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JP.051. Prove that in any triangle the following relationship holds:
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nR+ (1− n) · 2r

where 0 ≤ n ≤ 1
2

.

Proposed by Marin Chirciu - Romania

JP.052. Given a, b, c > 0 and a2 + b2 + c2 = 6, prove
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Proposed by Nguyen Phuc Tang - Dong Thap - Vietnam

JP.053. If a, b, c > 0 and a+ b+ c = 3 prove that∑
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an + bn + cn

where n ≥ 0.

Proposed by Marin Chirciu - Romania

JP.054. Let ma,mb,mc be the lengths of the medians of a triangle
ABC. Prove that
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where R and r are the circumradius and inradius of ABC respec-
tively.

Proposed by Martin Lukarevski - Stip - Macedonia

JP.055. Let ABCD be an inscriptible and circumscriptible quadri-
lateral, p its semi perimeter. R and r the radii of circumcenter,
respectively incenter, a, b, c, d its sides (a and c are the opposite
sides). Prove that:
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Proposed by Vasile Jiglău - Romania

JP.056. Let sa is symedian and ra, r are exradius and inradius
triangle of ABC respectively. Prove that
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Proposed by Mehmet Şahin - Ankara - Turkey
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