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Abstract—Direct phase or indirect frequency control methods 

are used in series-resonant bridge power inverters for induction 

heating to maintain maximum power transfer as the load equiva-

lent electrical parameters change during the heating process. In 

these applications, to control the power level it is common to use 

the above resonance operating frequency, where only measure-

ment of the deviation of the phase angle from its reference value 

is used to calculate the new bridge switching frequency. Below 

resonance is not used since its control is non-linear, has high level 

of harmonics and is considered unstable, so no detailed analysis 

have been carried out. The paper present mathematical analysis 

of the output power, voltage and current phase angle dependence 

on the resonant circuit damping frequency when it is excited with 

pulse voltage with a different frequency than the resonant one, in 

both above and below resonance regions. Based on this analysis, 

possibilities of below resonance power control are investigated 

and new insight in circuit behavior is presented based on varia-

tion in resonant tank parameter values.  

Keywords—series-resonant bridge inverter; direct phase control 

method; below resonance operating mode; damping frequency. 

I. INTRODUCTION 

Series-resonant bridge inverters are used in a variety of ap-
plications. Maximum energy is transferred to the load when the 
converter switching frequency is same to the resonant one. In 
some applications, like direct induction heating, the heated 
work-piece equivalent electrical parameters are part of the res-
onant circuit [1–4]. As the temperature of the work-piece is 
increased, the resonant tank inductance and resistance change, 
thus changing the circuit resonant frequency. To ensure max-
imum energy transfer, the inverter control circuitry must adjust 
the switching frequency so that it follows the change of the 
resonant frequency. Different control algorithms are used to 
adjust the switching to the resonant frequency. Several of them 
are based on direct frequency control [5–6] and other use indi-
rect frequency control by controlling the phase angle φ between 
the inverter output voltage and current [7–15]. The last control 
type, instead of indirect frequency, is more often called direct 
phase control method. Phase control provides reliable drive of 
the resonant converter in the presence of large dynamic 
changes in the load impedance during star-up, natural tracking 
of component variations with temperature and time, simplified 
control to output dynamics and a more linear relationship be-
tween phase command and output current when compared to 
frequency control [10, 11].  

In the analysis of serial resonant converters it is usual to use 
the resonant circuit frequency ω0 for two reasons: (1) assuming 
that the value of the resistance of the resonant tank is very 
small the damping is negligible and thus resonant ω0 and 
damping ωd angular frequencies have very close values; 
(2) active power is calculated using the phase angle between

voltage and current first harmonics. However, in resonant con-
verters the voltage waveforms are pulse and current has a 
damped sinusoidal form. In such cases phase angle has to be 
calculated in respect to the damping frequency and consequent-
ly the derived expressions [16] show qualitatively different 
behavior. Based on damping frequency analysis of the depend-
ence of the phase angle φ on the switching frequency ωs in [16] 
improved direct phase control method was developed.  

Applications in [10, 11, 16] use the above resonance oper-
ating mode. Below resonance operation mode (although it al-
lows for zero current transistor switch-off and diode switch-on) 
is not used since has higher current distortion and lower power 
factor. Consequently, no detailed analytical investigations of 
this operation mode have been carried out and conclusion are 
derived form the usual harmonic analysis. In this paper equa-
tions are derived that are valid for the whole range of frequen-
cies, below and above the resonance. They allow for further 
investigations of all parameters and power control in above and 
below resonance modes in series-resonant bridge inverters.  

II. DIRECT PHASE CONTROL METHOD 

Fig. 1 shows a block diagram of the feedback control circu-
itry used in the direct phase control of full-bridge series-
resonant inverter. It comprises of a current transformer that 
measures the resonant circuit (output) current, a zero crossing 
detector that gives zero voltage when iout(t) < 0 and positive 
voltage when  iout(t) > 0, a microcontroller that implements the 
control algorithm, optocoupler galvanic isolation, driver circuit 
that supplies firing pulses to the IGBT switches and feedback 
circuit for IGBT overload protection measuring collector-
emitter voltages vCE to limit currents through T1 to T4.  

Fig. 1. Block diagram of the full-bridge series-resonant inverter. 
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The microcontroller program has predefined values for the 
initial value of the switching frequency fs,ref0 (or period Ts,ref0 = 
1/fs,ref0) and the desired or the reference phase difference be-
tween the output voltage and current φref. This phase difference 
would be zero or close to zero if maximum power transfer is 
needed, or have a specific value that corresponds to the desired 
output power when we like to control the power transfer.  

Fig. 2 shows the output voltage and current waveforms in 
the more usual above-resonance mode of operation. In induc-
tion heating/melting and similar applications the heated work-
piece equivalent electrical parameters are part of the resonant 
circuit. As the work-piece temperature increases, its equivalent 
resistance and inductance change, thus changing the circuit 
resonant frequency. Consequently, the deviation of the switch-
ing frequency from the resonant one is also changed, which 
results in undesired change of output power. The prototype 
resonant inverter for induction heating with rated power of 
10 kW built in [16] has the resonant tank parameters 
R = 0.24 Ω, L = 26.5 µH and C = 26.6 µF. The typical R and L 
change during metal-piece induction melting is in the range of 

50%. These real values are used as an example in the follow-
ing investigation giving the values for the resonant frequency 
ω0 = 37,665 rad/s, f0 = 5,998 Hz and the base value of the qual-
ity factor Q = 4 (more precisely 4.16) and its range from 3 to 5.  

Tdelaytφ

iout(t)

Ts/2vout(t)

t

Ts
Tdelaytφ

iout(t)

Ts/2vout(t)

t

Ts

 
Fig. 2. Output voltage and current waveforms in above-resonance mode.  

To maintain the desired output power the switching fre-
quency needs to be adjusted. Control methods [10, 11, 16] 
achieve this by adjusting the interval Tdelay (after which T3 and 
T4 are switched off, and T1 and T2 switched on) using an algo-
rithm with 8 steps: 

1. Switch-off T1 and T2, and switch-on T3 and T4, (posi-
tive half-period starts);   

2. Wait for current zero crossing moment i(t) > 0 and 
measure time interval tφ,i ; 

3. Calculate Tdelay,i using the method equations;  
4. Wait for time interval Tdelay,i ; 

5. Switch-on T1 and T2, and switch-off T3 and T4 (nega-
tive half-period starts);   

6. Wait for current zero crossing moment i(t) < 0 and 
measure time interval tφ,i ;  

7. Calculate Tdelay,i; 

8. Wait for time interval Tdelay,i  and go to step 1. 

The new values of the positive half-period and consequent-
ly the new switching frequency are determined by the desired 
phase angle which makes this method a direct phase control 
one. This method has an advantage of being very simple and 
easy to implement with a low cost microcontroller. The calcu-
lations in steps 3 (and 7) should be finished numerically before 
the positive half-period ends, i.e. during Tdelay time. Having in 
mind that Ts/2 is less than 100 μs and tφ in the order of 10 μs,  

the methods use simplified equations, so that the calculations 
can be done on a low cost microcontroller.  

The main objective of the control method is to adjust the 
switching frequency so that the desired phase angle and power 
transfer are obtained. To do so, the feedback circuit in Fig. 1 
has possibilities to measure the time between current zero 
crossings and instants when the switches are turned on or off. 
This means that the control method as input has the values of 
the previous cycle switching period Ts,i-1 and the current cycle 
phase angle time equivalent tφ,i. Having these measured values, 
the method determines the new switching frequency Ts,i at 
which the φi and tφ,i have the desired or the reference values.  

III. SQUARE PULSE EXCITATION OF THE RESONANT TANK 

Analysis of the series-resonant converters usually use the 
voltage and current first harmonics to determine the circuit 
parameters and behavior. However, the current waveform in 
Fig. 2 is not sine wave, but is comprised of pieces of damped 
oscillation and φ and tφ depend on the circuit damping frequen-
cy ωd. To derive the phase angle φ dependence on ωd let us 
explore the series-resonant circuit excited by voltage pulses.  

If the voltage is in form of the Heaviside step function, then 
the current oscillates around zero with angular damping fre-
quency ωd, as shown in Fig. 3. When the voltage has square 
pulses waveform (duty ratio D = 0.5) and amplitude ± VDC, 
then in every half-period the current is a piece of the damped 
oscillation of Fig. 3 and looks like the waveform shown in 
Fig. 2. In the steady state the negative half-period waveform is 
symmetrical to the positive one in respect to the time axis. 
Harmonic analysis can be done in this case for the calculation 
of the active and reactive power, power factor etc. However, to 
determine the tφ (and φ) as defined in Fig. 2 and its dependence 
on the deviation of ωs from ωd, the actual time waveforms from 
Fig. 3 have to be analyzed. Such analysis has not been carried 
in the literature to the best of our knowledge. 

Time
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Fig. 3. Current waveform in the series-resonant circuit when excited by a 

Heaviside step voltage with amplitude VDC = 56 V. Parameters' values 

are R = 0.24 Ω, L = 26.5 µH and C = 26.6 µF with initial values iL(0+) = 

–165 A and uC(0+)  = –163 V to match the initial conditions in Fig. 2.  

The series-resonant circuit current waveform for one half-
period can be obtained from the second-order differential equa-
tion:  

 
t

tv

LCL

ti

t

ti

L

R

t

ti

d

)(d1)(

d

)(d

d

)(d
2

2

  (3) 

The solution in this case (using prototype real parameters) is 
the under-damped one (α < ω0), which is also obvious since the 
current oscillates (Fig. 3), it has no DC component since v(t) is 
constant (dv/dt = 0) and has the form (1) or (2):  
 )sincos()( d2d1 tωAtωAeti αt    (1) 

 )sin()( dmax φtωeIti αt    (2) 
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where 1s4528
2


L

R
α , 

s

rad
37665

1
0 

LC
ω ,  

 2

0

22

d ωαω       
s

rad
3739222

0d  αωω and 

 16.4
2

11 0

0

0 
α

ω

C

L

RRCωR

Lω
Q  (3) 

Determination of the two unknown constants Imax and φ for 
the steady-state solution can be done using two border condi-
tions for this time interval, i.e. i(0) = –I0 and i(Ts/2) = +I0: 

for t  
0max )sin()0( IφIi    

for t = Ts/2
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Dividing (6) by (4) we obtain:  
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and finally:
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 (7

To determine the second unknown Imax, the inductor voltage 
border conditions can be used. The inductor voltage vL(t) ob-
tained as derivative of its current L∙di(t)/dt is given by:  

 )]cos()sin([)( dddmax φtωωφtωαeLItv αt

L     

or representing it as single sine function with phase shift and 
using (3) the vL(t) has the form: 

 )]arctan([sin()( dmax0
α

ω
φtωeLIωtv dαt

L    (8) 

At the t = 0
+
 using (8) we have:   

 )arctan(sin()0( max00
α

ω
φLIωVv d

LL   (9) 

At the end of positive half period t = T
–
/2 using (8) we have:  

 )]arctan(sin[
2
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α

ω
φ

x

π
eLIω

T
v dx

π

ω

α

L
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
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
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 (10) 

When input voltage changes from VDC to –VDC, the resonant 
tank current i(t), which is also inductor current, cannot have 
abrupt change. The same is the case with the resistor voltage 
vR(t) = R∙i(t) and the capacitor voltage vC(t). The whole change 
of –2∙VDC will appear in the inductor voltage:  
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At the end of T/2 period the vL(t) has the same value as VL0, but 
with an opposite sign: 
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Combining (11) and (12): 
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Now using (9) and (10) in (13), one equation with one un-
known Imax is obtained: 
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Finally:  
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The resistor voltage is given by:  

 )sin()()( dmax φtωeRItRitv αt

R    

The capacitor voltage vC(t), instead of being obtained as in-
tegral of its current, can be obtained as: 

 )()()()( tvtvtvtv LRINC   (16) 

Equations (2), (8), (15) and (16), together with parameters 
equations (7) and (14), give the exact analytical forms of all 
resonant tank time variables.  

IV. SINE WAVE AND SQUARE PULSE EXCITATION 

COMPARISON 

Before obtaining the expressions and analyzing the output 
power, lets comment on the difference in the two approaches, 
the sine-wave voltage exaction and the square-pulse excitation 
analysis cases. The difference is especially notable in the below 
resonance region.  

When a series resonant circuit is excited by a sine wave 
voltage, all waveforms have the sine shape and the current 
phase φ in respect to the voltage is a well known relation: 

 )](arctg[ 0

0 s

s

ω

ω

ω

ω
Qφ   (17) 

where ωs is the operating, ω0  the resonant angular frequency
 

and the quality factor is Q. This monotonous relation is shown 
in Fig. 4 for the base value Q = 4 and its range from 3 to 5.  
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Fig. 4. Phase angle φ dependence on x = ωs/ω0 for Q = 3, 4 and 5, when the 

series resonant circuit is exited by a sinusoidal voltage. 

When the series-resonant circuit is excited by voltage puls-
es, the current phase φ in respect to the voltage is given by the 
relation (7). It is graphed in Fig. 5 for Q = 3, 4 and 5 and shows 
considerably different behavior than (17) and Fig. 4. The func-
tion is not monotonous and it "oscillates" below resonance (x = 
ωs/ωd < 1) having negative, but also positive values for φ.  

To visualize this rather strange dependence, Fig. 6 gives 
PSpice simulation results of steady-state for several values of 
the switching frequency below and above resonance. Phase 
angles measured in these waveforms match and verify results 
obtained by (7).  
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Fig. 5. Dependence of the phase angle φ on the normalized value ωs/ωd for 

Q = 3, 4 and 5, when excited by voltage pulses. 

Also, the current waveform for fs = 0.5·fd or fs = 0.6·fd 

shows that it is very much distorted deep below resonance, the 
first harmonic is no longer dominant, which reflects to the 
amount of active power transferred to the load. This explains 
why below-resonance mode of power control was less desira-
ble. The first diagram in Fig. 6 for fs = 0,5 fd shows that (7) gets 
zero values every time the switching period Ts is multiple of 
the damping one Td, in this case Ts = 2 Td.  

A comparison of the phase angle φ dependence on ωs in 
both cases, with sinusoidal and pulse excitation, is given in Fig. 
7. The switching angular frequency ωs is normalized, in the 
first case with the resonant ω0, and in the second with the 
damping angular frequency ωd. The figure shows that there is a 
considerable difference, especially further away from the reso-
nance point. However, making PSpice simulations and measur-
ing the phase angle time equivalents tφ, it was noticed that they 
have very close values in the above-resonance region as can be 
clearly seen in Fig. 8. Analyzing this fact lead us to a very in-
teresting conclusion. Namely tφ is calculated in a different way 
in both cases. When the circuit excitation is sinusoidal, the cur-
rent is in the form: 
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In the second case with voltage pulses excitation, we have: 
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Relations (19) and (21) are similar, but profoundly differ-
ent: ωd and Td are constants determined by the circuit parame-
ters, while ωs and Ts are variables that are changed by the con-
trol method and are used as x-axis in Figs. 7 and 8. This also 
shows that in the case with voltage pulses, the correct way to 
measure and calculate the phase angle is by using (21) which is 
not taken into account in many analysis and papers.  

V. SQUARE PULSE EXCITATION POWER ANALYSIS  

The active power at steady state can be obtained as:  
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This integral can be analytically solved as:   
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Using trigonometric transfiguration and (3) we obtain:  
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fs  = 0.8·fd = 4 761 Hz                            fs  = 0.9·fd = 5 356 Hz 
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Fig. 6. Steady state voltage and current waveforms below and above reso-

nance (R = 0.24 Ω, L = 26.5 µH, C = 26.6 µF and Q = 4).  
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Fig. 7. Comparison of the phase angle φ dependence on ωs for Q = 4: 

(a) sinusoidal excitation, x = ωs/ω0, (b) pulse excitation, x = ωs/ωd. 
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Introducing the normalized variable x = ωs/ωd it has the form: 
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Fig. 8. Comparison of the phase angle time equivalent tφ dependence on ωs: 

(a) sinusoidal excitation, x = ωs/ω0, (b) pulse excitation, x = ωs/ωd. 
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Using (14) for Imax the for active power at steady state is:  
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This relation is shown in Fig. 9 for the range of the normal-

ized variable x = ωs/ωd varied from one decade below to one 
decade above resonance (x = 1). The below resonance region is 
particularly interesting since it has unexpected behavior not 
reported in other analysis using harmonic waveforms decom-
position. The active power P reduces to zero non monolithical-
ly with local maximums and minimums when the phase angle 

 has values zero. The first such case when  = 0 gives local 
power minimum is at x = 0.5  and corresponds to time wa-
veforms in Fig. 6 for fs = 0.5·fd. This one, and other local min-
imums and maximums, correspond to ZCS (zero current 
switching) conditions and are of particular interest.  

 
Fig. 9. Active power P dependence on switching frequency deviation from 

the damping frequency (blue line), phase angle  (red line).  

Figures 10, 11 and 12 show family of curves obtained when 
a certain resonant tank parameter is varied from its nominal 
value. This changes the quality factor of the resonant tank Q, 
and makes the power dependence oscillations below resonance 
stronger or weaker. Large portion of the power circulates be-
tween the source and the load in each half cycle. To measure it, 
we introduce "absolute" power defined as:  

  
2

0

d

S

max

2

0S

abs d)sin(
3

d)(
2

)(

ss T

αt

DD

T

DD tφtωe
T

IVttiV
T

xP  (24) 

 
Fig. 10. Active power dependence on switching frequency deviation from the 

damping frequency. The family of curves are obtained varying the nomi-
nal resistance value R by a factor of k = 1; 1.5; 2; 3; 4 and 5.  

 
Fig. 11. Active power dependence on switching frequency deviation from the 

damping frequency. The family of curves are obtained varying the 
nominal capacitance value C by a factor of k = 0.5; 1; 2; 4; and 8.  

 
Fig. 12. Active power dependence on switching frequency deviation from the 

damping frequency. The family of curves are obtained varying the nomi-
nal inductance value L by a factor of k = 2; 1; 0.5; and 0.25.  

 
Fig. 13. Active power P, "absolute" power Pabs, and circulating power Pabs – P 

dependence on switching frequency deviation from damping frequency 

at nominal values VDC = 56 V, R = 0.24 Ω, L = 26.5 µH and C = 26.6 µF.  

Figures 13 and 14 show this "absolute" power Pabs, as well as 
the difference Pabs–P that represents the circulating "reactive" 
power.  The ratio P/Pabs has the meaning of the power factor.  

10 10 10 
-1 0 1 0 

2000 

4000 

6000 

8000 

10000 

12000 

P [W]  

x = ωs/ωd 

1 

1.5 

2 

3 
4 

10 

10 
-1 

10 
0 

10 
1 -4000 

-2000 

0 

2000 

4000 

6000 

8000 

10000 

12000 

x=ωs/ωd 

P [W] 

5 

 * 5000  

 10
-1

  10
0
 10 

1 
0 

2000 

4000 

6000 

8000 

10000 

12000 

P L promena 2 1 0.5 0.25 

x = ωs/ωd 

P [W] 

0.25 

2 1 
0.5 

10 
-1 

10 
0 

10 
1 0 

2000 

4000 

6000 

8000 

10000 

12000 

x = ωs/ωd 

 [W] 

 Pabs–P 

 Pabs 

P 

10 
-1 

10 
0 

10 
1 0 

2000 

4000 

6000 

8000 

10000 

12000 

x = ωs/ωd 

P [W]  

1 

8 

0.5 

4 
2 

345



IEEE EUROCON 2017, 6–8 JULY 2017, OHRID, R. MACEDONIA 

 
Fig. 14. Active power P, "absolute" power Pabs, and circulating power Pabs – P 

dependence on switching frequency deviation from damping frequency 

with 16 times increased capacitance value C = 16 ∙ 26.6 µF = 425.6 µF.  

Figures 15, 16 and 17 show the maximum values of the ca-
pacitance and inductance voltages and circuit current. These 
figures are useful in resonant tank elements design.  

 
Fig. 15. Maximum capacitance voltage dependence on operating frequency 

deviation from damping frequency. The family of curves are obtained 
varying the nominal capacitance value C by a factor of k =0.5; 1; 2; 4; 8.   

 
Fig. 16. Maximum inductance voltage dependence on operating frequency de-

viation from damping frequency. The family of curves are obtained va-

rying the nominal capacitance value C by a factor of k = 0.5; 1; 2; 4; 8. 

 
Fig. 17. Maximum circuit current Imax dependence on operating frequency de-

viation from damping frequency. The family of curves are obtained va-

rying the nominal capacitance value C by a factor of k = 0.5; 1; 2; 4; 8. 

VI. CONCLUSION  

The derived analytical equations for the time variables, 
phase angle and power in the series resonant circuit excited by 
a square pulse voltage from a full-bridge converter are valid for 
the whole operating frequency range. Above resonance other 
approximate methods give satisfactory results. However, in the 
below resonance operation mode the current and voltage wave-
forms are very distorted and the analysis presented shows a 
considerably different dependence of the current phase angle 
and active power delivered to the load on the deviation of the 
switching frequency from the damping one. This new insight 
was not possible with other methods presented elsewhere. First, 
the phase angle in the case has to be calculated in respect to the 
damping frequency, which depends on circuit parameters, 
rather then in respect to the switching one, which is constantly 
varied by the control method. This fact is usually neglected in 
many analysis and papers. Second, the active power has pecu-
liar osculating dependence with local maximums and mini-
mums at zero phase angle below resonance. This can be used 
for ZCS if power is needed in defined steps. Derived equations 
allow for further investigations and optimisation, including the 
circuit power factor, depending on the circuit parameter values.  
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