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Abstract – A method for digital image restoration, 

based on the pseudoinverse matrix, has many practical 

applications. We apply the method to remove blur in an 

image caused by uniform linear motion. This method 

assumes that linear motion corresponds to an integral 

number of pixels. Compared to other classical 

methods, this method attains higher values of the 

Improvement in Signal to Noise Ration (ISNR) 

parameter and of the Peak Signal-to-Noise Ratio 

(PSNR). We give an implementation in the MATLAB 

programming package.  

 

Keywords: deblurring, image restoration, matrix 

equation, pseudoinverse. 

 

I. INTRODUCTION 
 

Recording and presenting helpful information is the 

purpose of producing images. Yet, the recorded image is 

a degraded form of the initial scene as a result of flaws 

in the imaging and capturing process. Images are rather 

unclear in numerous applications such as satellite 

imaging, medical imaging, astronomical imaging or 

poor-quality family portraits. It is vital to many of the 

subsequent image processing tasks to neutralize these 

flaws. One should consider an extensive variety of 

different degradations for example blur, noise, 

geometrical degradations, illumination and color 

imperfections [1-3]. 

Blurring is a form of bandwidth reduction of an ideal 

image owing to the imperfect image formation process. 

It can be caused by relative motion between the camera 

and the original scene, or by an optical system that is out 

of focus. When aerial photographs are produced for 

remote sensing purposes, blurs are introduced by 

atmospheric turbulence, aberrations in the optical 

system, and relative motion between the camera and the 

ground.  

The field of image restoration is concerned with the 

reconstruction or estimation of the uncorrupted image 

from a blurred one. Essentially, it tries to perform an 

operation on the image that is the inverse of the 

imperfections in the image formation system. In the use 

of image restoration methods, the characteristics of the 

degrading system are assumed to be known a priori. 

The method, based on pseudoinverse matrix, is apply 

for the removal of blur in an image caused by uniform 

linear motion. This method assumes that linear motion 

corresponds to an integral number of pixels. For 

comparison, we used two commonly used filters from 

the collection of least-squares filters, namely Wiener 

filter and the constrained least-squares filter [2]. Also we 

used in comparison the iterative nonlinear restoration 

based on the Lucy-Richardson algorithm [3]. 

This paper is organized as follows. In the second 

section we present process of image formation and 

problem formulation. In Section III we describe a 

method for the restoration of the blurred image. We 

observe certain enhancement in the parameters: ISNR 

and PSNR, compared with other standard methods for 

image restoration, which is confirmed by the numerical 

examples reported in the last section. 

 

II. MODELING OF THE PROCESS OF THE 

IMAGE FORMATION 

 

We assume that the blurring function acts as a 

convolution kernel or point-spread function ),( 21 nnh  

and the image restoration methods that are described 

here fall under the class of linear spatially invariant 

restoration filters. It is also assumed that the statistical 

properties (mean and correlation function) of the image 

do not change spatially. Under these conditions the 

restoration process can be carried out by means of a 

linear filter of which the point-spread function (PSF) is 

spatially invariant. These modeling assumptions can be 

mathematically formulated as follows. If we denote by 

),( 21 nnf  the desired ideal spatially discrete image that 

does not contain any blur or noise, then the recorded 

image ),( 21 nng  is modeled as [2]: 
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The objective of the image restoration is to make an 

estimate ),( 21 nnf  of the ideal image, under the 

assumption that only the degraded image ),( 21 nng  and 

the blurring function ),( 21 nnh  are given. 

The problem can be summarized as follows: let H be 

a nm ×  real matrix. Equations of the form: 

 
nmnm HfgHfg ×ℜ∈ℜ∈ℜ∈= ;;,   (2) 

 

describe an underdetermined system of m simultaneous 

equations (one for each element of vector g) and 

1−+= lmn  unknowns (one for each element of vector 

f). Where the index l indicates horizontal linear motion 

blur in pixels.  

The problem of restoring an image that has been 

blurred by uniform linear motion, usually results of 

camera panning or fast object motion can be expressed 

as, consists of solving the underdetermined system (2). 

A blurred image can be expressed as: 
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The elements of matrix H are defined as: lhi /1=  

for i=1, 2,..., l. The objective is to estimate an original 

row per row f (contained in the vector Tf ), given each 

row of a blurred g (contained in the vector Tg ) and a 

priori knowledge of the degradation phenomenon H. We 

define the matrix F as the deterministic original image, 

its picture elements are ijF  for i=1,…, r and for j=1,…, 

n, the matrix G as the simulated blurred can be 

calculated as follows: 
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with 1−+= lmn , where l is the linear motion blur in 

pixels. Equation (4) can be written in matrix form of the 

process of horizontal blurring as: 

 

( ) TTT FHHFG ==      (5) 

 

Since there is an infinite number of exact solutions 

for f or F in the sense that satisfy the equation Hfg = or 

TFHG = , an additional criterion that find a sharp 

restored matrix is required.  

The process of blurring with vertical motion is with 

the form: 

 

rmrm HfgHfg ×ℜ∈ℜ∈ℜ∈= ;;,   (6) 

 

where 1−+= lmr , and l is linear vertical motion blur 

in pixels. The matrix H is Toeplitz matrix as the matrix 

given in (3), but with other dimensions. The matrix form 

of the process of vertical blurring of the images is: 

 
nrrmnm

FHGHFG
×××

ℜ∈ℜ∈ℜ∈= ;;,    (7) 

                                   

III. METHOD FOR THE REMOVAL OF BLUR  

IN THE IMAGES 

 

The notion of pseudoinverse matrix of square or 

rectangular pattern is introduced by H. Moore in 1920 

and again from R. Penrose in 1955, who was not aware 

of the work of Moore. Let T is real matrix with 

dimension nm ×  and )(Tℜ  is the range of T. The 

relation of the form: 

 
mnm

RbRTbTx ∈∈=
×

,,     (8) 

 

are obtained in the analysis and modeling of many 

practical problems. It is known that when T is a singular 

matrix, its unique pseudoinverse matrix is defined.  

In case when T is real matrix with dimension nm × , 

Moore and Penrose proved that pseudoinverse matrix 
†

T  is a unique matrix that satisfies the following four 

relations: 

 

• TTTT =†   

• †††
TTTT =  

• †† )( TTTT T =         (9) 

• TTTT T †† )( =  

 

We will use the following proposition from [6]: 

Let 
mnm

RbRT ∈∈
×

, , )(Tb ℜ∉  and we have a 

relationship bTx = , then we have ubT =† , where u 

is the minimal norm solution and †
T  is the 

pseudoinverse matrix of T.  

 

Since relation (2) has infinitely many exact solutions 

for f, we need an additional criterion for finding the 

necessary vector for restoration. The criterion that we 

use for the restoration of blurred image is the minimum 

distance between the measured data: 

 

)ˆmin( gf −                               (10) 

 

where f̂  are the first m elements of the unknown image 

f, which is necessary to restore, with the following 

constraint: 

 

.0=− gHf                                (11) 
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Following the above proposal, only one solution of 

the relation Hfg =  minimizes the norm gHf − . If 

this solution is marked by f̂ , then for it is true: 

 

gHf †ˆ =                               (12) 

 

Taking into account the relations of horizontal 

blurring (2) and (5), and relation (12) solution for the 

restored image is: 

 
TT HGHGF )()(ˆ †† ==                              (13) 

 

In the case of process of vertical blurring solution 

for the restored image, taking into account equations (6), 

(7) and (12), is: 

 

GHF †ˆ =                               (14) 

 

IV. EXPERIMENTAL RESULTS 

 

In this section we have tested the method based on 

pseudoinverse matrix (PIM method) of images and 

present numerical results and compare with two standard 

methods for image restoration called least-squares 

filters: Wiener filter and constrained least-squares filter 

and the iterative method called Lucy-Richardson 

algorithm.  

The experiments have been performed using Matlab 

programming language on an Intel(R) Core(TM) i5 CPU 

M430 @ 2.27 GHz 64/32-bit system with 4 GB of RAM 

memory running on the Windows 7 Ultimate Operating 

System. 

In image restoration the improvement in quality of 

the restored image over the recorded blurred one is 

measured by the signal-to-noise ratio (SNR) 

improvement is defined as follows in decibels [7]: 
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The improvement in SNR is basically a measure that 

expresses the reduction of disagreement with the ideal 

image when comparing the distorted and restored image. 

Note that all of the above signal-to-noise measures can 

only be computed in case the ideal image is available, 

i.e., in an experimental setup or in a design phase of the 

restoration algorithm. 

The simplest and most widely used full-reference 

quality metric is the mean squared error (MSE) [8], 

computed by averaging the squared intensity differences 

of restored and reference image pixels, along with the 

related quantity of peak signal-to-noise ratio (PSNR). 

These are appealing because they are simple to 

calculate, have clear physical meanings, and are 

mathematically convenient in the context of 

optimization.  

The advantages of MSE and PSNR are that they are 

very fast and easy to implement. However, they simply 

and objectively quantify the error signal. With PSNR 

greater values indicate greater image similarity, while 

with MSE greater values indicate lower image similarity. 

Below MSE, PSNR are defined: 
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=

MSE

MAX
PSNR 10log20 (dB),                            (17) 

 

where MAX is the maximum pixel value. 

 

A. Horizontal motion 

 

The X-ray image making provides a crucial method 

of diagnostic by using the image analysis. Fig. 1, 

Original Image, shows such a deterministic original X-

ray image. Fig. 1, Degraded Image, presents the 

degraded X-ray image for l=35.  

Finally, from Fig. 1, PIM Restored Image, Wiener 

Restored Image, Constrained LS Restored Image and 

Lucy-Richardson Restored Image, it is clearly seen that 

the details of the original image have been recovered.  

These figures demonstrate four different methods of 

restoration, method based on pseudoinverse matrix, 

Wiener filter, Constrained least-squares (LS) filter, and 

Lucy-Richardson algorithm, respectively. 

 

 

 
Fig. 1 Restoration in simulated degraded X-ray image  

for length of the horizontal blurring process, l=35 

 

The difference in quality of restored images can 

hardly be seen by human eye. For this reason, the ISNR 

and PSNR have been chosen in order to compare the 

restored images. Fig. 2 and Fig. 3 shows the 

corresponding ISNR and PSNR values.  

The figures illustrate that the quality of the 

restoration is as satisfactory as the classical methods or 

better from them (l<100 pixels). Realistically speaking, 

large motions do not occur frequently in radiography. 
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Fig. 2 Improvement in signal-to-noise-ratio vs.  

length of the blurring process in pixels 

 
Fig. 3 Peak signal-to-noise-ratio vs.  

length of the blurring process in pixels 

 

B. Vertical Motion 

 

Obviously the method is not restricted to 

restoration of X-ray images. We can consider another 

practical example with images of ANPR (Automatic 

Number Plate Recognition) system. The results present 

in Fig. 4 – 6 refer when we have vertical blurring 

process. 

 

 
Fig. 4 Restoration in simulated vertical degraded image 

for length of the blurring process, l=30 

 
Fig. 5 Improvement in signal-to-noise-ratio vs.  

length of the blurring process in pixels 

 
Fig. 6 Peak signal-to-noise-ratio vs.  

length of the blurring process in pixels 

 

V. CONCLUSIONS 

 

We introduce a computational method, based on the 

pseudoinverse matrix, to restore an image that has been 

blurred by uniform linear motion. We are motivated by 

the problem of restoring blurry images via well 

developed mathematical methods and techniques based 

on pseudoinverse matrix in order to obtain an 

approximation of the original image.  

We present the results by comparing our method and 

that of the Wiener filter, Constrained least-squares filter 

and Lucy-Richardson algorithm, well established 

methods used for fast recovery and restoration of high 

resolution images.  

In the method we studied, the resolution of the 

restored image remains at a very high level, yet the ISNR 

is considerably higher while the computational 

efficiency is improved in comparison to other methods 

and techniques.  
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