice yields), qualitative benefits (improved color extraction and
flavor enhancement) and processing advantages (shorter maceration, settling and filtration time).
This study gives an overview about key enzymes used in winemaking and the effects of commercial
enzyme preparations on process engineering and the quality of the final product. In addition, we
highlight on the presence and perspectives of beneficial enzymes in wine-related yeasts and lactic
acid bacteria.
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1. Introduction

Over the last decades, commercial enzyme preparations have gained increasing popularity in
the wine industry [1–5]. They offer many advantages such as accelerated settling and clarification
processes, increased juice yield, and improved color extraction (Table 1).

Table 1. Enzymes used for winemaking and their function.

Application/Process Enzymatic Activity Aim

Enhancement of
filtration/clarification of must Pectinolytic enzymes Degradation of viscosity (pectin)

Mash fermentation/heating
(red wine)

Pectinase with side activities
(cellulases, hemicellulases)

Hydrolysis of plant cell wall polysaccharides.
Improvement of skin maceration and color extraction

of grapes, quality, stability, filtration of wines

Late phase of fermentation
(white wine) Glycosidases Improvement of aroma by splitting sugar residues

from odorless precursors

Young wine Glucanases Lysis of yeast cell walls, release of mannoproteins

Contaminated juice Glucanases Lysis of microbial exopolysacharides to
improve clarification

Wine Urease Hydrolysis of yeast derived urea, preventing
formation of ethyl carbamate

Must, wine Lysozyme from hen egg Control of bacterial growth

Must, wine Proteases Wine stabilization by prevention of protein haze;
Reduction of bentonite demand

Technical enzyme preparations are usually obtained from fungi, which are cultured under optimal
conditions on substrates to facilitate their preparation and purification. In contrast to grape-derived
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enzymes, which are often inactive under wine conditions (low pH, presence of ethanol, phenolic
compounds, sulphite etc.), fungal enzymes are resistant. The production of oenological enzymes
for use in the European Union is regulated by the International Organization of Vine and Wine
(OIV), which has ruled that Aspergillus niger and Trichoderma sp. may be used as source organisms
(i.e., have GRAS, “generally regarded as safe” status) [1,2]. Selected strains from A. niger are fermented
under aerobic conditions in optimized growth media for production of pectinases, hemicellulases and
glycosidases, Trichoderma species are used for production of glucanases and Lactobacillus fermentum
for urease.

Current commercial enzyme preparations are usually cocktails of different activities, such as
glucosidases, glucanases, pectinases and proteases [5]. The search for enzymes with improved and
more specific characteristics will continue. In this respect, the study and exploration of the high
endogenous enzyme potential of wine and grape-associated microorganisms (Table 2) will assist the
wine industry to meet prospective technical and consumer challenges. In contrast to filamentous
fungi, yeasts with beneficial enzymatic endowment, could be directly used as starter cultures, without
application of enzyme preparations.

Table 2. Microbial enzymes with relevance for winemaking.

Enzyme Remarks

Fungi (Botrytis cinerea)

Glycosidases Influence aromatic potential of infected grapes by release of volatile aroma compounds
Laccases Broad specificity to phenolic compounds, cause oxidation and browning

Pectinases Depolymerizing enzymes, cause degradation of plant cell walls and grape rotting

Cellulases Multi-component complexes: endo-, exoglucanases and cellobiases; synergistic working,
degrade plant cell walls

Lipases Degrade lipids (e.g., in cell membranes)
Esterases Involved in ester formation and degradation

Proteases Aspartic proteases occur early in fungal infection, determine rate and extent of rotting
caused by pectinases

Yeasts

Glucosidases Some yeasts produce β-glucosidases which are not repressed by glucose and are resistant
to ethanol and low pH; positive influence on wine flavor

Glucanases Occur extracellular, cell wall associated and intracellular, accelerate autolysis process and
release of mannoproteins

Proteases Acidic endoproteases accelerate autolysis process and degradation of grape proteins
Pectinases Degrade pectin in grape cell walls

Lactic acid bacteria

Malolactic enzymes Convert malic acid to lactic acid
Esterases Involved in ester formation and degradation

Glycosidases Deliberate flavor compounds
Lipases Degrade lipids

Lichenases, Glucanases, Cellulases,
Xylanases Degradation of polysaccharides

Proteases Hydrolysis of proteins
Tannases Hydrolysis of tannins (polymeric phenolic compounds)
Laccases Oxidation of phenolic compounds

In the following paragraphs we give an overview on widely used enzyme preparations for wine
fermentation and a special focus on wine-associated microorganisms as alternative enzyme sources.

2. Pectinases

The grape cell wall consists of cellulose microfibrils linked together by a matrix of xyloglucan,
mannan, xylan (hemicellulose) and pectin, all of which is stabilized by a protein network. The high
viscosity of pectin, which is dissolved after berry crushing impedes juice extraction, clarification and
filtration. In addition, pectin prevents diffusion of phenolic and aroma compounds into the must
during wine fermentation.
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2.1. Commercial Pectinases

The complete degradation of pectin needs cooperation of several enzymes to break the complex
molecule into small fragments [1,2]. They include different enzymatic activities:

• Polygalacturonase (homogalacturonan-hydrolase) (PG): hydrolytic depolymerization of the
polygalacturonic acid chain. One can differentiate enzymes that cleave either single galacturonic
acid units from the chain end (exo-activity, exoPG, EC 3.2.1.67), or in the middle of the chain
(endo-activity, endoPG, EC 3.2.1.15).

• Pectinlyase/pectate lyase (EC 4.2.2.2 and 4.2.2.9): nonhydrolytic cleavage of the polygalacturonic
acid chain.

• Pectinesterase (EC 3.1.1.11): hydrolytic cleavage of methanol from the D-galacturonic acid chain,
causing drastic viscosity reduction in the liquid portion of the mash and better must flow.

• Acetylesterase (EC 3.1.1.6): cleaves acetyl residues from D-galacturonic acid with release of acetic
acid. By this way the interfering acetyl residues at the connecting points of the side chains of the
“hairy regions” are removed which facilitates further enzymatic degradation.

Most commercial preparations are derived from fungal sources [1–5] and are more or less
well-defined enzyme mixtures (Table 3). The application of bulk enzyme preparations is advantageous
as it fulfills several functions. Examples are liquefaction enzymes, which contain cellulases and
hemicellulases in addition to pectinases.

Commercially available pectinase preparations contain the active enzymes (2–5%) and additives
(sugars, inorganic salts, preservatives) which stabilize and standardize the specificities of the
products [1]. Factors that generally inhibit proteins will reduce effectiveness of the enzymes. These
include juice clarification with bentonite, which adsorbs and deposits the proteins. Alcohol levels
above 17% (v/v) and SO2 levels above 500 mg/L inhibit pectinases [4]. Tannin-rich wines show
reduced enzyme activity as phenolic polymers react with the proteins and render them useless.
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Table 3. Examples of commercial pectinase preparations used for winemaking modified from [3,4].

Supplier Enzyme Preparation Purpose of Application

AEB, South Africa Pectocel L Improvement of clarification, filtration and product yield
Endozym Pectoflot Improvement of clarification, filtration and product yield

Endozym Contact Pelliculaire Enhancement of extraction and color stabilization
Endozym Rouge Enhancement of extraction and color stabilization
Endozyme Active Improvement of clarification, filtration and product yield

Begerow, Germany Siha Panzym Extract G Enhanced extraction and release of color and aroma
Siha Panzym Clair Rapide G Improvement of clarification, filtration and product yield

Siha Panzym Fino G (β-Glucanase) Improvement of clarification, filtration and sensory
Siha Panzym Arome G (β-Glucosidase) Enhanced aroma development

Darleon, South Africa Influence Improvement of clarification, filtration and product yield
Enzym’ Color Plus Enhancement of extraction and color stabilization

DSM, Switzerland Rapidase Filtration Improvement of clarification, filtration and product yield
Rapidase Vino Super Improvement of clarification, filtration and product yield

Enartis, Italy Uvazym 1000S Clarification of white juices—facilitation of fining and filtration
Progress Quick Must flotation

Uvazym couleur Enhanced extraction during short macerations
Erbslöh, Germany Trenolin bukett DF (β-Glycosidase) Enhanced aroma development—Improvement of clarification

Trenolin Super DF Improvement of clarification, filtration and product yield
Trenolin Flot DF Must flotation
Trenolin 4000 DF Enhancement of sugar yield

Trenolin Filtro DF (β-Glucanase) Improvement of clarification and filtration; Hydrolysis of Botrytis cinerea exopolysaccharide slime
Trenolin Bukett DF Enhance of color and aroma release from red grapes

Laffort, France Lafazym press Enhanced color and tannin extraction—Facilitation of fining and filtration
Lafazym CL Improvement of clarification, filtration and product yield

Lafase 60 Improvement of clarification, filtration and product yield
Lafase HE Enhancement of extraction and color stabilization

Lallemand, France Lallemand EX Enhancement of extraction and color stabilization
Lallemand OE Enhancement of extraction and color stabilization

Novo Nordisk, Denmark Novoclair FCE Improvement of clarification, filtration and product yield
Vinozym EC Enhancement of extraction and color stabilization

Glucanex (β-Glucanase) Improvement of clarification and filtration; Hydrolysis of Botrytis cinerea exopolysaccharide slime
Ultrazym Improvement of clarification and filtration

Pectinex Superpress Improvement of clarification and filtration
Valley Research, USA Crystalzyme Rapid clarification–Color improvement–Increased complexity–Process efficiency



Fermentation 2018, 4, 52 5 of 19

2.1.1. Effect on Juice Extraction, Clarification and Filtration

The pulp of the grape varieties is rich in pectin compounds. The incomplete hydrolysis of these
molecules by the endogenous enzymes can therefore cause problems in processing. If pectinases are
applied to the pulp prior to pressing, they can improve juice and color yield. For the clarification
of musts after pressing, pectinase-based enzyme preparations are recommended. Its pectin methyl
esterase and endogalacturonic activities cause hydrolysis of the pectin chains and facilitate the drainage
of juice from the pomace with an increased yield of a free-flowing juice with lower viscosity [6–
8]. In addition, it causes cloud particles to aggregate into larger units that deposit as sediment.
The acceleration of the clarification process also produces more compact lees. When applied to the
pulp before pressing, it increases juice yield and color yield [6–8].

2.1.2. Effect on Color Extraction

Anthocyanidins are the red grape pigments, which mainly occur in the grape skin [9].
The chemical structure, commonly referred to as “flavylium cation”, is characterized by two benzene
rings linked by an unsaturated cationic heterocycle. Normally, the dye molecule is linked to a glucose
monomer, which improves water solubility and stability. Pelargondin, cyanidin, delphinidin, peonidin,
petundin and malvidin are the main variants identified in grapes and wine.

Flavonols are light yellow pigments found in the skins of both red and white grapes [9]. These
are mainly the glycosylated forms of kaempferol, quercetin and myricetin. In red wine concentrations
are in the range of 100 mg/L, in white wines 1–3 mg/L.

Under natural conditions, solubilization of phenolic compounds from grapes is facilitated by
increased ethanol concentrations in the course of alcoholic fermentation. However, the extraction is
uncomplete as the grape skin forms a physical barrier against the diffusion of anthocyanins, tannins
and flavors from the cells. Therefore, various oenological techniques have been developed that result
in wines that have good visual characteristics and are as stable as possible [10]. Especially wines made
by pectinase treatment showed higher concentrations of anthocyanins and total phenols, as well as
greater color intensity and optical clarity compared to untreated control wines [6–8].

2.1.3. Immobilization

Immobilization is a commonly used strategy to conserve the desirable properties of enzymes for
biotechnological applications. In addition to improved stability, immobilization offers a number of
advantages, such as reusability, ease of product separation, and better control of catalysis. Various
methods have been described for the immobilization of pectinases, such as inclusion in alginate [11],
physical adsorption to anionic resins [12], and covalent bonding to supports such as porous glass [13]
and nylon [14]. A pectinase from Aspergillus niger immobilized on chitosan-coated carriers retained
100% of its original activity after several cycles of reuse [15].

2.2. Yeast Pectinases

S. cerevisiae strains, despite their genetic ability to secrete an endo-polygalacturonase, usually
show no or only weak pectinase activity. In contrast, many so-called “wild” yeasts have been identified
to be pectinase producers [16–20].

Grape fermentations at low temperatures (15–20 ◦C) are believed to protect the volatile
compounds, thereby improving the aromatic profile of the wines. Therefore, cold-active enzymes are
required for both extraction and clarification [21]. Psychrophilic yeasts are natural sources for such
biocatalysts [22]. The pectinolytic enzymes of Cystofilobasidium capitatum and Rhodotorula mucilaginosa
are effective under oenological pH (3.5) and temperature conditions (6.0 ◦C and 12 ◦C). Also, pectinases
from several A. pullulans strains remain active at wine-relevant concentrations of glucose, ethanol or
SO2, bearing the potential as processing aids for low-temperature wine fermentations [23].
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3. Lipases

Lipids in wine originate directly from the grape berry [24] and by autolysis of wine yeast [25]. It has
been reported that lipid composition undergoes considerable changes during wine fermentation [26].

Authentic lipases (E.C. 3.1.1.3) are mainly active at the oil–water interface of emulsified substrates
with long fatty acid chains. Triglycerides are cleaved rendering glycerol and fatty acids. In contrast,
carboxylic ester hydrolases (see below) hydrolyze soluble esters with relatively short fatty acid
chains [27]. However, the transition between both activities appears somewhat fluid.

Lipolytic activities have been detected only in few wine-relevant Lactobacillus strains [28], but in
different genera of yeasts isolated from natural environments [29,30]. In theory, lipases could be used
for winemaking for decomposition of lipoid cell membranes, thereby improving color extraction from
red grape berries (Figure 1).
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a yeast lipase (Claus, unpublished data).

4. Glucanases

4.1. Commercial Glucanases

Polysaccharides in must and wine originate from the grape berries (cellulose, hemicellulose,
pectins) and from cell walls of yeasts during growth and autolysis (beta-glucans, chitin). Several strains
of lactic acid bacteria (especially Pediococcus spp.) and the grape fungus Botrytis cinerea produce viscous
capsular or extracellular polysaccharides impairing wine filtration [31]. The colloidal polysaccharides
cannot be removed from wine by flocculants, adsorbents or filtration. Thus, commercial products
with glucanase activities e.g., those from Trichoderma sp., and Taleromyces versatilis are useful to reduce
viscosity of musts and wine caused by microbial contaminations [5] (Table 3).

Two types of glucanases are relevant for wine fermentation: (i) exo-β-1,3-glucanases split β-glucan
chains by sequentially cleaving glucose residues from the non-reducing end and releasing glucose as
the sole hydrolysis product and, (ii) endo-β-1,3-glucanases catalyse the intramolecular hydrolysis of
β-glucans with release of oligosaccharides.

Some yeast cell constituents, in particular the wall, can exert a significant impact on the
technological and sensory properties of wine. The cell wall consists of β-glucans (~60%), mannoproteins
(~40%) and chitin (~2%). In particular, the mannoprotein fraction has attracted increasing interest in
wine fermentation to stabilize tartaric acid and protein, improve mouthfeel and reduce astringency [32–
34]. The use of mannoproteins of the cell wall and chitin as binding elements for the removal
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of undesirable compounds such as ochratoxin A and toxic heavy metals has been proposed.
The mannoprotein fractions present in the yeast cell walls are highly variable between species and even
strains, providing opportunities for the development of alternative fining products that could replace
conventional proteinaceous animal preparations with allergenic potential.

Commercial enzyme preparations (Table 3) facilitate the release of these components.
As a prerequisite they have to be effective under acid wine conditions, moderate temperatures and in
presence of ethanol [35].

4.2. Microbial Glucanases

A major microbial source of polysaccharide-degrading exoenzymes are non-Saccharomyces yeasts
belonging to the genera Kloeckera, Candida, Debaryomyces, Rhodotorula, Pichia, Zygosaccharomyces,
Hanseniapora, Kluyveromyces and Wickerhamomyces (Table 4). Glucanolytic enzyme activities were
also detected in wine-relevant lactic acid bacteria [28] (Table 2).

Table 4. Glucanases of non-Saccharomyces yeasts with possible use for winemaking modified from
[4,18].

Species Specificity Substrate MW(kDa)

Candida albicans Endo-β-1,3- L, OL, P 49
Exo-β-1,3- L 107

Candida hellenica nd G nd
Candida lambica nd G nd

Candida pulcherrima nd G, Li nd
Candida stellata nd G, Li nd
Candida utilis Endo-β-1-3- L, PNPG 20

Exo-β-1,3-1,6- L, P, PNPG 20
Endo-β-1,3- L, OL 21

Kloeckera apiculata nd G, Li nd
Kluyveromyces phaseolosporus Endo-β-1,3-(I) L, OL 180

Exo-β-1,3-(II) L, OL 45
Exo-β-1,3-1,6-(III) L, P 18.5
Exo-β-1,3-1,6-(IV) L, Ol, P 8.7

Pichia polymorpha Endo-β-1,3-(I) L, OL 47
Exo-β-1,3-1,6-(II) L, OL, P, PNPG 40

Exo-β-1,3-(III) L, PNPG 30
Schizosaccharomyces pombe Endo-β-1,3-(I) L, OL 160

Endo-β-1-3-(II) L, OL 75
Schizosaccharomyces versatilis Endo-β-1,3- L, OL 97

Exo-β-1,3-1,6- L, P, PNPG 43
Wickerhamomyces anomalus AS1 Exo-β-1,3- L, PNPG 47.5

L: laminarin, OL: oxidized laminarin, P: pustulan, G: β-glucan (Barley), Li: lichenan, PNPG:
p-nitro-phenyl-β-D-glucoside; nd: not determined.

5. Glycosidases

The organoleptic properties of wine are determined by a variety of different compounds that are
already present in the grape (aroma) or arise during fermentation or storage (bouquet). Acids such as
tartaric acid or citric acid affect the taste, but the characteristic odor and taste is mainly due to volatile
organic substances such as esters, alcohols, thiols or terpenes [36–38].

Due to their low odor threshold, particularly terpenes determine wine flavor. Like other
aroma active compounds (C13 norisoprenoids, benzene derivatives, aliphatic alcohols, phenols),
they are secondary metabolites mainly derived from the grape skin. Approximately 90% of these
compounds do not exist in a free form, but are conjugated to mono- or disaccharides, thereby forming
water-soluble and odourless complexes. The most frequently occurring aroma precursors in grape
varieties such as Muscat and Riesling are the glycosidic bound terpenes linalool, nerol and geraniol.
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The sugar residues consist of rutinoside (rhamnose-glucose), arabinoside (arabinose-glucose) or
apioside (apiose-glucose) [38].

Enzymatic hydrolysis of sugar-conjugated precursors release very aromatic, volatile terpenes
(aglycones). Usually, the terminal sugars are first cleaved off by a rhamnosidase, an arabinosidase or
an apiosidase. In a second step, the terpenes are released by a β-D-glucopyranosidase. This means
that the latter activity alone can release only terpene compounds bound to a single glucose residue.
In addition to a stepwise reaction, some glucosidases are able to hydrolyze the glycosidic bond to
the aglycone, regardless of the number of sugar residues [39,40]. Nowadays commercial enzyme
preparations are available that can hydrolyze the disaccharide directly from the terpene in a single
step [5]. In many bulk enzyme preparations, glycosidase activities occur as side activities along with
pectinase and glucanase activities (Table 3).

An important microbial source of wine-related enzymatic activities are lactic acid bacteria [28]
(Table 2). Perez-Martin et al. [41] studied >1000 isolates for glycosidases. The β-glucosidase activities
were only found in cells, but not in the supernatants of the cultures. Four O. oeni isolates retained their
enzymatic activity under the conditions of winemaking. In a similar study, cell-bound glucosidase
and arabinosidase activities from O. oeni strains released high levels of monoterpenes from natural
substrates under optimal conditions [42]. The enzymes showed broad substrate specificities (release of
both primary and tertiary terpene alcohols) and remained active in grape juice.

Glycosidase activities have been also detected in various non-Saccharomyces yeasts (Candida,
Hanseniaspora, Pichia, Metschnikowia, Rhodotorula, Trichosporon, Wickerhamomyces) [43–52] (Table 5).
Several experiments on the technical application of yeast glycosidases to improve organoleptic quality
of wines gave positive results [40,44,46,49,50].

Polyphenols in red wine, such as resveratrol, have gained increasing public and scientific interest
due to their supposed beneficial effects on human health [53]. A majority of the polyphenols in
nature are conjugated to sugars or organic acids, making them more hydrophilic and less bioavailable
to humans. The amount of glycosylated forms of resveratrol, known as piceid or polydatin, has
been found to be up to ten times higher in red wines. Since these modified forms are less bioactive,
experiments with β-glucosidases from various fungal sources have been undertaken to increase the
trans-resveratrol content in wines by hydrolysis of glycosylated precursors. The multifunctional
glucanase WaExg2 of W. anomalus AS1 released the aglycones from the model compounds arbutin,
salicin, esculin and polydatin [52]. WaExg2 was active under typical wine conditions such as low pH
(3.5–4.0), high sugar concentrations (up to 20% w/v), high ethanol concentrations (10–15% v/v),
presence of sulphites and various cations. Therefore, this yeast strain could be useful in wine
production for several purposes: to increase the levels of sensory and beneficial compounds by cleaving
glycosylated precursors or reducing the viscosity by hydrolysis of glycan slurries. In this context
Madrigal et al. [29] underlined that glucose- and ethanol-tolerant enzymes from Wickerhamomyces are
of great interest to the wine industry.

Table 5. Aroma enhancing enzymes of non-Saccharomyces yeasts with possible use for wine
fermentation modified from [54].

Species Enzymatic Activities*

β-D-Glucosidase α-L-Arabino-Furanosidase α-L-Rhamnosidase β-D-Xylosidase Carbon-Sulfur
Lyase

Aureobasidium pullulans + + +
Brettanomyces anomalus +
Candida guillermondii + + +
Candida molischiana +

Candida stellata + + +
Candida utilis +

Candida zemplinia +
Debaryomyces castelli +

Debaryomyces hansenii +
Debaryomyces polymorphus +
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Table 5. Cont.

Species Enzymatic Activities*

β-D-Glucosidase α-L-Arabino-Furanosidase α-L-Rhamnosidase β-D-Xylosidase Carbon-Sulfur
Lyase

Debaryomyces
pseudopolymorphus +

Debaryomyces vannjii +
Hanseniaspora guillermondii +

Hanseniaspora osmophila + +
Hanseniaspora vineae + + + +

Hanseniaspora uvarum + + + +
Issatschenkia terricola +

Kluyveromyces
thermotolerans + +

Metschnikowia pulcherrima + + +
Pichia angusta +
Picha anomala + + + +

Pichia capsulata +
Pichia guilliermondii +

Pichia kluyveri +
Pichia membranaefaciens + +
Saccharomycodes ludwigii +

Schizosaccharomyces pombe +
Sporidiobolus pararoseus +
Torulasporus delbrueckii + +

Torulasporus asahii +
Wickerhamomyces anomalus + + +

Zygosaccharomyces bailii +

* Activity detected (+).

6. Esterhydrolases and -Synthetases

Esters (e.g., ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, ethyl decanoate)
contribute to the most desirable fruity wine flavors [36,37]. They are synthesized by the grapes but
are also produced by yeasts in course of alcoholic fermentation [55]. During malolactic fermentation,
significant changes in the concentration of individual esters were observed [56]. Presence of alcohol
acyltransferases (ester synthesis) and esterases (ester hydrolysis) in wine yeasts [37] and lactic acid
bacteria [57] is well documented.

Depsides are esters of aromatic hydroxycarboxylic- or phenolic acids with each other or with
other carboxylic acids of the grape, such as tartaric acid [5]. These compounds can be hydrolyzed
by cinnamoyl esterases (“depsidases”), which often appear as side activities in enzyme preparations
made from A. niger [5] The fission products can have a negative influence on wine quality. Enzymatic
deliberated phenolcarboxylic acids, such as caffeic acid or coumaric acid, can be converted by the yeast
metabolism to the volatile phenol derivatives 4-vinylguajacol and 4-vinylphenol, which are unpleasant
side-tastes in the wine [5]. Therefore, commercial pectinase preparations should be free of depsidase
side activities. In a recent study of 15 commercial enzyme preparations, approximately half of the
samples yielded significant cinnamoyl esterase activities [58].

7. Proteinases

Proteins in must in wine are derived from the grapes, and from microbial cells (yeasts,
lactic, acid bacteria) and their activities [59]. Another important source are protein-based wine
additives (e.g., lysozyme, ovalbumin, gelatin, casein) which could pose allergenic-like reactions to
consumers [60–62]. Most of these proteins have vanished after termination of wine fermentation
and subsequent fining procedures. However so-called pathogen-related (PR) proteins (β-glucanases,
chitinases, thaumatin-related proteins) can still be present. They are synthesized by the plants for
defence against bacterial or fungal infections and in response to abiotic stress [63]. Due to their compact
structures, they are resistant against acid wine conditions, heat, and proteolysis [59].

In combination with other wine ingredients, PR proteins can cause undesirable turbidity especially
during cold storage of white wines with negative economic consequences [59]. Currently, protein
removal is mainly achieved by bentonite addition [64], a process that can be associated with decreased
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wine quantity and quality. Bentonite acts essentially as a cation exchanger, and individual wine
proteins adsorb to different degrees on the clay [64]. Proteins that are negatively charged at wine pH
(about 3.5) and/or are highly glycosylated as laccases of Botrytis cinerea are less bound by bentonite.
Thus, new fining agents are desired to remove proteins from wine.

7.1. Proteases from Fungal and Plant Sources

Enzymatic degradation of wine proteins seems an attractive alternative to bentonite treatment as
it would minimize losses of volume and aroma. As a prerequisite, suitable proteases have to be active
under specific wine conditions (acid pH, presence of ethanol, sulphites, phenolics) and preferably act
at low temperatures. Another challenge is the resistance of PR proteins against proteolysis due
to their special molecular features like disulfide-bonds and glycosylations. Nevertheless, other
grape proteins might be more susceptible, and thus proteases may help to reduce effective bentonite
dosages. Currently, proteases from plants (papain, bromelain) have been tested with some promising
results [65,66]. A fungal protease from Aspergillus sp. (aspergilloglutamic peptidase) has already
approved for Australian winemaking [67]. The enzymatic procedure involves flash-pasteurization of
grape must and is thus limited to specialized wineries. In this context, a protease of Botrytis cinerea
BcAp8 has been described to hydrolyze grape chitinase at moderate temperatures [68].

7.2. Microbial Proteases

Microbial proteases can be an alternative or supplement to bentonite treatment for removal of
unwanted wine proteins. Most Saccharomyces cerevisiae strains show no extracellular protease activity
on diagnostic agar media [16–19,69]. However, a 72 kDa extracellular pepsin-like aspartic protease
was characterized from a PIR 1 strain [70,71]. The enzyme was active during grape juice fermentations,
although it did not affect turbidity-inducing proteins, unless the wine was incubated at 38 ◦C for
extended time.

Proteinase A (PrA, saccharomycin; EC 3.4.23.25) is the major vacuole protease of S. cerevisiae
encoded by the PEP4 gene. As result of yeast autolysis, PrA enters wine in course of alcoholic
fermentation. Far more, it has been found that under stress conditions (e.g., nutrient limitations) PrA
is not targeted to the vacuole, but is misdirected to the cell membrane and secreted in the medium [72].
This would be advantageous for winemaking in view of haze reduction. Interestingly, the same
situation is undesirable for beer brewery as PrA degrades proteins (e.g., lipid transfer protein 1),
necessary for foam formation. Apart from PrA, S. cerevisiae expresses different cell-bound proteases,
some of which are not fully characterized [73].

Non-Saccharomyces yeasts are important sources of extracellular enzymes including proteases
(Table 6). Strains of Metschnikowia pulcherrima and Wickerhamomyces anomalus secreted aspartic proteases
and degraded a model protein (bovine serum albumin) during growth in grape juice [74]. In a recent
study, heterologous expressed aspartic protease MpAPr1 from M. pulcherrima [75] was added to
a Sauvignon Blanc must. It was shown that the enzyme was active during fermentation and degraded
wine proteins to some extent [76]. An alternative strategy would be to perform wine fermentations
with appropriate protease-positive starter cultures. In addition to cost reductions, there are no
administrative restrictions for yeast applications in must and wine, which must be taken into account
with enzyme preparations.

Occurrence of proteolytic activities in lactic acid bacteria is also well-documented [28] (Table 2).
Growth of Oenococcus oeni depends on the presence of amino acids in the culture medium because of
deficiency in corresponding synthetic pathways. This bacterium secretes several proteases which may
help to gain access to rare nitrogen sources during malolactic fermentation [77].
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Table 6. Extracellular proteases of non-Saccharomyces yeasts with possible use for wine fermentation.

Species Mode of Identification Characterization Reference

Candida apicola Skim milk agar (pH 3.5), Gene Sequencing Aspartic protease CaPR1 (39.2 kDa) [78]
Candida stellata Casein agar nd [18]

Hanseniaspora guelliermondii Hansenispora
valbyenis Hanseniapora occidentalis Casein agar and broth (pH 6.0) nd [79]

Hanseniaspora uvarum Skim milk agar (pH 3.5) nd [16]
Casein agar nd [18]

Kloeckera apiculata Enzymatic; Inhibitor studies Acid endopeptidase [80]
Metschnikowia pulcherrima Skim milk agar (pH 3.5) nd [16]

Azocasein hydrolysis during fermentation of
grape must nd [81]

Skim milk agar (pH 3.5), Sequencing of protease
gene, Purification Aspartic protease pAPR1 (40.8 kDa) [75,78]

Casein agar nd [18]
Skim milk agar (pH 4.5), Enzymatic; Inhibitor

studies, LC-MS/MS Aspartic protease [74]

Wickerhamomyces anomalus Skim milk agar (pH 3.5) nd [16]
Skim milk agar (pH 4.5), Enzymatic; Inhibitor

studies, LC-MS/MS Aspartic protease WaAPR1 (47 kDa) [74]

nd: not determined.
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8. Phenoloxidases

Spontaneous and enzymatic oxidations exert dramatic effects on the final phenolic composition
from the grape berry to bottled wine [82,83]. Once the integrity of the berries is destroyed, oxidative
enzymes (phenoloxidases) and their phenolic substrates are exposed to the air, resulting in enzymatic
browning (Figure 2).
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There are two classes of copper enzymes responsible for these reactions [82,83]: Tyrosinase
(E.C. 1.14.18.1) hydroxylates monophenols to ortho-diphenols and oxidizes the latter to ortho-quinone
intermediates which easily react further to polymeric, mostly colored products. Laccase (E.C. 1.10.3.2)
has no monohydroxylase activity, and oxidizes a broad spectrum of different phenols and other
compounds by a radical mechanism. Tyrosinase originates from grape berries [84], whereas laccases in
must and wine are derived from epiphytic fungi, particularly Botrytis cinerea [82]. Phenolic compounds
as caffeic acid, gallic acid, vanillic acid, ferulic acid, or especially resveratrol are known for their
beneficial effects on human health. In addition to be radical scavengers, they are activators of
the human’s intrinsic cellular antioxidant system and have antimicrobial properties. Tyrosinase
and laccase oxidize phenolic wine compounds and thus alter their antioxidant and antimicrobial
properties [85–87]. In this context, it is an interesting observation that gallic acid oxidation by a laccase
from Trametes versicolor was higher at 30 ◦C than at 45 ◦C. Although fungal laccases are usually more
active at higher temperatures, the effect can be explained by reduced oxygen solubility under the
experimental conditions [88].

Laccase is generally not very welcome in wine, but several studies have ruled out that controlled
laccase treatments could promote wine stabilization and even improve sensory properties [89–93].

Volatile phenols particular produced by Brettanomyces/Dekkera sp. yeasts are associated with
a serious “Brett” taste defect in wine. Lustrata et al. [94] used a laccase from T. versicolor to reduce
concentrations of 4-ethylguaiacol and 4-ethylphenol in a synthetic model wine.

Biogenic amines (BA) are another class of undesirable compounds in wine [95–97]. They originate
from the grape berries or are formed during fermentation by activities of decarboxylase-positive
microorganisms [98–102]. Although more common in foods such as cheese, BA have received much
attention in wine, as ethanol can enhance the negative effects on human health by inhibiting the
enzymes responsible for the detoxification of these compounds [101].

Enzymatic degradation of BA is usually catalyzed by various classes of oxidases [103,104].
Depending on the type of prosthetic group, they can be classified into FAD-dependent (E.C. 1.4.3.4)
and copper-containing amine oxidases (CAOs, E.C. 1.4.3.6). The latter have been detected in various
yeasts such as Kluyeromyces marxianus or Debaryomyces hansenii [105,106]. These enzymes belong to
the class of type 2 or “non-blue” copper proteins which convert primary amines to the corresponding
aldehydes with an equimolar consumption of molecular oxygen and formation of hydrogen peroxide
and ammonia.

Aromatic amines such as tyramine, phenylethylamine, tryptamine or serotonin are another
class of compounds that can be oxidized by laccases [19]. Callejónet et al. [107] detected enzymatic
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activities responsible for BA degradation in lactic acid bacterial strains isolated from wine. Responsible
enzymes have been isolated and purified from Lactobacillus plantarum J16 and Pediococcus acidilactici
CECT 5930 strains and have been identified as intracellular laccase-like multicopper oxidases. When
the L. plantarum J16 laccase was overexpressed in Escherichia coli, it oxidized some BA, mainly
tyramine [108].

9. Urease

Increased amounts of urea in wine can originate from yeast activities and then converted by
a chemical reaction into the carcinogenic substance urethane (ethylcarbamate). During malolactic
fermentation, lactic acid bacteria can produce other precursors of ethyl carbamate, such as
arginine-derived citrulline and carbamyl phosphate. Especially at higher temperatures fermented
wines may contain excessive amounts of urethane [109]. Therefore appropriate precautions should
be taken to prevent the production of urethane. These include, for example, the selection of suitable
starter cultures for malolactic fermentations and the reduction of arginine concentrations in the grape.
Urease was introduced in 1997 by the EU as a new enzymatic wine treatment agent and can be used
in exceptional cases. The enzyme splits urea into ammonia and carbon dioxide, preventing urethane
formation. The commercial urease from Lactobacillus fermentum is effective on urea at doses of 50 mg/L
in red wines and 25 mg/L in white wines [32].

10. Lysozyme

Yeasts, lactic acid and acetic acid bacteria have a significant influence on wine quality [110].
Microbial growth in musts and wines is conventionally controlled by the addition of sulfur dioxide.
However, presence of sulphites in alcoholic beverages, particularly in wines, can cause pseudo-allergic
responses with symptoms ranging from gastrointestinal problems to anaphylactic shock [32,33]. Other
antimicrobials such as sorbic acid and dimethyl carbonate are primarily active against yeasts, but have
limited activity against bacteria [32,34].

Lysozyme (EC 3.2.1.17) is a muramidase widely used to control microbial growth in foods such as
cheese and wines [111,112]. Extensive enzymatic hydrolysis of the bacterial cell wall peptidoglycan,
a polymer of N-acetyl-D-glucosamine units which are β-1,4-linked to N-acetylmuramic acid, results in
cell lysis and death in hypoosmotic environments. Some lysozymes can kill bacteria by stimulating
autolysin activity. In addition, bactericidal mechanisms involving membrane damage without
enzymatic hydrolysis of peptidoglycan has been reported for c-type lysozymes, such as hen egg
white lysozyme [113]. Gram-negative bacteria (i.e., acetic acid bacteria) are rather resistant against
lysozyme, because the outer membrane acts as a barrier.

Lysozyme commercially produced from hen’s egg white has been approved for winemaking
by the International Organization of Vine and Wine in 2001 [114]. The amount added normally
ranges between 250–500 mg/L. Four main applications and dosages are: (a) prevention of the onset of
malolactic fermentation (early addition of 100–150 mg/L); (b) total inhibition of bacteria activity and
malolactic fermentation (500 mg/L); (c) protection of wine during suboptimal alcoholic fermentation
(250–300 mg/L); (d) stabilization of wine after malolactic fermentation (250–300 mg/L). Lysozyme
can be eliminated by addition of fining agents, among which bentonite and metatartaric acid are the
most efficient.

It has been reported that various Gram-positive strains of Pediococcus sp., Lactobacillus sp. and
Oenococcus oeni [113] were not efficiently hydrolyzed by hen’s egg white lysozyme. Reasonable
explanations are structural modifications of the peptidoglycan, like N-deacetylation and O-acetylation
of the glycan chains or amidation of free carboxyl groups of amino acids in the peptide chains [113].
As a possible alternative to hen’s egg white lysozyme, exoenzymes (protease and muramidase) from
Streptomyces species showed a broad bacteriolytic spectrum under winemaking conditions [98,113].

It should be mentioned that hen’s egg lysozyme can display pH-dependent chitinase side activities.
Under adverse conditions yeast cell walls (containing 2–4% chitin primarily in the bud scar regions)
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can be weakened by lysozyme with significant effects on vitality and stress response of Saccharomyces
cerevisiae during wine fermentation [114].

11. Legislative Regulations

The use of enzymes in wine production in the European Union is regulated by the International
Organisation of Vine and Wine (OIV). Specified resolutions define general aspects of enzymes in
winemaking, the permitted enzyme activities, mode of application and enzyme activity measurements.
The USA, Canada and China have national regulations in winemaking [5].

Genetic engineering. Today’s enzyme production is based either on special selected wildtype strains
or on genetically modified organisms (GMOs). The use of GMO production strains has considerable
advantages: the product yields with GMOs is much higher than with wild strains and undesirable
side activities become minimized. This makes it more efficient to produce and to guarantee the purity
of the enzyme products. The labelling is regulated by the resolution OIV-OENO 485-2012.

GMOs for must fermentations. Although increasing numbers of Saccharomyces yeasts have been
improved by genetically engineering [115,116], only two GMOs have been allowed for winemaking
in three countries. The first recombinant strain to get official approval by appropriate food safety
authorities (in the USA and Canada) was the malolactic wine yeast ML01. The GMO carries the
Schizosaccharomyces pombe malate permease gene (mae1) and the Oenococcus oeni malolactic gene
(mleA). The second strain ECMo01 expresses the urease gene constitutively to prevent formation of
urethane [115]. Whether yeast strains obtained by protoplast fusion should be considered as GMO is
in legal limbo.

12. Conclusions

Nowadays, the use of technical enzymes is a well-established strategy to improve wine quantity
and quality. Currently they are mainly produced by Aspergillus species and applied as bulk preparations
with several side activities. In view of consumer safety, more defined activities and alternative
biological producers seem to be preferable. Yeasts, naturally occurring on grapes, have been found
to be a rich source of oenological interesting enzymes. Their activities can be exploited in form of
new enzyme products or directly as starter cultures for wine fermentation. This would satisfy the
increasing trend to produce more individual wines with the aid of non-Saccharomyces yeasts [117].

Conflicts of Interest: The authors declare no conflict of interest.
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