
TEM Journal. Volume 6, Issue 4, Pages 888-893, ISSN 2217-8309, DOI: 10.18421/TEM64-32, November 2017.

888 TEM Journal – Volume 6 / Number 4 / 2017.

Comparing DNA Applying
Dynamic Programming: A Historical Review

Done Stojanov

Faculty of Computer Science University ,,Goce Delčev”, Štip, Macedonia

Abstract – In this paper we consider the application
of dynamic programming in bioinformatics for
comparing and aligning DNA sequences. Dynamic
programming algorithms are old-fashioned in terms of
computational complexity, but in terms of accuracy
these algorithms are still irreplaceable.

Keywords – dynamic programing, DNA, alignment,
algorithms

1. Introduction

Dynamic programming [1] is a commonly used
optimization approach in almost all applied sciences.
The idea behind this approach is the following: “By
joining solutions of divisions of the original problem,
the solution of the original problem can be found”.
The division is forwarded until is no longer possible
and in fact this is the phase when unit solutions are
obtained. Now, by returning back and joining by the
way these solutions, the solution of the original
problem is obtained. As typical implementations we
can point out the computation of Fibonacci sequence
and the shortest path in graph [2].

DOI: 10.18421/TEM64-32
https://dx.doi.org/10.18421/TEM64-32

Corresponding author: Done Stojanov,
Faculty of Computer Science University ,,Goce
Delčev”, Štip, Macedonia
Email: done.stojanov@ugd.edu.mk

Received: 27 September 2017
Accepted: 25 October 2017
Published: 27 November 2017

© 2017 Done Stojanov; published by
UIKTEN. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs 3.0
License.

The article is published with Open Access
at www.temjournal.com

 In bioinformatics, dynamic programming has been
used for comparison of DNA content. Comparing
pieces of coding DNA (genes) is an essential task in
genetics, since relations and modifications relative to
each other can be easily revealed. The similarity
(difference) is a key indicator for likely (unlikely)
homology and this is the base of each phylogenetic
study. The process of comparing one piece of DNA
relative to other is known as alignment. This process
can be mathematically solved, but since DNA
genome can be up to several giga-bases long (for
example: a typical human genome contains 3 × 109
nucleotdes, organized in 23 chromosomes being
distributed in each cell) this process can be facilitated
and sped up by applying computer technology or
computer programs which are implementations of
already proposed algorithms.

Alignments performed based on dynamic
programming always create exact solution upon
predefined metrics. The metrics being exploited,
impact the structure of the solution and there is
always difficulty to choose the right metrics that
reveal the real phylogenetic relation between the
samples being compared. In most of the cases,
applying dynamic programming imposes quadratic
computational and storage requirements that may
limit the practical implementation in some cases
especially if longer pieces of DNA, such as
chromosomes or even complete genomes are
compared on machines with moderate hardware
performance.

In order to save in computational expenses,
heuristic algorithms have been also used for the same
purpose. What is common for these algorithms is that
they utilize the knowledge of the preprocessed data
in order to cut in time of execution and memory
required. However, in most of the cases partial and
incomplete solutions are derived compared to
dynamic programming algorithms and they are
commonly used only for analysis of big data in
eukaryotic DNA. In this group of algorithms we can
enumerate: BLAST [3], FASTA [4], Pattern Hunter
[5], BLAT [6], FLASH [7], MUMmer [8], AVID [9],
GLASS [10], LAGAN [11] and SPA [12].

https://dx.doi.org/10.18421/TEM64-32
http://www.temjournal.com/

TEM Journal. Volume 6, Issue 4, Pages 888-893, ISSN 2217-8309, DOI: 10.18421/TEM64-32, November 2017.

TEM Journal – Volume 6 / Number 4 / 2017. 889

The main interest of this paper is to introduce the
reader with the concepts of applying dynamic
programming for pairwise analysis of DNA. By a
historical viewpoint these algorithms are old-
fashioned, but in terms of accuracy they are
irreplaceable and this underlines its importance and
impact in modern science.

2. Dynamic programming algorithms

Dynamic programming results in local or global

solution. Local alignments are performed when
highly conserved DNA motifs have to be revealed,
while global solutions depict end-to-end mutual
similarities and differences. Pairwise techniques or
methods for comparison of two samples are subject
of interest of this paper.

Metrics has to be specified in advance and in the
most cases this assumes: 𝑠(𝑎𝑖 , 𝑏𝑗) > 0 an award or
positive score is assigned for pairing equal
nucleotides(𝑎𝑖 = 𝑏𝑗), 𝑠(𝑎𝑖 , 𝑏𝑗) ≤ 0 a non-positive
score is assigned for a pair of mismatching
nucleotides(𝑎𝑖 ≠ 𝑏𝑗) and a negative score 𝑔,𝑔 < 0 is
assigned if nucleotide is paired with gap. Under these
conditions we try to find optimal solution.

An optimal solution is the one for which the sum
of all scores is maximal or there is no other
alignment which over scores the optimal solution.

2.1. Needleman-Wunsch algorithm

This algorithm [13] finds end-to-end solutions. In

order to compare sequence {ai}i=1n and {bj}j=1m
[si,j](n+1)×(m+1) dynamic programming matrix has to
be computed. After initializing cells si,0, 0 ≤ i ≤ n
and s0,j, 0 ≤ j ≤ m to i × g and j × g respectively,
remaining cells are computed by applying equation
(1). Cell si,j tracks pointer to: si,j−1, si−1,j or
si−1,j−1 depending of which of the previous cells
its value was derived.

si,j = max {si,j−1 + g, si−1,j + g, si−1,j−1 + s�ai, bj�}

(1)

Once the matrix has been computed, the path of

pointers from the rightmost cell at the bottom to the
leftmost cell in the top row defines the structure of
the optimal solution. Diagonal pointer indicates that
nucleotides have to be paired, while vertical or
horizontal pointer indicates gap insertion in the
sequence being referred, Figure 1.

 Figure 1. Needleman-Wunsch dynamic programming

matrix
Since dynamic programming matrix of n rows and

m columns is computed and stored in the memory,
this algorithm requires O(n × m) time and memory.

2.2. Algorithm of Sellers

The algorithm of Sellers [14] works opposite to

Needleman-Wunsch, but the purpose is the same.
The end-to-end solution here is found with
minimization of the total difference (distance)
between the samples, while Needleman-Wunsch
maximizes the total similarity.

According to Ulam [15] the difference between
two sequences is the minimum number of steps
required to transform one sample into the other.
During this transformation, one nucleotide may
substitute other or nucleotide insertion/deletion may
occur. Applying equation (2) for computing the
minimum distance between two DNA samples
{ai}i=1n and{bj}j=1m , O(n × m) time and memeory are
also required, Figure 2.

𝑑𝑖,𝑗 = 𝑚𝑖𝑛 �
𝑑𝑖−1,𝑗 + 1
𝑑𝑖,𝑗−1 + 1

𝑑𝑖,𝑗 + 𝛿, 𝛿 = 0 ако 𝑎𝑖 = 𝑏𝑗; 𝛿 = 1 ако 𝑎𝑖 ≠ 𝑏𝑗
 (2)

 Figure 2. Distance matrix of Sellers

2.3. Smith-Waterman algorithm

Unlike Needleman-Wunsch and Sellers, Smith-

Waterman [16] creates best local solution. This
solution usually reveals the most conserved DNA
motifs. In the initial phase, all cells in the first row
and the first column of dynamic programming matrix
are set up to 0, i.e. si,0 = 0,0 ≤ i ≤ n ands0,j =
0,0 ≤ j ≤ m. The rest of the dynamic programming
matrix is computed by applying equation (3).
Pointers from each cell si,j, 1 ≤ i ≤ n, 1 ≤ j ≤ m to

TEM Journal. Volume 6, Issue 4, Pages 888-893, ISSN 2217-8309, DOI: 10.18421/TEM64-32, November 2017.

890 TEM Journal – Volume 6 / Number 4 / 2017.

at least one of the neighboring cells in the same or
the previous row wherefrom the values were
obtained, are also tracked.

𝑠𝑖,𝑗 = 𝑚𝑎𝑥 �

0
𝑠𝑖−1,𝑗−1 + 𝑠(𝑎𝑖, 𝑏𝑗)

𝑠𝑖−1,𝑗 + 𝑔
𝑠𝑖,𝑗−1+𝑔

 (3)

The solution in this case is determined by the path

of pointers starting from the cell with maximum
value to the first 0-cell along that path, Figure 3. As
well as in the previous cases, programming matrix of
n rows and m columns is also computed, which
means that O(n × m) time and memory is also
required.

Figure 3. Smith-Waterman dynamic programming

matrix

2.4. Waterman–Eggert algorithm

Waterman-Eggert [17] can be seen as an extension
of Smith-Waterman or instead of searching for one
best local solution, in this case k-best or k-highest
scoring, local alignments are outputted.

After computing Smith-Waterman dynamic
programming matrix, the highest scoring local
alignment is outputted, which is defined by a path of
pointers from the cell with maximum value to the
first 0-cell, Figure 4. Once the best solution has been
outputted, all cells along that path are set up to 0.

Now we search the modified matrix in order to
find the new highest scoring local alignment, which
in fact is going to be the second of the k-best local
alignments we search for, Figure 5. After printing
and this alignment, all cells through the path of the
alignment are set up also to 0.

Figure 4. First best solution

Figure 5. Second best solution

The same procedure is repeated until k-highest

scoring alignments are identified. Please note that the
paths of the alignments should not over cross, or in
other words each of the identified solutions is
independent.

2.5. Diagonal alignments: attempts to improve

computational complexity

In order to improve the computational
performances, algorithms that perform diagonal
alignments were proposed.

The idea that stands behind this group of
algorithms is the fact that in most of the cases the
optimal alignment is described by a path of pointers
that converges to the main diagonal of dynamic
programming matrix. Since it is not likely the path of
the pointers of the optimal solution to goes through
the farthest cells relative to the main diagonal, these
cells do not have to be computed what is going to
improve the computational performance.

Given DNA sequences {ai}i=1n and {bj}j=1m that
have to be aligned, only cells si,j for which |i − j| ≤
k
2
 are computed, where k is the length of the diagonal

bend over the main diagonal in dynamic
programming matrix, equation (4), Figure 6.

TEM Journal. Volume 6, Issue 4, Pages 888-893, ISSN 2217-8309, DOI: 10.18421/TEM64-32, November 2017.

TEM Journal – Volume 6 / Number 4 / 2017. 891

Cells out of the diagonal bend and they are si,j for
which |i − j| > k

2
 are not computed and in order not

to affect the accuracy of the computation of the cells
in the diagonal bend they are set up to large negative
values, usually−∞, Figure 6.

𝑠𝑖,𝑗 = 𝑚𝑎𝑥

⎩
⎨

⎧
𝑠𝑖−1,𝑗−1 + 𝑠(𝑎𝑖 , 𝑏𝑗)

𝑠𝑖−1,𝑗 + 𝑔, ако |𝑖 − 1 − 𝑗| ≤ 𝑘
2

𝑠𝑖,𝑗−1 + 𝑔, ако |𝑖 − 𝑗 + 1| ≤ 𝑘
2

 (4)

Figure 6. Alignment within diagonal band

However, this approach may be applied only for

comparison of highly similar DNA samples that
guarantee that the cut in the computational steps will
not affect the accuracy of the solution.

In the list of algorithms that apply alignments
within limited diagonal band we can enumerate:
Ficket [18], Ukkonen [19] and Chao [20].

2.6. Attempts to linearize memory complexity

Dynamic programming algorithms require

quadratic O(n × m) space during the execution, i.e.
the memory requirement is proportional to the
product of the length of the sequences being aligned.
This may limit the application of dynamic
programming algorithms only to SSRs (Short
Sequence Reads), i.e. they may be inapplicable to
longer DNA samples such as chromosomes or even
complete genomes.

Hirschberg [21] first considered this problem.
Based on dynamic programming, in 1990 Huang [22]
proposed the first memory linear algorithm, whose
complexity is proportional to the sum of the lengths
of the sequences being aligned. This algorithm may
be also applied for analysis and identification of
SSRs (Short Sequence Repeats) in longer DNA
samples.

The score of the optimal end-to-end alignment is
the value of the rightmost cell at the bottom of
dynamic programming matrix. The memory expense
for computing this cell can be linearized, if instead of
holding the entire dynamic programming matrix in
the memory, two by two rows are dynamically
computed, swapped and tracked in the memory. This
is possible since 𝑠𝑖,𝑗 is affected only by cells
𝑠𝑖,𝑗−1, 𝑠𝑖−1,𝑗, 𝑠𝑖−1,𝑗−1 which are values that are placed
in the same or the previous row relative to the row
that contains 𝑠𝑖,𝑗 .

This means that we first compute the first and the
second row of dynamic programming matrix. Next
the third row is computed by using the values from
the second row. Since the values in the first row do
not affect any of the values in the third row, this row
is removed from the memory and so on, such as at
the end only the last two rows of dynamic
programming matrix are computed and kept in the
memory. The rightmost cell in the last row is the sore
of the optimal solution and this is the way of how it
can be computed with linear memory expense.

Since applying this approach we kept in the
memory only two rows and not the entire dynamic
programming matrix, the path of the optimal
alignment has been lost and we can’t print the
structure of the optimal solution. In order to
overcome this problem we can apply the divide and
conquer strategy.

The idea is to find an intersection (𝑣,𝑢), such as
by merging the optimal alignments of the
subsequences: (𝑎1 … 𝑎𝑢; 𝑏1 … 𝑏𝑣) and
(𝑎𝑢+1 … 𝑎𝑛; 𝑏𝑣+1 …𝑏𝑚) the optimal alignment of
the sequences {ai}i=1n and {bj}j=1m can be obtained.
The intersection (𝑣,𝑢) divides the dynamic
programming matrix in four quadrants, Figure 7. The
north-east and the south-west quadrant are rejected,
since the path of the optimal solution does not pass
these regions. This procedure is recursively evoked
for sub north-east and sub south-west quadrants, until
nucleotide-to-nucleotide alignment or nucleotide-to-
gap alignments. Now by returning back and merging
sub-problems’ solutions, the end-to-end alignment is
reconstructed.

Figure 7. Applying the divide and conquer strategy

TEM Journal. Volume 6, Issue 4, Pages 888-893, ISSN 2217-8309, DOI: 10.18421/TEM64-32, November 2017.

892 TEM Journal – Volume 6 / Number 4 / 2017.

3. Discussion

Table 1. summarizes the key features of the
algorithms being discussed in the previous section.
The computational complexities are also
bookmarked.

Table 1. Features of dynamic programming algorithms

Algorithm Key features
Needleman-Wunsch O(n × m) time and memory

complexity, performs end-to-
end alignments

Sellers O(n × m) time and memory
complexity, performs global
alignments based on
minimizing the distance
between the samples

Smith-Waterman O(n × m) time and memory
complexity, performs local
alignments

Diagonal alignments O(n × k) time and memory
complexity, where k is the
length of the diagonal band,
usually k < m

Memory linear
algorithms: Huang

O(n + m) memory
complexity, suitable also for
detection of short sequence
repeats

4. Conclusion

Several algorithms for pairwise alignment of DNA

sequences were discussed in this paper. These
algorithms are straightforward application of
dynamic programming. Despite the fact that most of
them have quadratic computational complexities,
there were also tries to linearize the computational
performance in order to become applicable for
analysis of chromosomes and complete genomes on
regular computers. However, the computational
performance comes to the second place when exact
mutations have to be revealed, what makes this group
of algorithms still very important as they used to be.

Acknowledgements

This study was supported by the research project
Development of Secure and Reliable Techniques for Data
Communication, funded by ,,Goce Delčev” University in
Štip.

References

[1]. Bellman, R. (1952). On the theory of dynamic
programming. Proceedings of the National Academy
of Sciences, 38(8), 716-719.

[2]. Dijkstra, E. W. (1959). A note on two problems in
connexion with graphs. Numerische mathematik, 1(1),
269-271.

[3]. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., &
Lipman, D. J. (1990). Basic local alignment search
tool. Journal of molecular biology, 215(3), 403-410.

[4]. Lipman, D. J., & Pearson, W. R. (1985). Rapid and
sensitive protein similarity
searches. Science, 227(4693), 1435-1441.

[5]. Ma, B., Tromp, J., & Li, M. (2002). PatternHunter:
faster and more sensitive homology
search. Bioinformatics, 18(3), 440-445.

[6]. Kent, W. J. (2002). BLAT—the BLAST-like
alignment tool. Genome research, 12(4), 656-664.

[7]. Califano, A., & Rigoutsos, I. (1993, June). FLASH: A
fast look-up algorithm for string homology.
In Computer Vision and Pattern Recognition, 1993.
Proceedings CVPR'93., 1993 IEEE Computer Society
Conference on (pp. 353-359). IEEE.

[8]. Delcher, A. L., Kasif, S., Fleischmann, R. D.,
Peterson, J., White, O., & Salzberg, S. L. (1999).
Alignment of whole genomes. Nucleic acids
research, 27(11), 2369-2376.

[9]. Bray, N., Dubchak, I., & Pachter, L. (2003). AVID: A
global alignment program. Genome research, 13(1),
97-102.

[10]. Batzoglou, S., Pachter, L., Mesirov, J. P., Berger, B.,
& Lander, E. S. (2000). Human and mouse gene
structure: comparative analysis and application to
exon prediction. Genome research, 10(7), 950-958.

[11]. Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F.,
Davydov, E., Green, E. D., ... & NISC Comparative
Sequencing Program. (2003). LAGAN and Multi-
LAGAN: efficient tools for large-scale multiple
alignment of genomic DNA. Genome research, 13(4),
721-731.

[12]. Shen, S. Y., Yang, J., Yao, A., & Hwang, P. I.
(2002). Super pairwise alignment (SPA): an efficient
approach to global alignment for homologous
sequences. Journal of Computational Biology, 9(3),
477-486.

[13]. Needleman, S. B., & Wunsch, C. D. (1970). A
general method applicable to the search for
similarities in the amino acid sequence of two
proteins. Journal of molecular biology, 48(3), 443-
453.

[14]. Sellers, P. H. (1974). An algorithm for the distance
between two finite sequences. Journal of
Combinatorial Theory, Series A, 16(2), 253-258.

[15]. Ulam, S. M. (1972). Some combinatorial problems
studied experimentally on computing
machines. Zaremba SK, Applications of Number
Theory to Numerical Analysis, 1-3.

[16]. Smith, T. F., & Waterman, M. S. (1981).
Identification of common molecular
subsequences. Journal of molecular biology, 147(1),
195-197.

TEM Journal. Volume 6, Issue 4, Pages 888-893, ISSN 2217-8309, DOI: 10.18421/TEM64-32, November 2017.

TEM Journal – Volume 6 / Number 4 / 2017. 893

[17]. Waterman, M. S., & Eggert, M. (1987). A new
algorithm for best subsequence alignments with
application to tRNA-rRNA comparisons. Journal of
molecular biology, 197(4), 723-728.

[18]. Fickett, J. W. (1984). Fast optimal
alignment. Nucleic acids research, 12(1), 175-179.

[19]. Ukkonen, E. (1985). Algorithms for approximate
string matching. Information and control, 64(1-3),
100-118.

[20]. Chao, K. M., Pearson, W. R., & Miller, W. (1992).
Aligning two sequences within a specified diagonal
band. Bioinformatics, 8(5), 481-487.

[21]. Hirschberg, D. S. (1975). A linear space algorithm
for computing maximal common
subsequences. Communications of the ACM, 18(6),
341-343.

[22]. Huang, X., Hardison, R. C., & Miller, W. (1990). A
space-efficient algorithm for local
similarities. Bioinformatics, 6(4), 373-381.

