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JP.096. Let a,b,c positive numbers such that a* + b* 4+ ¢* = 3.
Prove that
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Proposed by Nguyen Ngoc Tu - Ha Giang — Vietnam

JP.097. Let a,b,c > 0 such that (a + b)(b+ ¢)(c + a) = 8.

Prove that
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Proposed by Nguyen Ngoc Tu - Ha Giang — Vietnam

JP.098. Let a, b, and c be the side lengths of a triangle ABC with
incenter I. Prove that
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Proposed by George Apostolopoulos — Messolonghi — Greece

JP.099. Find the value of the following expression:
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where = tan 20, y = tan 40, z = tan 80.

Proposed by Kevin Soto Palacios - Huarmey - Peru

JP.100. Let in triangle wg,, wp, w. be the angle bisectors and R, r

the circumradius and inradius respectively. Prove the inequality:
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Proposed by D.M. Batinetu — Giurgiu — Romania, (Martin Lukarevski = Skopje

JP.101. Let z,y, z be positive real numbers with xyz = 1.
Prove that:
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Proposed by George Apostolopoulos — Messolonghi — Greece

JP.102. Let x,y,z > 0 be positive real numbers. Then
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Proposed by D.M. Batinetu — Giurgiu — Romania, Martin Lukarevski — Skopje
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