

Meat sales forecasting (Panvita Group)

ESGI SI: European Study Group Mathematics With Industry Workshop 2017 Bled, Slovenia

Team Members

Coordinator: Alen Vegi Kalamar Panvita Group: Simon Ravnič

Members: Biljana Zlatanovska

Limonka Koceva Lazarova

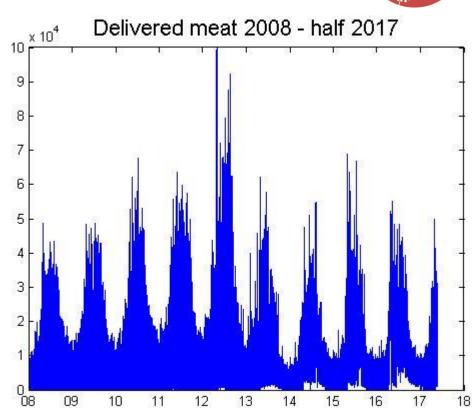
Mircea Simionica

Mentors: Drago Bokal

Janja Jerebic

- Meat production
- Goal:
- oFreshly prepared meat for consumers
- oReduce the quantity of discarded meat
- Solution:
- Predicting the quantity of meat sold per day
- The forecasting model for few days ahead

Problem Procedure


- Worker makes an estimation for the procurement of meat
- Experience
- Movement of orders
- The procured meat is processed
- Expiry date of 8 days
- Transport of prepared meat
- Procedure time: 2 days

Problem Data

EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

- Daily orders from 2008 onwards
- Daily supply from 2008 onwards

 Clear seasonal patterns with spikes in the summer

ESGI Slovenia was supported by COST Actio

Bibliography overview

Modelling techniques:

- Neural Networks (Classical, Adaptive, Fuzzy, Self Organizing Maps, various inputs)
- Regression (linear, logistic, ARIMA, support vector machines),
- Model Trees (Cluster and forecast models),
- Genetic Algorithms (combined with ANN),
- Combinations.

Input Feature Sets:

- Time (month, day of week)
- Autoregressive (day before, week before, weeks before)
- Weather (temperature, solar irradiation/cloudiness).

Statistical tools used

 Different models have been employed: Multiple Linear Regression, Support Vector Regression, Autoregressive models

 Goodness of fit benchmarked through Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE)

$$MAPE = \frac{100}{n} \sum_{i=1}^{n} \left| \frac{Y_i - \hat{Y}_i}{Y_i} \right| \qquad RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}$$

A starting point ...

Brute force approach: regress, regress some more & check goodness of fit

MLR models making use of whole data

Description	MAPE	RMSE
MLR + weekdays, months, incomes, holidays (all)	81.92	7158.92
MLR + weekdays, months, incomes, holidays (BIC)	81.68	7167.11
MLR + weekdays, months, incomes, holidays, weather (all)	83.18	7179.68
MLR + weekdays, months, incomes, holidays, weather (BIC)	83.16	7201.38
MLR + weekdays, months, incomes, holidays, weather, supply before (all)	39.18	5140.61
MLR + weekdays, months, incomes, holidays, weather, supply before (BIC)	43.35	5254.39
MLR + months and supply 3, 14, 21 and 28 days before	37.22	5276.60

Problem data ... a closer look to patterns

Weekday	Week n	Week n + 1
Monday	4933.568	4716.28
Tuesday	7251.472	10411.67
Wednesday	4301.298	5694.955
Thursday	7574.879	9042.782
Friday	10935.74	11492.02
Saturday	4202.074	5455.222
Sunday	0	0

Similar patterns throughout the weeks

Different model for each day of the week?

MLR models for Monday

Description	MAPE	RMSE
MLR + weekdays, months, incomes, holidays, weather, supply before (all)	56.13	6111.01
MLR + weekdays, months, incomes, holidays, weather, supply before (BIC)	51.30	5459.23
MLR + supply two days before	26.51	5508.53

MLR models for Friday

Description	MAPE	RMSE
MLR + weekdays, months, incomes, holidays, weather, supply before (all)	18.15	5798.07
MLR + weekdays, months, incomes, holidays, weather, supply before (BIC)	15.01	5421.85
MLR + supply one, two, three, seven and eight days before	10.90	4859.27
MLR + supply one, two, seven and eight days before	10.98	4821.86

Support Vector Regression (SVR)

SVR models making use of whole data

Description	MAPE	RMSE
SVR + weekdays, months, incomes, holidays (all)	44,41	6809,05
SVR + weekdays, months, incomes, holidays (BIC)	46,11	6799,67
SVR + weekdays, months, incomes, holidays, weather (all)	45,59	6986,72
SVR + weekdays, months, incomes, holidays, weather (BIC)	43,69	6770,83
SVR + weekdays, months, incomes, holidays, weather, supply before (all)	30,49	5037,80
SVR + weekdays, months, incomes, holidays, weather, supply before (BIC)	29,96	5012,11
SVR + months and supply 3, 14, 21 and 28 days before	33,94	5363,89

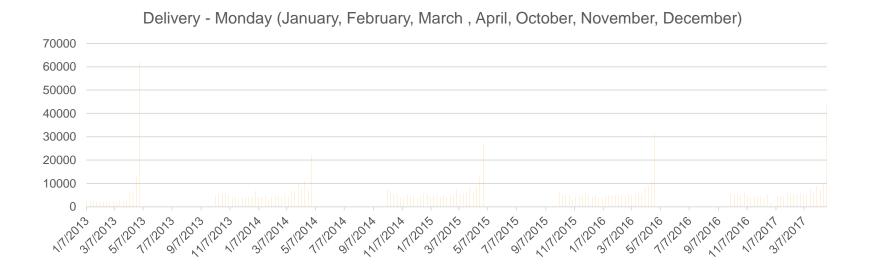
SVR models for Monday

Description	MAPE	RMSE
SVR + weekdays, months, incomes, holidays, weather, supply before (all)	41.05	4878.24
SVR + weekdays, months, incomes, holidays, weather, supply before (BIC)	53.20	5234.54
SVR + supply two days before	27.34	5450.64

SVR models for Friday

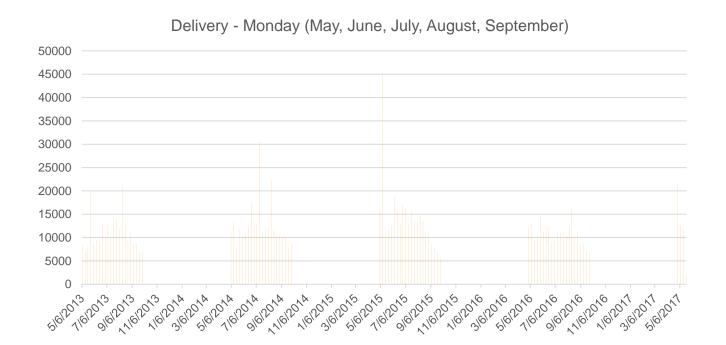
Description	MAPE	RMSE
SVR + weekdays, months, incomes, holidays, weather, supply before (all)	15.69	6600.47
SVR + weekdays, months, incomes, holidays, weather, supply before (BIC)	14.70	5164.36
SVR + supply one, two, three, seven and eight days before	11.46	4124.32
SVR + supply one, two, seven and eight days before	11.55	4311.40

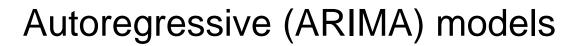
Alternative approach for future research



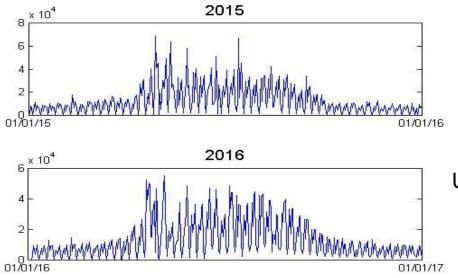
Season-based models instead of day-based ones

Problem data ... a closer look to patterns





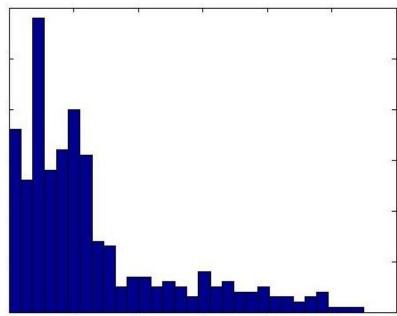
Problem data ... a closer look to patterns



- They describe a stationary timeseries by means of two polynomials: one AR (autoregressive) and one MA (moving average). AR involves regressing the variable on its own lagged values, while MA models the timeseries through error terms occurring in the past
- Tests with various parametrized ARIMA models have revealed that their power lies in forecasting the data only on short period of times. They are not suitable for long-horizon forecasts.

Problem data ... another closer look to patterns

Similar patterns throughout the years


Use past year data to predict current values?

Weekday	3° Week 2015	3° Week 2016
Monday	4185.9968	4795.9418
Tuesday	7173.2672	8705.5872
Wednesday	3070.9200	3438.3000
Thursday	6731.0924	8141.1722
Friday	5371.9748	7350.1120
Saturday	5019.3528	6661.0704
Sunday	0.0000	0.0000

Sales distribution in 2016

Geometric Brownian Motion

Let *X* be the delivered quantity and let it be governed by the following stochastic differential equation:

$$dX(t) = \mu(t)X(t)dt + \sigma(t)X(t)dW(t)$$

where W(t) is a Brownian motion. Then X is driven by the following relation:

$$X_t = X_{t-\Delta t} e^{\left(\mu_t - \frac{\sigma}{2}\right) \Delta t + \sigma_t \sqrt{\Delta t} Z_t}$$

 $X_{t-\Delta t}$ can be the one of the previous year and parameters μ and σ can be calibrated on previous month deliveries to keep track of recent developments in the market.

Thank you for your attention!