
TEM Journal. Volume 6, Issue 4, Pages 888-893, ISSN 2217-8309, DOI: 10.18421/TEM64-32, November 2017. 

888 TEM Journal – Volume 6 / Number 4 / 2017. 

Comparing DNA Applying  
Dynamic Programming: A Historical Review 
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Abstract – In this paper we consider the application 
of dynamic programming in bioinformatics for 
comparing and aligning DNA sequences. Dynamic 
programming algorithms are old-fashioned in terms of 
computational complexity, but in terms of accuracy 
these algorithms are still irreplaceable.  
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1. Introduction

Dynamic programming [1] is a commonly used 
optimization approach in almost all applied sciences. 
The idea behind this approach is the following: “By 
joining solutions of divisions of the original problem, 
the solution of the original problem can be found”. 
The division is forwarded until is no longer possible 
and in fact this is the phase when unit solutions are 
obtained. Now, by returning back and joining by the 
way these solutions, the solution of the original 
problem is obtained. As typical implementations we 
can point out the computation of Fibonacci sequence 
and the shortest path in graph [2].   
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 In bioinformatics, dynamic programming has been 
used for comparison of DNA content. Comparing 
pieces of coding DNA (genes) is an essential task in 
genetics, since relations and modifications relative to 
each other can be easily revealed. The similarity 
(difference) is a key indicator for likely (unlikely) 
homology and this is the base of each phylogenetic 
study. The process of comparing one piece of DNA 
relative to other is known as alignment. This process 
can be mathematically solved, but since DNA 
genome can be up to several giga-bases long (for 
example: a typical human genome contains 3 × 109 
nucleotdes, organized in 23 chromosomes being 
distributed in each cell) this process can be facilitated 
and sped up by applying computer technology or 
computer programs which are implementations of 
already proposed algorithms.  

Alignments performed based on dynamic 
programming always create exact solution upon 
predefined metrics. The metrics being exploited, 
impact the structure of the solution and there is 
always difficulty to choose the right metrics that 
reveal the real phylogenetic relation between the 
samples being compared. In most of the cases, 
applying dynamic programming imposes quadratic 
computational and storage requirements that may 
limit the practical implementation in some cases 
especially if longer pieces of DNA, such as 
chromosomes or even complete genomes are 
compared on machines with moderate hardware 
performance.  

In order to save in computational expenses, 
heuristic algorithms have been also used for the same 
purpose. What is common for these algorithms is that 
they utilize the knowledge of the preprocessed data 
in order to cut in time of execution and memory 
required. However, in most of the cases partial and 
incomplete solutions are derived compared to 
dynamic programming algorithms and they are 
commonly used only for analysis of big data in 
eukaryotic DNA. In this group of algorithms we can 
enumerate: BLAST [3], FASTA [4], Pattern Hunter 
[5], BLAT [6], FLASH [7], MUMmer [8], AVID [9], 
GLASS [10], LAGAN [11] and SPA [12].  
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The main interest of this paper is to introduce the 
reader with the concepts of applying dynamic 
programming for pairwise analysis of DNA. By a 
historical viewpoint these algorithms are old-
fashioned, but in terms of accuracy they are 
irreplaceable and this underlines its importance and 
impact in modern science.   
 
2. Dynamic programming algorithms 

 
Dynamic programming results in local or global 

solution. Local alignments are performed when 
highly conserved DNA motifs have to be revealed, 
while global solutions depict end-to-end mutual 
similarities and differences. Pairwise techniques or 
methods for comparison of two samples are subject 
of interest of this paper. 

Metrics has to be specified in advance and in the 
most cases this assumes: 𝑠(𝑎𝑖 , 𝑏𝑗) > 0 an award or 
positive score is assigned for pairing equal 
nucleotides(𝑎𝑖 = 𝑏𝑗), 𝑠(𝑎𝑖 , 𝑏𝑗) ≤ 0 a non-positive 
score is assigned for a pair of mismatching 
nucleotides(𝑎𝑖 ≠ 𝑏𝑗) and a negative score 𝑔,𝑔 < 0 is 
assigned if nucleotide is paired with gap. Under these 
conditions we try to find optimal solution.  

An optimal solution is the one for which the sum 
of all scores is maximal or there is no other 
alignment which over scores the optimal solution. 

 
2.1.  Needleman-Wunsch algorithm 

 
This algorithm [13] finds end-to-end solutions. In 

order to compare sequence {ai}i=1n  and {bj}j=1m  
[si,j](n+1)×(m+1) dynamic programming matrix has to 
be computed. After initializing cells si,0, 0 ≤ i ≤ n 
and s0,j, 0 ≤ j ≤ m to i × g and j × g respectively, 
remaining cells are computed by applying equation 
(1). Cell si,j tracks pointer to: si,j−1, si−1,j or 
si−1,j−1 depending of which of the previous cells 
its value was derived.  

 
si,j = max {si,j−1 + g, si−1,j + g, si−1,j−1 + s�ai, bj�}          

(1) 
 
Once the matrix has been computed, the path of 

pointers from the rightmost cell at the bottom to the 
leftmost cell in the top row defines the structure of 
the optimal solution. Diagonal pointer indicates that 
nucleotides have to be paired, while vertical or 
horizontal pointer indicates gap insertion in the 
sequence being referred, Figure 1. 

 

 
 Figure 1.  Needleman-Wunsch dynamic programming 

matrix 
Since dynamic programming matrix of n rows and 

m columns is computed and stored in the memory, 
this algorithm requires O(n × m) time and memory.  

 
2.2.  Algorithm of Sellers  

 
The algorithm of Sellers [14] works opposite to 

Needleman-Wunsch, but the purpose is the same. 
The end-to-end solution here is found with 
minimization of the total difference (distance) 
between the samples, while Needleman-Wunsch 
maximizes the total similarity.  

According to Ulam [15] the difference between 
two sequences is the minimum number of steps 
required to transform one sample into the other. 
During this transformation, one nucleotide may 
substitute other or nucleotide insertion/deletion may 
occur. Applying equation (2) for computing the 
minimum distance between two DNA samples 
{ai}i=1n and{bj}j=1m , O(n × m) time and memeory are 
also required, Figure 2.  

 

𝑑𝑖,𝑗 = 𝑚𝑖𝑛 �
𝑑𝑖−1,𝑗 + 1
𝑑𝑖,𝑗−1 + 1

𝑑𝑖,𝑗 + 𝛿, 𝛿 = 0 ако 𝑎𝑖 = 𝑏𝑗;  𝛿 = 1 ако 𝑎𝑖 ≠ 𝑏𝑗
  (2) 

 

           
           Figure 2.  Distance matrix of Sellers 

 
2.3. Smith-Waterman algorithm 

 
Unlike Needleman-Wunsch and Sellers, Smith-

Waterman [16] creates best local solution. This 
solution usually reveals the most conserved DNA 
motifs. In the initial phase, all cells in the first row 
and the first column of dynamic programming matrix 
are set up to 0, i.e. si,0 = 0,0 ≤ i ≤ n ands0,j =
0,0 ≤ j ≤ m. The rest of the dynamic programming 
matrix is computed by applying equation (3). 
Pointers from each cell si,j, 1 ≤ i ≤ n, 1 ≤ j ≤ m to 
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at least one of the neighboring cells in the same or 
the previous row wherefrom the values were 
obtained, are also tracked.  

 

𝑠𝑖,𝑗 = 𝑚𝑎𝑥 �

0
𝑠𝑖−1,𝑗−1 + 𝑠(𝑎𝑖, 𝑏𝑗)

𝑠𝑖−1,𝑗 + 𝑔
𝑠𝑖,𝑗−1+𝑔

        (3) 

 
The solution in this case is determined by the path 

of pointers starting from the cell with maximum 
value to the first 0-cell along that path, Figure 3. As 
well as in the previous cases, programming matrix of 
n rows and m columns is also computed, which 
means that O(n × m) time and memory is also 
required. 

 

 
Figure 3.  Smith-Waterman dynamic programming 

matrix 
 
 

2.4. Waterman–Eggert algorithm 
 

Waterman-Eggert [17] can be seen as an extension 
of Smith-Waterman or instead of searching for one 
best local solution, in this case k-best or k-highest 
scoring, local alignments are outputted.  

After computing Smith-Waterman dynamic 
programming matrix, the highest scoring local 
alignment is outputted, which is defined by a path of 
pointers from the cell with maximum value to the 
first 0-cell, Figure 4. Once the best solution has been 
outputted, all cells along that path are set up to 0.  

Now we search the modified matrix in order to 
find the new highest scoring local alignment, which 
in fact is going to be the second of the k-best local 
alignments we search for, Figure 5. After printing 
and this alignment, all cells through the path of the 
alignment are set up also to 0.  

 

 
Figure 4.  First best solution 

 

 
Figure 5.  Second best solution 

 
The same procedure is repeated until k-highest 

scoring alignments are identified. Please note that the 
paths of the alignments should not over cross, or in 
other words each of the identified solutions is 
independent.  

 
2.5.  Diagonal alignments: attempts to improve 

computational complexity  
 

In order to improve the computational 
performances, algorithms that perform diagonal 
alignments were proposed.  

The idea that stands behind this group of 
algorithms is the fact that in most of the cases the 
optimal alignment is described by a path of pointers 
that converges to the main diagonal of dynamic 
programming matrix. Since it is not likely the path of 
the pointers of the optimal solution to goes through 
the farthest cells relative to the main diagonal, these 
cells do not have to be computed what is going to 
improve the computational performance.  

Given DNA sequences {ai}i=1n  and {bj}j=1m  that 
have to be aligned, only cells si,j  for which |i − j| ≤
k
2
 are computed, where k is the length of the diagonal 

bend over the main diagonal in dynamic 
programming matrix, equation (4), Figure 6. 
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Cells out of the diagonal bend and they are si,j  for 
which |i − j| > k

2
 are not computed and in order  not 

to affect the accuracy of the computation of the cells 
in the diagonal bend they are set up to large negative 
values, usually−∞, Figure 6.  

 

𝑠𝑖,𝑗 = 𝑚𝑎𝑥

⎩
⎨

⎧
𝑠𝑖−1,𝑗−1 + 𝑠(𝑎𝑖 , 𝑏𝑗)

𝑠𝑖−1,𝑗 + 𝑔, ако |𝑖 − 1 − 𝑗| ≤ 𝑘
2

𝑠𝑖,𝑗−1 + 𝑔,   ако |𝑖 − 𝑗 + 1| ≤ 𝑘
2

    (4) 

 
 

 
Figure 6.  Alignment within diagonal band 

 
However, this approach may be applied only for 

comparison of highly similar DNA samples that 
guarantee that the cut in the computational steps will 
not affect the accuracy of the solution.  

In the list of algorithms that apply alignments 
within limited diagonal band we can enumerate: 
Ficket [18], Ukkonen [19] and Chao [20].   

 
2.6. Attempts to linearize memory complexity   

 
Dynamic programming algorithms require 

quadratic O(n × m) space during the execution, i.e. 
the memory requirement is proportional to the 
product of the length of the sequences being aligned. 
This may limit the application of dynamic 
programming algorithms only to SSRs (Short 
Sequence Reads), i.e. they may be inapplicable to 
longer DNA samples such as chromosomes or even 
complete genomes.   

Hirschberg [21] first considered this problem. 
Based on dynamic programming, in 1990 Huang [22] 
proposed the first memory linear algorithm, whose 
complexity is proportional to the sum of the lengths 
of the sequences being aligned. This algorithm may 
be also applied for analysis and identification of 
SSRs (Short Sequence Repeats) in longer DNA 
samples.  

 
 
 

The score of the optimal end-to-end alignment is 
the value of the rightmost cell at the bottom of 
dynamic programming matrix. The memory expense 
for computing this cell can be linearized, if instead of 
holding the entire dynamic programming matrix in 
the memory, two by two rows are dynamically 
computed, swapped and tracked in the memory. This 
is possible since 𝑠𝑖,𝑗 is affected only by cells 
𝑠𝑖,𝑗−1, 𝑠𝑖−1,𝑗, 𝑠𝑖−1,𝑗−1 which are values that are placed 
in the same or the previous row relative to the row 
that contains 𝑠𝑖,𝑗 .  

This means that we first compute the first and the 
second row of dynamic programming matrix. Next 
the third row is computed by using the values from 
the second row. Since the values in the first row do 
not affect any of the values in the third row, this row 
is removed from the memory and so on, such as at 
the end only the last two rows of dynamic 
programming matrix are computed and kept in the 
memory. The rightmost cell in the last row is the sore 
of the optimal solution and this is the way of how it 
can be computed with linear memory expense.  

Since applying this approach we kept in the 
memory only two rows and not the entire dynamic 
programming matrix, the path of the optimal 
alignment has been lost and we can’t print the 
structure of the optimal solution. In order to 
overcome this problem we can apply the divide and 
conquer strategy.  

The idea is to find an intersection (𝑣,𝑢), such as 
by merging the optimal alignments of the 
subsequences: (𝑎1 … 𝑎𝑢;  𝑏1 … 𝑏𝑣 ) and 
(𝑎𝑢+1 … 𝑎𝑛;  𝑏𝑣+1 …𝑏𝑚 ) the optimal alignment of 
the sequences {ai}i=1n  and {bj}j=1m  can be obtained. 
The intersection (𝑣,𝑢) divides the dynamic 
programming matrix in four quadrants, Figure 7. The 
north-east and the south-west quadrant are rejected, 
since the path of the optimal solution does not pass 
these regions. This procedure is recursively evoked 
for sub north-east and sub south-west quadrants, until 
nucleotide-to-nucleotide alignment or nucleotide-to-
gap alignments. Now by returning back and merging 
sub-problems’ solutions, the end-to-end alignment is 
reconstructed.  
 

 
Figure 7.  Applying the divide and conquer strategy 
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3. Discussion 
 

Table 1. summarizes the key features of the 
algorithms being discussed in the previous section. 
The computational complexities are also 
bookmarked.  
 
Table 1.  Features of dynamic programming algorithms 
 

Algorithm Key features 
Needleman-Wunsch O(n × m) time and memory 

complexity, performs end-to-
end alignments 

Sellers O(n × m) time and memory 
complexity, performs global 
alignments based on 
minimizing the distance 
between the samples 

Smith-Waterman O(n × m) time and memory 
complexity, performs local 
alignments 

Diagonal alignments O(n × k) time and memory 
complexity, where k is the 
length of the diagonal band, 
usually k < m 

Memory linear 
algorithms: Huang 

O(n + m) memory 
complexity, suitable also for 
detection of short sequence 
repeats 

 
 
4. Conclusion 

 
Several algorithms for pairwise alignment of DNA 

sequences were discussed in this paper. These 
algorithms are straightforward application of 
dynamic programming. Despite  the fact that most of 
them have quadratic computational complexities, 
there were also tries to linearize the computational 
performance in order to become applicable for 
analysis of chromosomes and complete genomes on 
regular computers. However, the computational 
performance comes to the second place when exact 
mutations have to be revealed, what makes this group 
of algorithms still very important as they used to be.  
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