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Abstract: A new, time efficient data partitioning methodology 
is presented. First, the input data set is mapped into a set of 
radius vectors, which is further sorted, then partitioned into 
initial clusters. However, that is not a guarantee that all 
objects have been partitioned in the appropriate clusters. 
Therefore, objects being inappropriately partitioned are 
moved from one cluster into another neighbouring cluster. 
Finally, clusters of radius vectors are formed. Applying 
reverse mapping, clusters of radius vectors are back-mapped 
into clusters of original objects, being appropriately 
partitioned.    
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I. INTRODUCTION 

Several clustering techniques have been used as 
solutions of the well-known data partitioning problem. 
Given a set of n objects, put the most similar objects into a 
common group (cluster). Clusters are disjoint sets, 
containing at least one object. 

K-means clustering algorithm [1], presented by 
MacQueen in 1976, solves data partitioning problem. Being 
based on initial selection of k random objects as centroids, 
joining the rest of n-k objects to the nearest centroid, then 
recalculating the centre of each updated cluster, until 
centres convergence has been achieved, requires O(nkI) 
time, where n is the number of objects being partitioned, k 
is the number of clusters, while I is the number of iterations. 
Best time performance results are obtained, if non-
neighbouring initial centroids, being as far as possible 
distanced, are chosen.  

 However, k-means clustering is highly sensitive in 
terms of data outliers. Since the mean value for each 
attribute is recalculated, extreme values easily disrupt 
general data tendency. PAM (Partitioning Around Medoids) 
[2], is data outliers less sensitive clustering approach. The 
general idea behind PAM clustering is instead of 
recalculating the mean value for each attribute for all 
objects within a cluster, the most centred object within a 
cluster is used. Medoids are changed if that would result 
with a better data clustering, until medoids no further 
change has been achieved. PAM computational complexity 
is O((n-k)2kI). PAM effectively partitions small data sets. 
When large data sets are partitioned, PAM clustering is 
computationally more expensive than k-means.  

 Instead of applying PAM clustering on the whole data 
set, a set of samples from the original data set could be 
selected. For each sample PAM clustering is applied. That 
is the idea behind CLARA [3] clustering approach, 
requiring O(ks2+k(n-k)) time, if samples of size s are 

chosen. However, CLARA partitioning result does not 
always match the best clustering, especially if the best 
clustering medoids are not among the samples being chosen. 

 CLARA clustering effectiveness is highly influenced by 
the sample size. CLARANS [4] clustering process is alike 
searching a graph of nodes, where each node (medoid) 
might be part of the optimal solution. During the search, 
medoids are swapped with non-medoids, if that would 
diminish clustering configuration cost. CLARANS time 
complexity is O(kn2). 

  In this paper, a new data partitioning methodology is 
presented. The best case time complexity of IC clustering is 
O(n+T). The worst case time complexity is O(n2+T), where 
n is the number of objects being partitioned and T is the 
number of transitions between the neighbouring clusters. 

II. IC METHODOLOGY 

Data partitioning problem is considered. Given a set of n 
objects, O={o1,o2,…,on-1,on}, where each object is 
represented with m properties, oi=(xi1,xi2,…,xim-1,xim), 
form k clusters, containing set O objects. Each object oi is 
mapped into its corresponding radius vector, 
Ri=(xi1

2+xi2
2+…+xim-1

2+xim
2)1/2, resulting with a set of 

radius vectors, R={R1,R2,…,Rn-1,Rn}. Each mapping  f: 
O→R is tracked by a tuple (Ri,i), where Ri is object’s oi 
corresponding radius vector.     

 Afterwards R is sorted, being transformed into non-
decreasing ordered set, s: R→Rs, Rs={Rs1,Rs2,…,Rsn-

1,Rsn}, Rsi≤Rsi+1, for 1≤i≤n-1. 
 Sorted radius vectors set Rs is partitioned into k clusters, 

distributing data initially as given bellow:  
Cluster 1: c1={Rs1,Rs2,…,Rs[n/k]}      
Cluster 2: c2={Rs[n/k]+1,Rs[n/k]+2,…,Rs2[n/k]}      
… 
Cluster k-1: ck-1={Rs(k-2)[n/k]+1,Rs(k-2)[n/k]+2,...,Rs(k-1)[n/k]}      
Cluster k: ck={Rs(k-1)[n/k]+1,Rs(k-1)[n/k]+2,...,Rsn}      
 The mean value for each cluster, mci=(∑Rsiϵci)/|ci|, 

where |ci| is the number of elements in cluster ci, is 
calculated. 

  Nevertheless, there might be radius vectors initially 
partitioned into cluster ci, which are closer to cluster ci+1 

and radius vectors partitioned into cluster ci+1, which are 
closer to cluster ci. Cluster ci radius vectors being closer to 
cluster ci+1, are moved into cluster ci+1. Accordingly, cluster 
ci+1 radius vectors being closer to cluster ci, are moved into 
cluster ci, for 1≤i≤k-1. In these constellations, also is true 
that if radius vector Rsx belongs to cluster ci, then radius 
vector Rsy, Rsy≤Rsx, certainly does not belong to cluster 
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ci+1. Based on the previous, radius vectors are appropriately 
partitioned into k different clusters, by the following code:   

i=1 
while(i≤k-1) do { 
set index1 to the current value of i 
set index2 to 0 
while((|Rsindex1×[n/k]-index2-mci+1|<|Rsindex1×[n/k]-index2-mci|) 

and (|ci|>1)) 
{ 
move Rsindex1× [n/k]-index2 into cluster ci+1 
increase index2 for 1 
recalculate clusters’ ci and ci+1 mean values 
} 
set index2 to 1 
while((|Rsindex1×[n/k]+index2-mci|<|Rsindex1×[n/k]+index2-mci+1|) 

and (|ci+1|>1)) 
{ 
move Rsindex1× [n/k]+index2 into cluster ci 
increase index2 for 1 
recalculate clusters’ ci and ci+1 mean values 
} 
increase i for 1 
} 
At this stage, a set of k clusters is formed. Applying 

reverse mapping fr: R→O, passing from the domain of 
radius vectors in the domain of objects, being possible by 
using mapping data information from mapping tuples (Ri,i), 
each cluster of radius vectors is translated into a cluster of 
objects, back-mapping radius vectors Ri into the 
corresponding objects oi, contained in the original data set 
O. 

III. AN EXAMPLE, DEMONSTRATING INTELLIGENT 

CLUSTERING 

Data set of 11 two attributed objects, O={(1,2), (3,4), 
(7,5), (2,2), (3,3), (1,1), (7,8), (8,8), (9,7), (5,5), (4,4)}, is 
partitioned into k=3 clusters, according to the presented 
methodology. First, data set O is mapped into 
corresponding set of radius vectors, R={2.236, 5, 8.602, 
2.828, 4.243, 1.414, 10.63, 11.314, 11.402, 7.071, 5.657}. 
Sorting set R, non-decreasing ordered set of radius vectors 
Rs is obtained, Rs={1.414, 2.236, 2.828, 4.243, 5, 5.657, 
7.071, 8.602, 10.63, 11.314, 11.402}. Each mapping f: 
O→R is tracked by a mapping tuple. For example, mapping 
tuple (1.414, 6), indicates that set O object at position 6 
corresponds radius vector of 1.414. Sorted data is 
partitioned into k=3 clusters.  

Mapping tuples are: (1,414, 6), (2.236, 1), (2.828, 4), 
(4.243, 5), (5, 2), (5.657, 11), (7.071, 10), (8.602, 3), (10.63, 
7), (11.314, 8), (11.402, 9). The following initial clusters 
are formed:   

Cluster 1: c1={1.414, 2.236, 2.828} 
Cluster 2: c2={4.243, 5, 5.657} 
Cluster 3: c3={7.071, 8.602, 10.63, 11.314, 11.402} 
The last element in cluster c1 is most likely to be 

inappropriately partitioned. Therefore, the distances 
between 2.828 and clusters’ c1 and c2 mean values are 
calculated. Distance results are: d(2.828,mc1)=|2.828-
2.159|=0.669, d(2.828,mc2)=|2.828-4.967|=2.139. Being 
cluster c1 less distanced than cluster c2, 2.828 and the 
remaining elements in cluster c1 have been appropriately 

partitioned, since none of them is cluster c2 less distanced 
than 2.828. 

The first element in cluster c2 is most likely to be 
inappropriately partitioned. Therefore, the distances 
between 4.243 and clusters’ c1 and c2 mean values are 
calculated. Distance results are: d(4.243,mc1)=|4.243-
2.159|=2.084,  d(4.243,mc2)=|4.243-4.967|=0.724. 
Interpreting distance results, the uncertainty in terms of 
which cluster 4.243 belongs is completely eliminated. The 
first element in cluster c2 is part of cluster c2. The 
remaining elements in cluster c2 can’t be part of cluster c1, 
because none of them is cluster c1 less distanced than 4.243. 

Applying the same logic, we get that 5.657 has been 
appropriately partitioned in cluster c2.  When considering 
the first element in cluster c3, we get that 7.071 is closer to 
cluster c2, d(7.071,mc2)=|7.071-4.967|=2.104,  
d(7.071,mc3)=|7.071-9.804|=2.733, causing radius vector 
7.071 rearrangement, being moved into cluster c2. 

  Since clusters c2 and c3 have been changed, clusters 
new mean values are recalculated. Cluster c2 new mean 
value is 5.493, while cluster c3 new mean value is 10.487. 
After the rearrangement, 10.63 is the first element in cluster 
c3. Analysing distance results between 10.63 and clusters’ 
c2 and c3 new mean values: d(10.63,mc2)=|10.63-
5.493|=5.137, d(10.63,mc3)=|10.63-10.487|=0.143, is more 
than obvious that 10.63 belongs to cluster c3. Certainly, 
since none of the remaining elements in cluster c3 is cluster 
c2 less distanced than 10.63, they are all part of cluster c3.   

   At this stage the following clusters have been obtained: 
Cluster 1: c1={1.414, 2.236, 2.828} 
Cluster 2: c2={4.243, 5, 5.657, 7.071}  
Cluster 3: c3={8.602, 10.63, 11.314, 11.402}  
   Applying reverse mapping fr: R→O, clusters of radius 

vectors are back-mapped into objects, all of them being 
appropriately partitioned: 

Cluster 1: c1={(1,1), (1,2), (2,2)} 
Cluster 2: c2={(3,3), (3,4), (4,4), (5,5)} 
Cluster 3: c3={(7,5), (7,8), (8,8), (9,7)} 

IV. TIME COMPLEXITY ANALYSIS 

Intelligent and k-means clustering have been 
implemented in C++. The running time of these techniques, 
for sets with different length, have been measured on Acer 
Aspire 5570Z computer, with Genuine Intel CPU at 1GHz 
and 1.5 GB RAM. The time complexity improvement of 
the intelligent clustering over the k-means algorithm is 
evident – TABLE I, Fig. 1, especially if the objects’ set of 
radius vectors is partially or fully sorted. For example, the 
running time of the intelligent clustering for partitioning the 
first data set (TABLE II first row): (1,1), (2,2), (3,3), (4,4), 
(6,5), (5,5), (4,6), (8,8), (7.5,9),(7.5,8.5), into three clusters 
is 0.016 seconds, while the running time of the k-means 
algorithm, if (1,1), (4,4) and (7.5,8.5) have been selected as 
initial centroids, is 0.078 seconds. The significant time 
complexity improvement in this case is due to the structure 
of the set of radius vectors, which is partially sorted. In the 
case of the third data set (TABLE III third row), when: 
(1,1), (2,2), (3,3), (4,4), (6,5), (5,5), (4,6), (8,8), (7.5,9), 
(7.5,8.5), (3,2), (4,8), (5,5.5), (6,6.7), (7,7.5), (0.5,0.5), 
(0.7,0.7), (1.2,1.2), (1.35,1), (1,1.8), are partitioned into 
three clusters, if (1,1), (4,4), (7.5,8.5) have been also 
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selected as initial centroids, intelligent clustering running 
time equals k-means running time, 0.094 seconds. This is 
due to the low sorting degree of the set of radius vectors, i.e. 
more time is wasted on sorting. 

TABLE IV 
COMPARING K-MEANS AND INTELLIGENT CLUSTERING TIME 

PERFORMANCE 

Data set 

Time performance analysis 

Length of 
the data set 

k-means 
running time 

(s) 

Intelligent 
clustering running 

time (s) 
1 10 0.078 0.016 
2 15 0.109 0.078 
3 20 0.094 0.094 
4 25 0.234 0.124 
5 30 0.219 0.156 
6 35 0.202 0.172 
7 40 0.203 0.203 
8 45 0.219 0.218 

 

 
Fig. 1 Time performance graphs 

  Intelligent clustering best case time complexity is 
O(n+T), where n is the number of objects being partitioned, 
while T is the number of transitions between the adjacent 
clusters, assuming that the set of radius vectors is 
approximately or fully sorted. Intelligent clustering worst 
case time complexity is O(n2+T), if the set of radius vectors 
is far from being sorted. 

V. CONCLUSIONS 

A new time efficient data partitioning methodology has 
been presented. When compared with k-means clustering 
choosing initial centroids as far as possible, intelligent 
clustering demonstrated better time performance. Since k-
means clustering approach, especially if initial centroids are 
chosen as far as possible, is faster than PAM clustering 
technique, a conclusion for superior time performance over 
PAM clustering can be easily deduced. Compared with 
CLARA clustering approach, which is extremely fast, 
intelligent clustering results is always the best one, what is 
not always a case with CLARA. 
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