SELECTED PAPERS FROM THE 21st CONFERENCE ON THE COMPUTATION OF ELECTROMAGNETIC FIELDS (COMPUMAG 2017)
Daejeon, South Korea, June 18–22, 2017
The IEEE Magnetics Society is an association of IEEE members and affiliates with professional interests in the field of magnetics. All IEEE members are eligible for membership in the IEEE Magnetics Society upon payment of the annual Society membership fee of $26.00. Membership includes electronic access to IEEE Transactions on Magnetics and IEEE Magnetics Letters via IEEE Xplore. It is possible for members of other professional societies to become Society affiliates. Information on membership can be obtained by writing to the IEEE at the address below. Member copies of Transactions/Journals are for personal use only.

IEEE TRANSACTIONS ON MAGNETICS

IEEE OFFICERS

FOR MORE INFORMATION CALL: 201-568-3700

IEEE Magnetics Society

IEEE Executive Staff

IEEE Periodicals

Transactions/Journals Department

Senior Director, Publishing Operations: DAWN WHEELER

Director, Editorial Services: KEVIN LISINAKIE

Director, Production Services: PETER M. TUOHY

Associate Director, Information Conversion and Editorial Support: VACANT

Managing Editor: MARTIN J. MORAHA

IEEE Periodicals

Transactions/Journals Department

Senior Director, Publishing Operations: DAWN WHEELER

Director, Editorial Services: KEVIN LISINAKIE

Director, Production Services: PETER M. TUOHY

Associate Director, Information Conversion and Editorial Support: VACANT

Managing Editor: MARTIN J. MORAHA

IEEE Periodicals

IEEE Transactions on Magnetics (ISSN 0018-9464) is published monthly by The Institute of Electrical and Electronics Engineers, Inc. Responsibility for the contents rests upon the authors and not upon the IEEE, the Society, or its members. IEEE Corporate Office: 3 Park Avenue, 17th Floor, New York, NY 10016-5997. IEEE Operations Center: 445 Hoes Lane, Piscataway, NJ 08854-4141. N.J. Telephone: +1 732 981 0060. Price/Publishing Information: Individual copies: IEEE Members $20.00 (first copy only), nonmembers $178.00 per copy. (Note: Postage and handling charge not included.) Member and nonmember subscription prices available upon request. Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy for private use of patrons, 1) provided the per-copy fee of $31.00 is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. 2) For all other copying, reprint, or republication permission, write to: Copyrights and Permissions Department, IEEE Publications Administration, 445 Hoes Lane, Piscataway, NJ 08854-4141. Copyright ©2018 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Periodicals Postage Paid at New York, NY and at additional mailing offices. Postmaster: Send address changes to IEEE Transactions on Magnetics, IEEE, 445 Hoes Lane, Piscataway, NJ 08854-4141. GST Registration No. 125634188. CPC Sales Agreement #40013087. Return undeliverable Canada addresses to: Pitney Bowes IMEX, P.O. Box 4352, Stanton Rd., Toronto, ON M5W 3J4, Canada. IEEE prohibits discrimination, harassment and bullying. For more information visit http://www.ieee.org/nondiscrimination. Printed in U.S.A.
IEEE TRANSACTIONS ON MAGNETICS

Editors
Pavel Kabos, Editor-in-Chief, National Institute of Standards and Technology, Boulder, Colorado, USA, pavel.kabos@nist.gov
AMR Adly, University of Cairo, Cairo, Egypt, amradly@intouch.com
ANTONIO AZEVEDO, Universidade Federal de Pernambuco, Brazil, aac@ufpe.br
C. SINGH BHATIA, National University of Singapore (NUS), Singapore, elebc@s.nus.edu.sg
DANIEL BURGERT, Peter Grünberg Institut Electronic Properties, Jülich, Germany, d.burgert@fz-juelich.de
ZHIQIANG CHEN, University of Colorado at Colorado Springs, Colorado, USA, zccolinska@uccs.edu
J. R. CRUZ, The University of Oklahoma, Norman, Oklahoma, USA, jrcruz@ou.edu
KENT DAVEY, The University of Texas at Austin, Austin, Texas, USA, kdevay@ieee.org
DAVID DORRELL, University of KwaZulu-Natal Durban, South Africa, dorrell@ukzn.ac.za
LUC DUPRÉ, Université Gent, Ghent, Belgium, luc.dupre@ugent.be
SILVIO DUTZ, Technische Universität Ilmenau, Germany, silvio.dutz@tu-ilmenau.de
JUAN FERNANDEZ-DE-CASTRO, Seagate Corporation, Bloomington, Minnesota, USA, juan_fdc@hotmail.com
KEISUKE FUJISAKI, Toyota Technological Institute, Nagoya, Japan, fujisaki@toyota-td.ic.j
KAY HAMEYER, RWTH Aachen University, Aachen, Germany, kay.hameyer@iem.rwth-aachen.de
MANGUI HAN, University of Electronic Science and Technology of China, Chengdu, China, mangui@gmail.com
MIN-FU HSIEH, National Chiao Tung University, Taiwan, mfhsieh@mail.ncku.edu.tw
NICOLETA LUPU, National Institute of R&D for Technical Physics, Romania, nicoile@phys-iasi.ro
LESZEK MALKINSKI, University of New Orleans, New Orleans, Louisiana, USA, lmalkins@uno.edu
MANI MINA, Iowa State University, Ames, Iowa, USA, mmina@iastate.edu
S. N. (PREM) PIRAMANAYAGAM, Nanyang Technological University, Singapore, prem@ntu.edu.sg
MARTIN J. SABLICK, Southwest Research Institute, San Antonio, Texas, USA, msabl@ieee.org
ANDREI SLAVIN, Oakland University, Michigan, USA, slavin@oakland.edu
NIAN SUN, Northeastern University, Boston, Massachusetts, USA, n.sun@neu.edu
JAN K. SYRKULSKI, University of Southampton, Southampton, U.K., jks@soton.ac.uk
LALITA UDPA, Michigan State University, East Lansing, Michigan, USA, udpal@egr.msu.edu
JIABIN WANG, The University of Sheffield, Sheffield, U.K., j.i.wang@sheffield.ac.uk
MASAHIRO YAMAGUCHI, Tohoku University, Sendai, Japan, yamaguti@ceei.tohoku.ac.jp
MACIEJ ZBOROWSKI, Cleveland Clinic, Cleveland, Ohio, USA, zborkowm@cff.org
ZHENG ZHANG, Tianjin University, China, zhangz@coe.tjtu.edu

Prospective authors of extended invited papers should contact the Advances in Magnetics Magazine. Interested in publishing selected, peer-reviewed papers in IEEE TRANSACTIONS ON MAGNETICS should contact the Conference Editor.

Editorial Board
J. A. BAIN
E. DELLA TORRE
O. KAZAKOVA
R. D. MCMICHAEL
D. R. RIZZO
T. SCHREFL
J. SUZUKI
S. T. VICTORA
W. C. CAIN
J. FIDLER
Y. K. KIM
A. PATAPOUTIAN
S. RUSSEK
N. D. RIZZO
B. VASIC
M. CARPENTERI
R. F. HOYT
I. D. MAYERGOYZ
A. PRABHAKAR
T. SUZUKI
S. RUSSEK
N. D. RIZZO
B. VASIC

INFORMATION FOR AUTHORS

The IEEE TRANSACTIONS ON MAGNETICS is published 12 times per year. Submitted manuscripts should be in areas of science and technology related to the basic physics of magnetism, magnetic materials, applied magnetics, and magnetic devices.

The submission of a manuscript to the IEEE TRANSACTIONS ON MAGNETICS implies that it has not been copyrighted or published and that it has not been submitted or accepted for publication elsewhere. All manuscripts considered for publication are subject to peer review and the established technical and editorial standards of the Transactions. The IEEE TRANSACTIONS ON MAGNETICS strongly discourages courtesy authorship. It is the obligation of the authors to cite relevant prior work. IEEEs plagiarism guidelines are available at https://www.ieee.org/publications_standards/publications/rights/plagiarism/index.html The Transactions is available electronically on IEEE Xplore, http://ieeexplore.ieee.org/ The IEEE TRANSACTIONS ON MAGNETICS publishes articles in the following five categories:

1) Classics in Magnetics—re-publications of articles that represent important landmarks in the development of magnetics.
2) Advances in Magnetics—technical articles providing critical reviews of current topics by noted experts.
3) Contributed Papers—unsolicited technical articles of archival values, typically less than 15 printed pages in length.
4) Communications—short technical articles of archival value, limited to a maximum of four printed pages in length. Communications are not intended to report preliminary work.
5) Selected Conference Papers—technical articles of archival value in connection with certain magnetics related conferences. Authors submitting papers in this category must follow specific instructions provided by special conference guest editors and send their manuscripts directly to those editors.

The author will need a registered ORCID in order to submit a manuscript or review a proof in this journal.

The submission of a manuscript to the IEEE TRANSACTIONS ON MAGNETICS does not solicit page charges. Authors may order reprints; detailed instructions will accompany the galley proof. Color printing is available for a charge of $275 per figure. The corresponding author of the article will have the opportunity to address the color-in-print option during an "Article Setup" step. All invoices and payments are handled through an automated payment portal system. The payment portal allows various payment types such as credit card, bank wire transfers, check, pre-approved waivers, special payment circumstances, and third party billing. Please note that split payments are not supported at this time. If you have any questions, please contact oaprocessing@ieee.org for Open Access processing and reprints@ieee.org for all other charges. There is no charge for color figures in the electronic version.

Copyright: It is the policy of IEEE to own the copyright to the technical contributions it publishes on behalf of the interests of the IEEE, its authors, and their employers, and to facilitate the appropriate reuse of this material by others. To comply with the U.S. Copyright Law, authors are required to sign an IEEE Copyright Form before publication. This form, a copy of which appears at http://www.ieee.org/documents/seoec/ml_rightform.pdf, returns to authors and their employers full rights to reuse their material for their own purposes. Authors will be required to file a copyright form electronically when their paper is submitted for publication.

Digital Object Identifier 10.1109/TMAG.2018.2801641
Chairman’s Foreword

The 21st edition of the International Conference on the Computation of Electromagnetic Fields (Compumag 2017) took place from June 18 to 22, 2017, at the Daejeon Convention Center (DCC), in Daejeon—referred to as “Asia’s Silicon Valley”—in South Korea. The conference has been held every two years since the first meeting in Oxford, U.K., in 1976, and has provided a discussion forum for the international community of researchers studying electromagnetic fields. Compumag provides a great opportunity to exchange ideas productively, contributing to the development of innovative technologies and new research areas. We hope computational electromagnetics will continue to prosper, and electromagnetic systems will improve partly thanks to Compumag 2017.

As a premier technical conference on the numerical computation of electromagnetic fields, Compumag 2017 attracted over 400 researchers from 29 countries in five continents. The fact that 33% of the attendees were students demonstrates the attractiveness of the relevant research fields, including mathematical modeling and formulations, multi-physics and coupled problems, novel computational methods, numerical techniques, optimization and design, etc. The Technical Program Committee of the Conference received 730 papers covering 12 major topics. The digests were thoroughly reviewed, each by at least two reviewers, following Compumag regulations and IEEE TRANSACTIONS ON MAGNETICS standards. In total, 454 papers were selected for presentation, of which 122 were from China, making the largest contribution, followed by South Korea with 90 and Japan with 45. Thanks to the enthusiasm and effort of a number of researchers, leading-edge research on novel techniques and methodologies was presented, especially in optimization and design with 134 papers, static and quasi-static fields with 51, and numerical techniques with 45. In addition, a variety of other topics were covered in oral sessions, with a total of 147 participants sharing their research findings through active debate and discussion. We hope this sharing of ideas at Compumag 2017 will contribute to the technological development of computational electromagnetics.

Compumag 2017 featured 29 poster and 8 oral sessions, attended by 417 delegates from 29 countries. As the conference was hosted by the DCC with large exhibition halls, we were able to create a wonderful atmosphere for enthusiastic discussions. In particular, during the conference, the Rita Trowbridge Award was presented to those young researchers who demonstrated the highest technical quality throughout the conference. The awards committee was chaired by Professor Ruth Sabariego, KU Leuven, Belgium. The first prize was awarded to Sebastian Schuhmacher, Magstadt, Germany, and runner-up commendations to Ji Qiao, Tsinghua University, China; Shingo Hiruma, Hokkaido University, Japan; and Bernard Kapidani, University of Udine, Italy.

All authors of the papers presented at the conference were invited to submit extended and enhanced manuscripts for publication in IEEE TRANSACTIONS ON MAGNETICS. We hope that you will find all work published useful and inspirational for the next Compumag.

Compumag 2017 was organized thanks to the effort of many professors and students from several universities in South Korea. My deep gratitude goes to all volunteers, reviewers, and all those who contributed to the organization. I would particularly wish to thank Prof. Chang-Seop Koh, Prof. Kyung Choi, Prof. Sang-Yong Jung, and Prof. Jang-Young Choi, for their hard work and for making the event such a success. Finally, on behalf of the organizers, I want to thank all the participants and I hope you have wonderful memories of Compumag 2017. We now all look forward to Compumag 2019 in Paris.

HYUN-KYO JUNG, General Chair
Compumag 2017
IEEE TRANSACTIONS ON
MAGNETICS
A PUBLICATION OF THE IEEE MAGNETICS SOCIETY

MARCH 2018 VOLUME 54 NUMBER 3 IEMGAQ (ISSN 0018-9464)

SELECTED PAPERS FROM THE 21st CONFERENCE ON THE COMPUTATION OF ELECTROMAGNETIC FIELDS (COMPUMAG 2017)
Daejeon, South Korea, June 18–22, 2017

0200201 Compumag 2017 Chairman’s Foreword
H.-K. Jung

0200301 Preface From the Editor-in-Chief
J. Sykulski

0200402 Compumag 2017 Conference Organization

PAPERS

Theory and Computation: Spin Phenomena, Dynamics, Interactions
1300105 Core Loss Calculation Based on Finite-Element Method With Jiles–Atherton Dynamic Hysteresis Model
Y. Li, L. Zhu, and J. Zhu

1300204 Electromagnetic Field Analysis Considering Reaction Field Caused by Eddy Currents and Hysteresis Phenomenon in Laminated Cores
K. Yamazaki and Y. Sakamoto

1300304 Effects of Multi-Axial Mechanical Stress on Loss Characteristics of Electrical Steel Sheets and Interior Permanent Magnet Machines
K. Yamazaki, H. Mukaiyama, and L. Daniel

1300404 Shape Optimization Procedure of Interior Permanent Magnet Motors Considering Carrier Harmonic Losses Caused by Inverters
K. Yamazaki and Y. Togashi

Soft Magnetic Materials, Alloys and Films
2000304 Numerical Modeling and Material Characterization for Multilayer Magnetically Shielded Room Design
A. Canova, F. Freschi, L. Giaccone, and M. Repetto

Hard Magnetic Materials, Alloys and Films
2100404 Pulsed-Field Magnetometer Measurements and Pragmatic Hysteresis Modeling of Rare-Earth Permanent Magnets
G. Glehn, S. Steentjes, and K. Hameyer

2100505 A Hysteresis Model Based on Linear Curves for NdFeB Permanent Magnet Considering Temperature Effects

Nanostructured and Patterned Materials
2300304 Study of Strain Effects on Carbon-Based Transistors With Semi-Analytic and Ab Initio Models
Y. Zheng, F. Zanella, G. Valerio, C. A. Dartora, and Z. Ren
A Full-Wave Integral Equation Method Including Accurate Wide-Frequency-Band Wire Models for WPT Coils
S. Bilicz, Z. Badics, S. Gyimóthy, and J. Pávó

Electromagnetic Simulation of Rotating Propeller Blades for Radar Detection Purposes
K. Marák, T. Pető, S. Bilicz, S. Gyimóthy, and J. Pávó

Coupling Volume and Surface Integral Formulations for Eddy-Current Problems on General Meshes
P. Bettini, M. Passarotto, and R. Specogna

Adaptive Sampling of Physical Optics Currents Based on EFIE Error Prediction

Iterative Kriging-Based Methods for Expensive Black-Box Models
S. Deng, R. El Bechari, S. Brisset, and S. Clénet

Transient Behavior of Large Transformer Windings Taking Capacitances and Eddy Currents Into Account
K. Preis, W. Renhart, A. Rabel, and O. Bíró

Enhanced Meta-Model-Based Optimization Under Constraints Using Parallel Computations
R. El Bechari, S. Brisset, S. Clénet, and J.-C. Mipo

Adjoint Technique for Sensitivity Analysis of Coupling Factors According to Geometric Variations
S. Schuhmacher, A. Klaedtke, C. Keller, W. Ackermann, and H. De Gersem

High-Frequency Electromagnetic Field Analysis by COCR Method Using Anatomical Human Body Models
A. Takei, M. Ogino, and S. Sugimoto

Data-Driven Multi-Element Arbitrary Polynomial Chaos for Uncertainty Quantification in Sensors
O. Alkhateeb and N. Ida

Stability Analysis of Time Domain Discontinuous Galerkin H–Φ Method for Eddy Current Simulations
J. Smajic, M. Bucher, R. Christen, and Z. Tanasíc

Multi-Domain Transmission Conditions for Domain Decomposition Methods Applied to Scattering Problems
I. A. Baratta and E. J. Silva

Efficient Perturbation Method for Computing Two-Port Parameter Changes Due to Foreign Objects for WPT Systems
J. Pávó, Z. Badics, S. Bilicz, and S. Gyimóthy

An Adaptive FEM Based on Magnetic Field Conservation Applying to Ferromagnetic Problems
S. Noguchi, S. Matsutomo, and V. Cingoski

SCSM for Calculation of Motion-Induced Eddy Currents in Isotropic and Anisotropic Conductive Objects
M. Ziolkowski, R. Schmidt, B. Petković, S. Gorges, J.-M. Otterbach, K. Weise, and H. Brauer

Finite-Element Analysis for Surface Discharge Due to Interfacial Polarization at the Oil-Nanocomposite Interface

Eddy-Current-Effect Homogenization of Windings in Harmonic-Balance Finite-Element Models Coupled to Nonlinear Circuits
R. V. Sabariego, K. Niyomsatian, and J. Gyselinck

New Type of Second-Order Tetrahedral Edge Elements by Reducing Edge Variables for Quasi-Static Field Analysis
A. Ahagon, A. Kameari, H. Ebrahimi, K. Fujiwara, and Y. Takahashi

H-Formulation Using the Discontinuous Galerkin Method for the 3-D Modeling of Superconductors
L. Makong, A. Kameni, L. Queval, F. Bouillault, and P. Masson
An Adaptive FEM Based on Magnetic Field Conservation Applying to Ferromagnetic Problems

So Noguchi1, Shinya Matsutomo2, and Vlatoko Cingoski4

1Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
2National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 USA
3National Institute of Technology, Niihama College, Niihama 792-8580, Japan
4Faculty of Electrical Engineering, University “Goce Delcev”-Stip, 1000 Skopje, Macedonia

We have previously been proposed a novel adaptive finite-element method (FEM) based on a magnetic field conservation indicator and a non-conforming mesh-refinement technique. However, we have applied to a very simple model consisting of a single permanent magnet for basic verification of the proposed method. In this paper, we have improved an error indicator, and tried to apply a newly proposed adaptive FEM to more complicated models, where ferromagnetic material is included. The newly proposed method is superior in torque error estimation to the Zienkiewicz–Zhu (ZZ) error estimation method in a 3-D permanent magnet motor model.

Index Terms—Adaptive finite-element method (FEM), error estimation, magnetic field conservation, non-conforming mesh.

I. INTRODUCTION

A NOVEL adaptive finite-element method (FEM) has previously been proposed utilizing a magnetic field conservation evaluation as an error indicator and a non-conforming mesh-refinement technique as a mesh-refinement scheme [1]. Our goal is to improve the simulation accuracy with less number of elements. Though the performances of PCs are enhanced, the generation of an unnecessary large number of elements is undesirable to adaptive FEMs.

Some error indicators were proposed [2]–[5], and an error indicator based on the conservation of magnetic field \(H\) on the interface between two elements [1], [5] are very promising from the mathematical viewpoint. Meanwhile, a few kinds of non-conforming techniques were also proposed such as the discontinuous Galerkin method [6], the mortar FEM [7], and the mesh interpolating method [8]. The interpolating method is well suited for the proposed adaptive FEM [1].

The previously proposed adaptive FEM resulted in the generation of a suitably dense mesh with less number of elements. The proposed method has two advantages: 1) it is possible to indicate an error on element surfaces between different materials and 2) it is easy to subdivide badly evaluated elements into smaller ones, even though they are elements on object boundary. That is, it is easily applicable to a complicated simulation model including iron cores or plural kinds of materials. However, we have never shown any result of models containing multiple materials.

In this paper, first of all, two modifications on the error indicator are shown. Then, the proposed adaptive FEM is applied to two models: a single permanent magnet and iron core model, and a surface permanent magnet (SPM) motor model. In the SPM motor model, the computation of torque is enhanced using the proposed error indication. It is well known that it is difficult to compute the torque without

\[
d_{i,j} = \int_S (\mathbf{H}_i \times \mathbf{w}_j) \cdot \mathbf{n}_i dS \quad (i = 1, 2 \text{ and } j = a, b, c)
\]

(1)

where \(i, j, S, \mathbf{H}, \mathbf{w},\) and \(\mathbf{n}\) are the indices of adjacent elements and edges (see Fig. 2), the element surface, the magnetic field strength, the vector interpolation function, and the unit vector normal to the element surface \(S\), respectively. However, on the surface of permanent magnet, the indicator (1) must be

\[
d_{i,j} = \int_S (\mathbf{H}_i - K_i) \times \mathbf{w}_j \cdot \mathbf{n}_i dS
\]

(2)
where K is the equivalent surface current on the surface of permanent magnet.

Due to the magnetic field conservation, the following equations with respect to all three edges per element surface must hold:

$$D_j = d_{1,j} + d_{2,j} = 0 \ (j = a, b, c).$$

(3)

As a result of the conventional edge-based FEM, the values of D_j are not zero. Therefore, as the final error indicator E of the previous paper [1], we proposed

$$E = \max(|D_a|, |D_b|, |D_c|).$$

(4)

However, the value of the larger error indicator E strongly depends on the angle between the vector $(H - K)$ and the edges. Therefore, we have newly proposed the following error indicator:

$$\tilde{E} = (|D_a|^2 + |D_b|^2 + |D_c|^2)^{\frac{1}{2}}.$$ \hspace{1cm} (5)

Using (5), the new error indicator \tilde{E} is independent of the angle between the vector $(H - K)$ and the edges. Since the component of magnetic field H tangential to the element surface is continuous on the boundary of different materials, this error indicator becomes useful, robust, and effective.

B. Non-Conforming Mesh Refinement Scheme

A mesh-refinement task is burdensome in the conventional adaptive FEM. As a mesh-making method, the Delaunay triangulation method is well known and widely used. However, many ill-quality elements, such as flat or inside-out elements, are often generated with adaptive steps. In the proposed mesh-refinement scheme, one element indicated with a large error is subdivided into eight smaller elements. Actually, using the above error indicator, two elements are simultaneously evaluated, so two elements with a large error become 16 smaller elements. Some of these elements to be subdivided have a surface sharing with an element not to be subdivided, a non-conforming surface is generated there (see Fig. 3). Since nodes are placed on edges for element subdivision, the non-conforming refinement scheme is easily applicable to elements even on the boundary of analysis objects. The level difference of subdivision between two neighboring tetrahedrons is limited to two, in order to avoid the sudden change of mesh density. The large mesh-size difference would make it difficult to solve the system equations.

As shown in [1], the proposed method reuses all the created constitutional matrices C on every adaptive step. As the result, on the ith step, we can obtain the following system:

$$C_i \cdots C_i^L C_i \cdots C_i \tilde{a}_i = C_i \cdots C_i^L b_i$$

(6)

where L, \tilde{a}, and b are the stiffness matrix, the vector potential on master edges, and the source vector, respectively.

In our non-conforming scheme, the larger surface is employed as a slave, and the smaller as a master. On the geometrical relation shown in Fig. 4, the relation between the master and slave is obtained as follows:

$$C\tilde{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \\ a_8 \\ a_9 \end{bmatrix}.$$ \hspace{1cm} (7)

Using the constitutional matrix (7), the vector potentials on subdivided edges are unknown, meanwhile those on the parent edges before subdivision are obtained from the interpolation of subdivided edges.

On each adaptive step, the system of equations is not renumbered and not compressed in our program code. The matrix diagonals on the slave edges are 1, meanwhile the other elements are 0. Although the memory wastes, it is easy to make a program of adaptive FEM as a hierarchical repeatable function. The obtained system is solved by the incomplete Cholesky conjugate gradient.

III. APPLICATIONS

To confirm the validity of the proposed adaptive FEM, it was applied to two models including ferromagnetic materials: a simple model and an SPM motor model.

A. Simple Model (Permanent Magnet and Iron Core)

The proposed adaptive method is robust to models consisting of multiple materials with different permeability, such as a permanent magnet and an iron. To show the effectiveness of the proposed adaptive FEM, it is applied to a model consisting
The specifications of a permanent magnet and an iron, as shown in Fig. 5. Fig. 5 also shows the simulation specifications.

The initial rough mesh of 18,838 elements was created by commercial software. The magnetic energy error of the initial mesh was 7.48% as a true value of simulation result with a large number of elements. Fig. 6 presents the magnetic energy error as a function of number of elements. In the first few steps, the magnetic field error is drastically reduced. At the fifth adaptive step, the error decreased to 0.06% with 708,989 elements.

Fig. 7 shows the flux line maps visualized from the simulation result at the fifth adaptive step. The proposed adaptive FEM works as a smoother of flux lines by improving the discontinuity of the tangential component of magnetic field. Every flux line in Fig. 6 looks like enough smooth.
of the proposed method is drastically enhanced due to the improvement of the discontinuity of the tangential magnetic field component. The elements around the air gap are well subdivided as shown in Fig. 12. The final values are 0.7 mNm in the proposed method and 48.4 mNm in the ZZ method. Meanwhile, the magnetic energy error of the proposed method does not converge to zero. The ZZ method is superior in the magnetic field energy evaluation because it evaluates magnetic field energy continuity between adjacent elements as an error indicator.

Next, Fig. 13 indicates the element subdivision map in the proposed adaptive FEM. On every step from the initial to the third subdivision mesh, the elements around permanent magnet and air gap are badly evaluated. Fig. 14 shows the element subdivision map with the adaptive step in the ZZ method. As the adaptive step proceeds, the elements in the entire region are ill evaluated. Since the small elements are distributed in the entire region, the accuracy of the magnetic field energy is enhanced but the torque accuracy is not improved.

IV. CONCLUSION

The proposed method was applied to two models containing ferromagnetic materials to show the validity. Since the continuity of the magnetic field tangential to element surface was evaluated in the proposed adaptive FEM, the accuracy of torque computation in the motor model was enhanced. However, the magnetic field energy was badly evaluated.

In near future, the proposed method must be modified to enhance the magnetic field energy error. One reason of the large energy error is that the magnetic field \(H \) is too high in the air gap, and the elements in the air gap are over evaluated in the proposed adaptive FEM.

REFERENCES

Conference Author Index

A

Ackermann, W. 7204104, 7401304
Afonso, M. M. 7400904
Ahagon, A. 7200804, 7205104
Ahn, D.-G. 8201804
Ahn, J.-H. 8200604
Ahn, S. 9400204
Al Akhras, G. 9400304
Alipio, R. 7200304
Alkheeteeb, O. 7204304
Aloot, P. 7201204
Ammannatisis, S. A. 7201504
An, S. 7001104
Arkio, A. 8102004
Ataka, T. 7202804
Auchmann, B. 7000404
Aydin, U. 8102004

B

Badics, Z. 7203404, 7204604
Bai, B. 8400304
Bai, Y. 7000304
Baratta, I. A. 7204504
Bastos, J. P. A. 7300104
Batistela, N. J. 4000504
Bauernfeind, T. 7001504, 8000504
Baumgartner, P. 7001504, 8000504
Belahcen, A. 7300804, 8102004
Benjelloun, N. 9400304
Benoit, J. 8700304
Bensaid, S. 6200404
Berthiau, G. 6200604
Bettini, P. 7201204, 7202304, 7202404, 7203604
Bilic, S. 7203404, 7205304, 7204604
Birnkammer, F. 2100505
Biró, O. 7001504, 7203904, 7400804, 8000504
Boesing, M. 8101604
Bortot, L. 7000404
Bouillault, F. 4600104, 7202904, 7205204
Brackowski, N. 6000204
Brauer, H. 6200105, 6200504, 7204804
Bretas, A. S. 7202004
Brisset, S. 7203804, 7204004
Bucher, M. 7204404
Bui, H. K. 6200604
Byun, J.-K. 5000104

C

Canova, A. 2000304
Cao, W. 8200405
Cappapanera, L. 4600104
Carpentier, A. 7001104
Chadbecq, O. 7000604, 7001604
Chang, J. 8000204, 8101404, 8101904
Chang, K. 8101304
Changeng, Z. 8400104
Chao, L. 720304
Chen, B. 7401504
Chen, D. 8400304
Chen, J. 2100505, 7001304, 8102705
Chen, Z. 2100505
Cheng, S. 2100505
Cheon, W. J. 9401004
Chiarello, A. G. 7001804
Cho, H. 7000804
Cho, S.-G. 8200804
Cho, Y.-S. 9400504
Choi, C. T. M. 5100404
Choi, C. Y. 9400804
Choi, J. 9400704
Choi, J.-H. 7204904
Choi, J.-Y. 8200604
Choi, K. K. 7000804, 700904
Choi, M.-S. 5000104
Christen, R. 7204404
Christopoulos, C. 7200204
Chromik, R. 8101104
Chung, H. 7300604
Chung, T.-K. 8201704
Chung, Y.-S. 7203704, 9400504
Cicuttin, M. 7203004
Cingoski, V. 7204704
Clemens, M. 7200604
Clénet, S. 7200904, 7201404, 7202004, 7202604, 7203804, 7204004
Codecasca, L. 7203004
Cortes Garcia, I. 7000404
Cosorobaa, E. 5100004
Coulomb, J.-L. 7001604
Cozza, A. 8700304
Creusé, E. 7401204
Cui, K. 5000204

D

Daikoku, A. 7200804
Daniel, L. 1300304, 9400304
Dartora, C. A. 2300304
de Araujo Elias, R. 4000504
Debray, Q. 7001604
De Gersem, H. 7204104, 7401304
Degui, Y. 7203304
De Lorenzi, A. 7202404
Demenko, A. 8102304
Deng, S. 7203804
Deri, Y. 7202104
Di Barba, P. 7001704, 9400604
Ding, W. 8102804
Di Rienzo, L. 6300104
Dijkstra, P. 7400404
Dolcziel, J. 7401404, 8000304
Dölker, E.-M. 6200105
Dong, J. 8000704
Dong, S. 6200305
Doroznoho, H. 7401504
Du, X. 7200404, 8102905
Duan, J. H. 7001704
Duan, N. 8000804
Ducharme, B. 6100204, 6200204
Dureux, J.-P. 7401204

E

Ebrahimi, H. 7200704, 7201804, 7205104
El Bechari, R. 7203804, 7204004

F

Fahimi, B. 5100804
Fan, D. 8102104
Fan, Y. 4600204
Fang, S. 8000404, 8101805
Farah, A. A. M. 7400904
Feng, H. 8400204
Fernandez Navarro, A. M. 7000404
Formisano, A. 7001804
Fouladgar, J. 6200604
Freschi, F. 2000304
Fu, D. 6000204
Fu, W. N. 7201005
Fujiki, T. 7401504
Fujita, S. 7401005, 7401104
Fujiiwara, K. 7200804, 7205104
Furuya, A. 7202804

G

Galopin, N. 7000604
Gao, B. 7203034
Gao, Y. 7401504
Gazzana, D. S. 7200204
Ge, M. 5000204
Geng, Y. 8000704
Gerling, D. 2100505
Ghorbanian, V. 8101104
Giaccone, L. 2000304
Gillon, F. 6000204
Glehn, G. 2100404
Gong, J. 6000204
Gorges, S. 7204804
Goursaud, B. 7202604
Gragger, J. V. 7300304
Gu, W. 7401504
Guermont, J.-L. 4600104
Guichon, J.-M. 7000604
Günther, M. 8102504
Guo, Y. 8102204, 8102404
Guo, Z. 8400204
Gupta, B. 6100204, 6200204
Gyimóthy, S. 7203404, 7203504, 7204604
Gyselink, J. 7202704, 720504

H

Hackl, A. 70001504, 8000504
Hahn, S. 7201904
Ham, R. 7401404, 8000304
Hameyer, K. 2100404
Hamidizadeh, S. 8101104
Han, K. J. 9400704
IEEE Transactions on Magnetics

Aims & Scope

Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.

Persistent Link: http://ieeexplore.ieee.org/xpl/opac?punumber=20

Frequency: 12

ISSN: 0018-9464

Published by:
- IEEE Magnetics Society

Subjects
- Fields, Waves & Electromagnetics

Contacts

Editor-in-Chief
Pavel Kabos
National Institute of Standards and Technology
Boulder, CO 80305 USA
pavel.kabos@nist.gov
Phone: 303-497-3997

Editorial Office
Franklin Jones
tansmag@ieee.org

Editor-in-Chief
Affiliation
Years
Joseph J. Bialek
Bell Telephone Laboratories
1956-1957

Joseph W. Haggard
Bell
1966-1967

M. Cheng
Bell
1971-1972

Fred E. Lipson
General Electric
1972-1974

Paul W. Michael
Bell Laboratories
1976-1978

A. H. Smith
Sperry Research Center
1979-1981

Stanley L. Chaves
Carnegie Mellon University
1982-1983

Carl E. Pollard
Cornell University
1957-1959

William Land
Tulane State University
1960-1963

Ronald B. Derstine
National Inst. of Standards and Tech.
1964-2003

David C. Pinn
Coastal University
2004-2010