Preparation for the measurement of the bound-state beta-decay of bare ²⁰⁵TI ions at the ESR

Ragandeep S. Sidhu¹, Fritz Bosch¹, H. Geissel¹, J. Glorius¹, R. Grisenti¹, A. Gumberidze¹, S. Hagmann¹, Ch. Kozhuharov¹, M. Lestinsky¹, S. Litvinov¹, Yu. Litvinov¹, I. Mukha¹, C. Nociforo¹, N. Petridis¹, R. Sánchez¹, M. Sanjari¹, C. Scheidenberger¹, U. Spillmann¹, M. Steck¹, T. Stöhlker¹, S. Trotsenko¹, H. Weick¹, N. Winckler¹, D. Winters¹, C. Brandau², R. Reifarth³, Ch. Langer³, D. Atanasov⁴, K. Blaum⁴, T. Faestermann⁵, R. Gernhäuser⁵, Paul Kienle⁵, M. Najafi⁵, M. Pavicevic⁶, W. Henning⁷, Bradley Meyer⁸, D. Schneider⁹, K. Leach¹⁰, V. Pejovic¹¹, B. Boev¹², T. Suzuki¹³, T. Yamaguchi¹³, S. Naimi¹⁴, F. Suzaki¹⁴, T. Uesaka¹⁴, Y. Yamaguchi¹⁴, T. Ohtsubo¹⁵, B. Sun¹⁶, X. Chen¹⁷, B. Gao¹⁷, X. Ma¹⁷, X. Tu¹⁷, M. Wang¹⁷, H. Xu¹⁷, X. Yan¹⁷, Y. Zhang¹⁷, C. Bruno¹⁸, T. Davinson¹⁸, C. Lederer-Woods¹⁸, P. Woods¹⁸, P. Walker¹⁹, G. Lane²⁰, I. Dillmann²¹, M. Trassinelli²², S. Torilov²³, R. Cakirli²⁴, F. Ozturk²⁴, B. Jurado²⁵ and W. Korten²⁶ ¹GSI, Darmstadt, Germany; ²Universität Giessen, Gießen, Germany; ³J.W. Goethe Universität, Frankfurt, Germany; ⁵TU Munich, Garching, Germany; ⁶Salzburg University, Salzburg, Austria; ⁷Argonne National Laboratory, Argonne, Illinois, USA; ⁸Clemson University, USA; ⁹Lawrence Livermore National Laboratory, Livermore, USA; ¹⁰Colorado School of Mines, Golden, USA; ¹¹Institute of Physics, Zemun, Pregrevica Belgrade, Serbia; ¹²University of Štip, FYR Macedonia; ¹³Saitama University, Saitama, Japan; ¹⁴RIKEN Nishina Center, Wako, Tokyo, Japan; ¹⁵Niigata University, Niigata, Japan; ¹⁶Beihang University, Beijing, China; ¹⁷Institute of Modern Physics, Lanzhou, China; ¹⁸University of Edinburgh, UK; ¹⁹University of Surrey, Guildford, UK; ²⁰The Australian National University, Canberra, Australia; ²¹TRIUMF, Vancouver, Canada; ²²Inst. des NanoSciences de Paris, CNRS UMR7588 and UMPC-Paris 6, France; ²³St. Petersburg State University, Russian Federation; ²⁴University of Istanbul, Turkey; ²⁵CNRS, IN2P3, CENBG, France; ²⁶IRFU, CEA, Université Paris-Saclay, France

Abstract

Bound-state beta-decay (β_b) accompanied by the emission of a monochromatic antineutrino, was first predicted by Daudel et al [1] in 1947 and then discussed in detail by Bahcall [2]. The first direct observation of the bound-state beta decay (β_b decay) was done in 1992 by Jung et al [3] with the use of bare ¹⁶³Dy⁶⁶⁺ ions stored in the heavy ion storage ring ESR at GSI. In the present study we aim at measuring the bound-state beta-decay rate of fully-ionized ²⁰⁵TI, which is needed to determine the matrix element for the electron capture decay from the 2.3 keV excited state in ²⁰⁵Pb to the ground state of ²⁰⁵TI. This matrix element is important for constraining of neutrino capture probability into the 2.3 keV state of ²⁰⁵Pb [4] and for modelling of the s-process [5] in the Hg-Pb region. The experiment proposal has been approved by the GSI program advisory panel. We aim at conducting the experiment in 2018, when the accelerator complex of GSI will restart its operation.

This project has received funding from the European Research Council (ERC) under the European Union's

