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Walsh Transform Algorithm and its Parallel Implementation with
CUDA on GPUs

Dusan Bikov and lliya Bouyukliev

Abstract: This paper discusses different approaches for computing the Walsh spectra on graphics processor
unit (GPU) using CUDA C. The aim here is to present an efficient algorithm for calculation of the Walsh
spectrum. The main task is an algorithm for sequential calculation of Walsh spectrum and its parallel
implementation in CUDA C. Moreover, we will present our experimental results.

Key words: Walsh transforms, CUDA C, GPU, Fast Walsh Transform.

INTRODUCTION

The use of modern graphics processing units (GPUs) has become attractive for scientific
computing which is due to its massive parallel processing capability. Modern GPUs are more than
very efficient device use for rendering the graphics and accelerate the creation of images, their
highly parallel structure makes them more effective than general-purpose CPU for algorithm where
processing of large blocks of data is done in parallel [1] [2]. Compared with multi-core CPUs, new
generation GPUs can have much higher computation power and memory bandwidth. Therefore
they are attractive in many application areas. One of the most important application domains is the
linear algebra [3] [4].

Boolean functions are basic objects in discrete mathematics. A boolean function f of n

variables is a mapping from F,' intoF,, where F, ={0,1}is a field with 2 elements. Truth Table is
2"- dimensional vector which has the function values of f for all vectors fromF," as coordinates.
We can consider the vectors inF,'as binary presentations of the integers in the interval

[0,...,2" —1]. This consideration is very useful when we try to describe and explain some

transformations of boolean functions and related algorithms.
Very important cryptographic property of a boolean function f is its non-linearity which is

related to the distances from f to the linear functions. The aim here is to present an efficient

algorithm for the calculation of the Walsh spectrum [5]. Practically, the considered algorithm can be
presented as a matrix vector multiplication. In our case the considered matrices have not only
recursive structure but this structure is quite specific and enables a very effective (butterfly)
multiplication.

The purpose of this paper is to assess the performance of the recent, inexpensive and widely
used NVIDIA GPUs in performing Walsh Transforms. Our approach for the calculation of the
Walsh spectrum is a Fast Walsh Transform and the mathematical background for this approach
will be described below in this paper. Here we experiment with different models for calculation and
present the results of these experiments. Also we are focused on reducing the time for calculation
of Walsh spectra for different sizes of the considered elements.

GPU COMPUTING MODEL WITH CUDA

GPUs are designed for efficient execution of thousands of threads in parallel on as many
processors as possible at each moment. The computation processes are divided into many simple
tasks that can be performed at the same time. This intensive multi-threading allows execution of
various tasks on the GPU processors while data is fetched from or stored to the GPU global
memory. It also ensures the scalability of the GPU computing model, since processors are
abstracted as threads, and support parallel programming model [6].

A simple way to understand the difference between CPU and GPU is to compare how they
process tasks. A CPU consists of a few cores optimized for sequential serial processing while a
GPU has a massively parallel architecture consisting of thousands of smaller, more efficient cores
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designed for handling multiple tasks simultaneously. This ability of a GPU with hundred and more
cores to process thousands of threads can significantly accelerate the software over a CPU.

Modern NVIDIA GPUs are powerful computing platform developed for general purpose
computing using CUDA (Compute Unified Device Architecture) [7]. It allows programmers to
interact directly with the GPU and run programs on them, thus effectively utilizing the advantages
of parallelization. Depending on architecture CUDA cores can be organized into SMs (streaming
multiprocessor), each having a set of registers, constants and texture caches, and on-chip shared
memory as fast as local registers (one cycle latency). At any given cycle, each core executes the
same instruction on different data (SIMD), and communication between multiprocessors is
performed through global memory. As a programming interface, CUDA C is not a new language, it
is a set of C language library functions with GPU specific commands, options and operations [9],
and the CUDA-specific nvcc compiler generates the executable for the NVIDIA GPU from a source
code.

LINEAR BOOLEAN FUNCTIONS AND WALSH SPECTRUM

Let f(X)=u,x, ®u,x, ®...®u X, be a linear boolean function of n variables. We use the
notationu, X, ®u,X, ®...®u,x, =x®’. The binary n-dimensional vector U uniquely defines
f (x) and therefore we denote it by f ®(x) . The Truth Table of f ) (x) has the form

f (®u) (6) 6(®U)

f ) (1) _ I(®U) — (S (n)

)(®U)

mat

fev@"-1y) (2" -1

(®u)

The values of the linear functions for 6,1 ..., 2" —1 form the following matrix:

0@0 0@1 O@z”_l
700 701 —
@0 ol o
(2” _1) (2n —1) (Zn _1)
Hence
Hr:— =((Sr(nr;)t)®o’ (SrE’]r;)t)(-Bl - (Srs’]r;)t)@Zn_lj

(=8 (oss,f;:j@“(os;;tnf”l (osg;sj@“
s> ) lsge) st ) s

mat

For the matrix H, we have
((08,5;:1)@(’ . -(085;;?)@2"”) - ((18;2:1)@° . -(18&2:1)@2"1‘1) —HL,
[(18 P st )] =H;,,

where the matrix H, , is obtained from H, ,after replacing O by 1 and 1 by -1. It follows that
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It is easy to see that H, is a symmetric matrix. Its rows (and columns) form n dimensional linear

space. In coding theory this space (without zero coordinate) is known as a simplex code. This
space together with its coset with representative (11 . . . 1), form the first order Reed-Muller code.

Let a=(a,,a,,...,a,) be abinary vector. The polarity representation a‘® of a is obtained from

a after replacing 0 by 1 and 1 by —1. Consider the scalar product s=a‘® -b™ over the integers.
Let s~ (respectively s*) be the number of the coordinates, for which a{”b{” =—1 (respectively

alPb{P =+1. Then s~ =d(a,b) is the number of coordinates with different value for aandb . And

s" is the number of the coordinates with equal values for aandb . We have thats=s" —s~ and
m=s"+s ors =(M+s)/2,s"=(m+5s)/2.

Let us denote by PTT(f)and H the polarity representations of TT(f)and the matrixH *. The
vector W, =H - (PPT ()" =(f"(0), f*@,.... f (2" =2),W, =W,,..,W,, ), is called Walsh

spectrum, and the function fW(a_) defines the Walsh transform. The value W, determines the

distance between the Truth Table of f and the Truth Table of the linear functionx®, which is
equal to(2" —W,)/2, and also the distance between TT(f) and the Truth Table of the affine
function 1+ x® which equal to (2" —W,)/2.

Matrix vector multiplication H-(PPT(f))' can be given by a butterfly diagram and a
corresponding algorithm, namely Diagram 2 and Algorithm 2 [8]. This algorithm passes all
elements of the matrix S in nsteps column by column starting from the last one. Depending on

mat

the value in the i-th row and (n— j+1)-th column of the matrix S the algorithm calculates a

mat

new values for W, [i] andW, [i + 2']. This algorithm entirely depends on the binary representation

of the nonnegative integers smaller than2".

Fast Walsh Transform can be implement parallel, by using base concept on Algorithm 2 [8]
but with acceptable modification to be suitable for parallel implementation. For our parallel
implementation we use CUDA C and we make several versions where we use various optimization
techniques, model and different memory to get better performance and efficiency.

EXPERIMENTAL EVALUATION

In the previous section we mentioned that we make several parallel implementation versions
of Fast Walsh Transform, and every version has improvements in execution time, compared with
the prevision version or it is an experiment which helps us to understand better the problem. Each
parallel version is implemented in CUDA C.

The first version is based on Algorithm 2 [8] but with suitable modification in order to
implement it in parallel. Here we have a problem with synchronization on threads from different
blocks [8], and our solution is the calling the kernel function from the main function n times
(number of steps). Another problem is the memory usage and entirely we use global memory but it
is the slowest memory in GPU. All other versions are modifications of the first one.

The second version is a modification of the first version, and in kernel function statement if —
else is replaced with algebraic expression to avoid warp divergence.

The third version again is a modification on the first one, and here we increase the work per
thread. In this way we get slower and slower execution time.
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The fourth version is a version where we use shared memory combined with the first version.
On first stage we use shared memory for calculations until certain steps, depending on the shared
memory limitation, and from then on the calculations are done with the global memory.

The fifth version is a version where we use shared memory combined with the memory
pattern. Memory pattern is for tracking the intermediate results from the steps of the calculation
and comes from the shared memory limitation. Here we obtain better performance compared with
the other versions.

The experiments were performed using the following computer configuration: Intel i3-3110M
[9] with 2.4 GHz and 4 GB of RAM and NVIDIA GeForce GT 740M [10], cards with a total of 384
cores running at 0.9 GHz and a 28.8 GB/sec memory bandwidth. The CUDA [7] kernel were
developed using MS Visual Studio 2010, Active solution configuration Release, Active solution
platform Win32.

Running time vs. thread/block

\’///

32 64
[=—2n6 027 017

| 128 256 512 1024 thread/block‘
| 012 013 014 016 |
‘—2436 (no sync) 02 012 | 0,07 0,08 0,09 01 ‘

| 215 0151 0,103

Figure 1. Relationship between time and number of threads/block

0,083 | 0,085 0,094 0,104 |

Figure 1 shows the execution time for calculating the Walsh spectrum for the different

number of threads per block. The first and the second versions compute Walsh spectrums on 2'°
elements, but the second one does not use synchronization (in some cases the program without
synchronization does not give a right answer but there is another problem — the synchronization
slows down the execution time). The third version computes Walsh spectrum on 2'°element. From
this we can evaluate that we have fast execution time when using 128 threads per block and also
can see the price of synchronization. Price of synchronization is approximately one step of
calculation.
Runningtime vs. thread/ blockand M, BLOCK_SIZE =128

ms

165536 2| 32768 4] 16384 88192 1614006 | 32]2048 6411024 | 128|512 | 2561256 | 512|128
M | num.thread 0,366 04 | 0,68 1,25 1,66 | 3,05 3,07 | 3,72 | 5,98 | 11,9 |

Figure 2. Work per tread vs. execution time

Result from increasing work per thread versus execution time is shown in figure 2. Here we
calculate Walsh spectrum on 2'° elements, and from right to left it shows the increasing work per
tread or we have less threads but still the same 2'° elements for computation.
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The comparison between the CPU Algorithm 2 [8], first, fourth and fifth version is shown on

figure 3.

ms

Runningtime vs. number element

1024

—CPU  ——1GPU GM

2096

8192 16384

4. GPU, Combined GM - SM e GPLI, SM- MS

32768

Figure 3. Time for calculating [Wf] CPU vs. different GPU implementation

The numbers next to the line show the version of parallel implementation and the first blue
line is the CPU Algorithm 2 [1] implementation in C++. Because of the resolution of the figure it is
difficult to notice and to make statements. Obviously in one point GPU implementation becomes
faster, but the details are shown in table 1.

Speed up is defined by:

T

_

T

p(n)

where T, s the run-time of the fastest known sequential algorithm and T

parallel algorithm, and n is the size of the input.

) is the run-time of the

TABLE |. CPU VS. GPU IMPLEMENTATION, SPEED UP FOR DIFFERENT NUMBER ELEMENT

Number | CPU | 1.GPU, | SESELEP | STUGEM T BN e Crover
1.GPU, GM GPU, GM-SM 5.GPU, SM
128 0,003 0,024 / 0,0066 / 0,0066 /
256 0,007 0,026 / 0,0066 1.060 0,0066 1.060
512 0,015 0,028 / 0,0069 2.272 0,0069 2.272
1024 0,033 0,034 / 0,0071 4.647 0,0071 4.647
2048 0,068 0,039 2 0,013 5.230 0,0124 5.483
4096 0,145 0,048 3.02 0,019 7.631 0,0147 9.863
8192 0,308 0,062 4.967 0,026 11.846 0,023 13.391
16384 0,665 0,096 6.927 0,048 13.854 0,052 12.788
32768 1,1487 0,165 6.961 01 11.487 0,13 8.836
65536 3,116 0,366 8.513 0,24 12.983 0,28 11.128
131072 6,87 1,561 4.401 0,85 8.082 0,595 11.546
262144 14,818 3,571 4.149 2,056 7.207 1,207 12.276

Table 1 shows different implementations of FWT for different number of elements and

speed ups which appear in the GPU implementation. An important conclusion is that the GPU
processing makes sense only for large size problems. It is important that the prices of buffer
creation and transfers have to be acceptable, so in this particular case when GPU is used, for
fourth and fifth version on implementation this experiment shows that the number of elements has
to be at least 256. CPU is faster for small problems and can work faster than couple threads, which
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is the reason for this limitation. For more elements more threads are used and therefore the
computation is faster than in the case of sequential programming. However, there are boundaries
(limitations) which depend on several things (the problem, the algorithm, GPUs, the libraries, the
model, etc.).

Another interesting observation about the fourth and fifth version is intersection on time
executions. In one point the memory pattern has higher price (spends more time on memory
movement) than shared memory computations.

CONCLUSION

In this paper we proposed a performance model for computing Walsh transform with wide
use NVIDIA GPU by using popular models in the parallel algorithm community. In this paper we
presented the effect of considering a CPU versus GPU speed up contrasted by the use of GPU
versus GPU speed up measures. Wide used modern GPU has become attractive for scientific
computing. This is one of the many examples and here we can see the benefits of using it. Note
that here we use low class of GPU.

This experiment shows that parallel version of implementation proposed, in CUDA C, still can
be improved. One of the problems here is the synchronization and it affects the performance, the
number of threads per block has influence in the time execution and etc. By choosing proper
optimization techniques and appropriate methods an increased efficiency can be obtained and the
performance can be improved. This will be a part of our future research.
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