Hindawi

Complexity

Volume 2017, Article ID 6429725, 27 pages
https://doi.org/10.1155/2017/6429725

Research Article

WILEY

Hindawi

Conditions for Existence, Representations, and Computation of

Matrix Generalized Inverses

Predrag S. Stanimirovi¢,' Miroslav Ciri¢,' Igor Stojanovi¢,” and Dimitrios Gerontitis’

!Faculty of Science and Mathematics, Department of Computer Science, University of Nis, Visegradska 33, 18000 Nis, Serbia
2Faculty of Computer Science, Goce Deléev University, Goce Delcev 89, 2000 Stip, Macedonia

3 Aristoteleion Panepistimion, Thessalonikis, Greece

Correspondence should be addressed to Predrag S. Stanimirovi¢; pecko@pmf.ni.ac.rs

Received 3 January 2017; Accepted 18 April 2017; Published 5 June 2017

Academic Editor: Sigurdur F. Hafstein

Copyright © 2017 Predrag S. Stanimirovi¢ et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Conditions for the existence and representations of {2}-, {1}-, and {1, 2}-inverses which satisfy certain conditions on ranges and/or
null spaces are introduced. These representations are applicable to complex matrices and involve solutions of certain matrix
equations. Algorithms arising from the introduced representations are developed. Particularly, these algorithms can be used to
compute the Moore-Penrose inverse, the Drazin inverse, and the usual matrix inverse. The implementation of introduced algorithms
is defined on the set of real matrices and it is based on the Simulink implementation of GNN models for solving the involved matrix
equations. In this way, we develop computational procedures which generate various classes of inner and outer generalized inverses
on the basis of resolving certain matrix equations. As a consequence, some new relationships between the problem of solving matrix
equations and the problem of numerical computation of generalized inverses are established. Theoretical results are applicable to
complex matrices and the developed algorithms are applicable to both the time-varying and time-invariant real matrices.

1. Introduction, Motivation, and Preliminaries

Let C™" and C™" (resp., R™" and R"") denote the set of
complex (resp., real) m x n matrices and all complex (resp.,
real) mxn matrices of rank r. As usual, the notation I denotes
the unit matrix of an appropriate order. Further, by A*, Z(A),
rank(A), and //(A) are denoted as the conjugate transpose,
the range, the rank, and the null space of A € C™".

The problem of pseudoinverses computation leads to the,
so-called, Penrose equations:

(1) AXA = A,
(2) XAX = X,
(3) (AX)" = AX, W
(4) (XA)" = XA.

The set of all matrices obeying the conditions contained in
& is denoted by A{S}. Any matrix from A{S?} is called the

§-inverse of A and is denoted by A, A{S’}, is denoted as
the set of all §-inverses of A of rank s. For any matrix A
there exists a unique element in the set A{l,2,3,4}, called
the Moore-Penrose inverse of A, which is denoted by A'.
The Drazin inverse of a square matrix A € C™" is the
unique matrix X € C™" which fulfills matrix equation (2)
in conjunction with

(1%) A"'Xx = A, I>ind(4),
(2)
(5) AX = XA,

and it is denoted by X = AP. Here, the notation ind(A)
denotes the index of a square matrix A and it is defined by
ind(A) = min{j | rank(A/) = rank(A7*1)}. In the case
ind(A) = 1, the Drazin inverse becomes the group inverse
X = A" For other important properties of generalized
inverses see [1, 2].

https://doi.org/10.1155/2017/6429725

An element X € A{S} satistying Z(X) =
N(X) = #(C)) is denoted by A(;’(B),* (resp., A(f,@(c)). If X
satisfies both the cond1t10ns R(X) = R(B) and /(X)) =
W(C) it is denoted by A FBLN(C)" The set of all {S}-inverses
of A with the prescribed range % (B) (resp., prescribed kernel
N(X) = H(C)) is denoted by X = A{S}yp,. (resp.,
A{S}. y(c))- Definitions and notation used in the further text
are from the books by Ben-Israel and Greville [1] and Wang
et al. [2].

Full-rank representation of {2}-inverses with the pre-
scribed range and null space is determined in the next
proposition, which originates from [3].

R (B) (resp.,

Proposition 1 (see [3]). Let A € C™”, let T be a subspace
of C" of dimension s < r, and let S be a subspace of C" of
dimensions m — s. In addition, suppose that R € C"™™ satisfies
RR) = T, /(R) = S. Let R have an arbitrary full- mnk
decomposition; that is, R = FG. If A has a {2}-inverse A%
then

TS’

(1) GAF is an invertible matrix;
(2) _ -1
(2) A7 = F(GAF)™ G.

The Moore-Penrose inverse AT, the Drazin inverse AD,
and the group inverse A” are generalized inverses A(;)S for
appropriate choice of subspaces T and S. For example, the
following is valid for a rectangular matrix A [2]:

(2)
A = Aan)r(a)
()
AP = A
R(AR), W (AF)
3)
k > indA,
()
A = A,

The full-rank representation A(z) = F(GAF)™'G has
been applied in numerical calculatlons For example, such a
representation has been exploited to define the determinantal
representation of the AT < inverse in [3] or the determinantal
representation of the set A{2}, in [4]. A lot of iterative
methods for computing outer inverses with the prescribed
range and null space have been developed. An outline of these
numerical methods can be found in [5-13].

A drawback of the representation given in Proposition 1
arises from the fact that it is based on the full- rank decom-
position R = FG and gives the representation of A® FRNR)"
Besides, it requires invertibility of GAF; in the opposite case,
it is not applicable. Finally, representations of outer inverses
with given only range or null space or the representations of
inner inverses with the prescribed range and/or null space
are not covered. For this purpose, our further motivation is

Well known representations of generalized inverses A(Z)S and

T s , given by the Urquhart formula. The Urquhart formula
was originated [14] and later extended in [2, Theorem 1.3.3]
and [1, Theorem 13, P. 72]. We restate it for the sake of
completeness.

Complexity

Proposition 2 (Urquhart formula). Let A € C!™", U € C"™,
V e C™" and X = UVAU)VV, where (VAU)Y is a fixed
but arbitrary element of (VAU){1}. Then

(1) X € A{1} ifand only if rank(VAU) = r;

2) X € A{2} and R(X)
rank(VAU) = rank(U);

RWU) if and only if

3) X € A{2} and /(X)
rank(VAU) = rank(V);

N (V) if and only if

— (2)
(4) X = AF/B(U) N (V)

rank(U) = rank(V);

if and only if rank(VAU)

G)X =AY L, if and only if rank(VAU)

rank(U) = rank(V) = r.

Later, our motivation is the notion of a (b, c)-inverse
of an element a in a semigroup, introduced by Drazin in
[15]. Following the result from [9], the representation of
outer inverses given in Proposition 1 investigates (R, R)-
inverses. Our tendency is to consider representations and
computations of (B, C)-inverses, where B and C could be
different.

Finally, our intention is to define appropriate numerical
algorithms for computing generalized inverses

A, A, A%, AL, 4D, AT, ADD, 292,499 @)

in both the time-varying and time-invariant cases. For this
purpose, we observed that the neural dynamic approach has
been exploited as a powerful tool in solving matrix algebra
problems, due to its parallel distributed nature as well as
its convenience of hardware implementation. Recently, many
authors have shown great interest for computing the inverse
or the pseudoinverse of square and full-rank rectangular
matrices on the basis of gradient-based recurrent neural
networks (GNNs) or Zhang neural networks (ZNNs). Neural
network models for the inversion and pseudo-inversion of
square and full-row or full-column rank rectangular matrices
were developed in [16-18]. Various recurrent neural networks
for computing generalized inverses of rank-deficient matrices
were introduced in [19-23]. RNNs designed for calculating
the pseudoinverse of rank-deficient matrices were created
in [21]. Three recurrent neural networks for computing the
weighted Moore-Penrose inverse were introduced in [22].
A feedforward neural network architecture for computing
the Drazin inverse was proposed in [19]. The dynamic
equation and induced gradient recurrent neural network for
computing the Drazin inverse were defined in [24]. Two
gradient-based RNNG for generating outer inverses with pre-
scribed range and null space in the time-invariant case were
introduced in [25]. Two additional dynamic state equations
and corresponding gradient-based RNNs for generating the
class of outer inverses of time-invariant real matrices were
proposed in [26].

Complexity

The global organization of the paper is as follows. Con-
ditions for the existence and representations of generalized
inverses included in (4) are given in Section 2. Numeri-
cal algorithms arising from the representations derived in
Section 2 are defined in Section 3. In this way, Section 3
defines algorithms for computing various classes of inner and
outer generalized inverses by means of derived solutions of
certain matrix equations. Main particular cases are presented
in the same section as well as the global computational
complexity of introduced algorithms. Illustrative simulation
and numerical examples are presented in Section 4.

2. Existence and Representations of
Generalized Inverses

Theorem 3 provides a theoretical basis for computing outer
inverses with the prescribed range space.

Theorem 3. Let A € C™" and B € C™,

(a) The following statements are equivalent:

(i) There exists a {2}-inverse X of A satisfying

R(X) = R(B), denoted by AD) .

(ii) There exists U € C®™ such that BUAB = B.

(iii) /' (AB) = /(B).

(iv) rank(AB) = rank(B).

(v) BLAB)Y AB = B, for some (equivalently every)
(AB) € (AB){1}.

(b) If the statements in (a) are true, then the set of all outer
inverses with the prescribed range 9 (B) is represented

by
A{2)ym,. = {B(AB)"Y | (4B € (4B) {1}}
= {BU | U € C*™, BUAB = B}. ©
Moreover,
A2})
(6)

= {B(4B)"" + BY (1,, - AB(AB)"V) | Y € C*"},

where (AB)(I) € (AB){1} is arbitrary but fixed.

Proof. (a) () = (ii). Let X € C™ such that XAX = X
and Z(X) = %(B). Then X = BU and B = XW, for some
UeCPand W e C™*, 50 B= XW = XAXW = XAB =
BUAB.

(ii) = (iii). As we know, 4/ (B) € N (AB). On the other
hand, taking into account BUAB = B for some U ¢ Ckxm,
it follows that #(AB) < W' (BUAB) = /(B), and hence
WN(AB) = W/ (B).

(iii) = (v). Let (AB)(” be an arbitrary {1}-inverse of AB.
As W (AB) = #(B) implies B = VAB, for some V € C™", it
follows that

B=VAB=VAB(AB)Y AB=B(AB)V AB. (7)

(v) = (i). Let B = B(AB)VAB, for some (AB)"Y €
(AB){1}, and set X = B(AB)". Then

XAX = B(AB)Y AB(AB)Y =BAB)Y =X, (8)
and by X = B(AB)"Y and B = B(AB)'"" AB = XAB it follows
that X is a {2}-inverse of A which satisfies Z(X) = Z%(B).

(iii) = (v). This result is well-known.
(b) From the proofs of (i) = (ii) and (iv) = (i), and the
fact that B = BUAB implies U € (AB){1}, it follows that

A{2bgp. € {BU|U e C™", BUAB = B}

c{BAB)" | (aB)V e (aB){1}} (9

CA {2}92(3),* >
and hence (5) holds.

According to ‘Theorem 1 [1, Section2] (or [2,
Theorem 1.2.5]), the condition (v) ensures consistency
of the matrix equation BUAB = B and gives its general
solution

{U e c™™ | BUAB = B} = {BVB(4B)"V +Y

(10)
- BYBYAB(AB)" | Y € C™"},
whence we obtain
A{2lap). = {BU | U e C*", BUAB = B}
={B(aB)"" + BY (I,, - AB(AB)) | Y € C*"}. w
This proves is that (6) is true. O

Remark 4. Five equivalent conditions for the existence and

representations of the class of generalized inverses A(;)* were
given in [27, Theorem 1]. Theorem 3 gives two new and
important conditions (i) and (v). These conditions are related
with solvability of certain matrix equations. Further, the

representations of generalized inverses A(q%)* were presented
in [27, Theorem 2]. Theorem 3 gives two new and important
representations: the second representation in (5) and repre-
sentation (6).

Theorem 5 provides a theoretical basis for computing
outer inverses with the prescribed kernel. These results are
new in the literature, according to our best knowledge.

Theorem 5. Let A € C™" and C € C*™.

(a) The following statements are equivalent:

(i) There exists a {2}-inverse X of A satisfying

B)
N(X) = N(C), denoted by A*’/V(C)-

(ii) There exists V € C™ such that CAVC = C.

(iii) R(CA) = R(C).

(iv) rank(CA) = rank(C).

() CA(CA)(I)C = C, for some (equivalently every)
A e (CA{1}.

4
(b) If the statements in (a) are true, then the set of all
outer inverses with the prescribed null space /'(C) is
represented by
AR} o = €AV C T ECA™ e () 1)
(12)
={vc|vec™, cavc=c}.
Moreover,
A2}, v
(13)

={caPc+(1-carca)yc|y ec™},

where (CA)Y is an arbitrary fixed matrix from
(CA{1}.

Proof. The proof is analogous to the proof of Theorem 3. [

Theorem 6 is a theoretical basis for computing a {2}-
inverse with the prescribed range and null space.

Theorem 6. Let A € C™", B € C™*, and C € C>™.

(a) The following statements are equivalent:

(i) There exists a {2}-inverse X of A satisfying
R(X) = R(B) and N (X) = N (C).
(ii) There exist U € C® such that BUCAB = B and
CABUC =C.
(iii) There exist U,V € C*! such that BUCAB = B
and CABVC = C.
(iv) There exist U € C*™ and V € C™ such that
BUAB = B, CAVC = C, and BU = VC.
(v) There exist U € C*" and V e C™ such that
CABU = C and VCAB = B.
(vi) /' (CAB) = N (B), #(CAB) = Z(C).
(vii) rank(CAB) = rank(B) = rank(C).
(viii) BCAB)YCAB = B and CAB(CAB)YC
C, for some (equivalently every) (CAB)"
(CAB){1}.

m |

(b) If the statements in (a) are true, then the unique {2}-
inverse of A with the prescribed range R (B) and null
space N (C) is represented by

2
Ag

— (VP
. = B(CAB)'C = BUC, (14)

for arbitrary (CAB)(I) € (CAB){1} and arbitrary U €
C* satisfying BUCAB = B and CABUC = C.

Proof. (a) (i) = (ii). Let X € C™" be such that XAX = X,
R(X) = R(B), and /(X)) = H(C). Then there exists U €
C* such that X = BUC. Also, B and C satisfy B = XW and
C = VX, for some W € C™*, v ¢ C™". This further implies

B=XW = XAXW = XAB = BUCAB,
(15)
C = VX = VXAX = CAX = CABUC.

Complexity

(ii) = (vi). According to CABUC = C, for some U €
CP¥ it follows that

% (C) = % (CABUC) € % (CAB) € R (C), (16)

and thus Z(CAB) = Z(C). Further, by B = BUCAB, for
some U € C*, it follows that

W (B) € N (CAB) € W (BUCAB) = # (B), (17)

which yields /' (CAB) = #(B).

(vi) = (viii). Let (CAB)(I) be an arbitrary {1}-inverse of
CAB. Since Z(CAB) = Z(C) implies C = CABW, for some
W e CP it follows that

C = CABW = CAB(CAB)"" CABW
(18)
= CAB(cAB)Y C.

Similarly, #/(CAB) = #/(B) implies B = VCAB, for some
vV e C™ and

B =VCAB = VCAB (CAB)"Y CAB
(19)
= B(CAB)"" CAB.

(viii) = (i). Let CAB(CAB)'C = C, for some (CAB)"") ¢
(CAB){1}, and set X = B(CAB))C. Then

XAX = B(CAB)"Y cAB(cAB)Y C = B(cAB)Y C 0
20
=X

and by X = B(CAB)YC, B = B(CAB)"CAB = XAB, and
C= CAB(CAB)(I)C = CAX it follows that X is a {2}-inverse
of A which satisfies Z(X) = Z(B), /(X) = N/ (C).

(vi) & (vii). This statement follows from [2,
Theorem 1.1.3, P. 3].

(ii) = (iii). This is evident.

(iii) = (ii). Let U,V € C* be arbitrary matrices such
that BUCAB = Band CABVC = C. Then

BUC = BUCABVC = BVC, (21)

whence
B = BUCAB = BVCAB,

(22)
C = CABVC = CABUC.

Thus, (ii) holds.
(i) = (iv). U € C*! such that BUCAB = B and
CABUC = C. Then

B =B(UC) AB,
C = CA(BU)C, (23)
B(UC) = (BU)C,

which means that (iv) is true.

Complexity

(iv) = (v).LetU € C®™ and vV € €™ such that BUAB =
B,CAVC = C,and BU = VC. Then

B = BUAB = VCAB,
(24)
C = CAVC = CABU,

which confirms (v).
(v) = (iv). LetU € C*™and V € C™ such that CABU =
C and VCAB = B. Then

VC = VCABU = BU,
B = VCAB = BUAB, (25)
C = CABU = CAVC,

and hence (iv) holds.
(iv) = (i). Let U € C®™ and V € C™ such that BUAB =
B, CAVC = C, and BU = VC, and set X = BU = VC. Then

XAX = BUABU = BU = X; (26)

by X = BU and B = BUAB = XAB it follows that Z(X) =
R(B), and by C = CAVC = CAX it follows that #(X) =
N(C). Therefore, (i) is true.

(b) According to the proofs of (i)=(ii) and (iv)=(i) and
the fact that C = CABUC and BUCAB = B, for U € C*,
imply U € (CAB){1}, it follows that

(2) (1)
AG(e.rc) = BUC = B(CAB) C, (27)
and hence (14) holds. O

Remark 7. After a comparison of Theorem 6 with the
Urquhart formula given in Proposition 2, it is evident that
conditions (vi) and (vii) of Theorem 6 could be derived using
the Urquhart results. All other conditions are based on the
solutions of certain matrix equations, and they are new.

In addition, comparing the representations of Theo-
rem 6 with the full-rank representation restated from [3]
in Proposition 1, it is remarkable that the representations
given in Theorem 6 do not require computation of a full-
rank factorization R = FG of the matrix R. More precisely,

representations of A%)(B (c from Theorem 6 boil down to

the full-rank factorization of A(;)(F)) () from Proposition 1
in the case when BC = R is a full-rank factorization of R and
CAB is invertible.

It is worth mentioning that Drazin in [15] generalized the
concept of the outer inverse with the prescribed range and
null space by introducing the concept of a (b, ¢)-inverse in a
semigroup. In the matrix case, this concept can be defined
as follows. Let A € C™", X € C™, B ¢ C™,and C «
chm, Then, we call X a (B,C)-inverse of A if the following
two relations hold:

XAB =B,

(28)
CAX=C

X = BU =VC, forsomeU € C*™ v ec™. (29)

It is easy to see that X is a (B, C)-inverse of A if and only if
X is a {2}-inverse of A satisfying Z(X) = Z(B) and #(X) =
N(O).

The next theorem can be used for computing a {1}-inverse
X of A satisfying %(X) € R(B).

Theorem 8. Let A € C™" and B € C™,

(a) The following statements are equivalent:

(i) There exists a {l}-inverse X of A satisfying
R(X) € R(B).

(ii) There exists U € C®™ such that ABUA = A.

(iii) R(AB) = R(A).

(iv) AB(AB)(I)A = A, for some (equivalently every)
(AB)"Y € (AB){1}.

(v) rank(AB) = rank(A).

(b) If the statements in (a) are true, then the set of all
inner inverses of A whose range is contained in R(B)
is represented by

(X e A{l}| 2 (X) < % (B)
={B(AB)" | (AB)" € (AB) {1}} (30)

={BU | U e C*", ABUA = A}.

Moreover,

(X eA{1}| %(X) < %(B)} = {B(AB)" AAY
(31)
+BY - B(AB)" ABYAA" | Y e C*"},

where (AB)(U € (AB){1} and AW ¢ A{l} are arbitrary
but fixed.

Proof. (a) (i) = (ii). Let X € C™™ such that AXA = A
and Z(X) < Z(B). Then X = BU, for some U € C*™ so
A = AXA = ABUA.

(i) = (iii). Let ABUA = A, for some U € C*™. Then
R(A) = R(ABUA) < K(AB). Since the opposite inclusion
always holds, we conclude that Z(AB) = %(A).

(iii) = (iv). Let (AB)" be an arbitrary {1}-inverse of AB.
By R(AB) = R(A) it follows that A = ABV, for some V €
CP" so we have that

A=ABV = AB(AB)" ABV = AB(AB)V A. (32)

(iv) = (). Let AB(AB)YA = A, for some (AB)!) €
(AB){1}, and set X = B(AB)(D. It is clear that AXA = A,
and by X = B(AB)"” we obtain the fact that Z(X) < %(B).

(iii) © (v). This follows from [2, Theorem 1.1.3, P. 3].

(b) On the basis of the fact that A = ABUA implies U €
(AB){1} and the arguments used in the proofs of (i) = (ii)
and (iv) = (i), we have that

{XeA{l}| Z(X) c Z(B)}
¢ {BU | U € C*™, ABUA = A}
(33)
c {B(4B)" | (AB)"" € (AB) {1}}
c{XeA{l} | 2 (X) c Z(B)},

which confirms that (30) is true.
Once again, according to Theorem 1 [1, Section 2] (or
Theorem 1.2.5 [2]) we have that

{uec™ | ABUA = A} = {(aB)) AA"Y +Y
(34)
~ (AB)"" ABYAA" | Y e €™},

where (AB)(I) € (AB){1} and (A)(l) € A{l} are arbitrary
elements, whence we obtain that

[XeA{l}| 2(X)c R (B)}=1{BU|U
€ C¥™, ABUA = A} = {B(AB)VAA" + BY (35)

- B(AB)"Y ABYAA" | Y e C*},
and hence (31) is true.]

Theorem 9 can be used for computing a {1}-inverse X of
A satisfying #/(C) < #(X). Its proof is dual to the proof of
Theorem 8.

Theorem 9. Let A € C™" and C € C>™.

(a) The following statements are equivalent:
(i) There exists a {l}-inverse X of A satisfying
N(C) € N(X).
(ii) There exists V € C™ such that AVCA = A.
(iii) /' (CA) = N (A).
(iv) A(CA)(I)CA = A, for some (equivalently every)
€AY e (A1)
(v) rank(CA) = rank(A).
(b) If the statements in (a) are true, then the set of all inner

inverses of A whose null space is contained in N (C) is
represented by

X € A1} | ¥ (C) € # (X))
={caVc e e ca i} (36)
={vC|vecC™, AVCA = A}.

Moreover,

(X € A{l}| H(C) S N (X)} = {A“’A ca)’c
(37)
+YC - AVAYCA(CAY C|Y € C"Xl})

Complexity
where (CA)(I) € (CA){1}and AV € A{1}are arbitrary
but fixed.

Theorem 10 provides several equivalent conditions for the
existence and representations for computing a {1, 2}-inverse
with the prescribed range.

Theorem 10. Let A € C™" and B € C™*.

(a) The following statements are equivalent:

(i) There exists a {1,2}-inverse X of A satisfying
R(X) = R(B), denoted by AL?

R(B),*"
(ii) There exist U,V € C*™ such that BUAB = B
and ABVA = A.
(iii) There exists W € C®™ such that BWAB = B and
ABWA = A.

(iv) /' (AB) = /'(B) and R(AB) = R(A).

(v) rank(AB) = rank(A) = rank(B).

(vi) B(AB)(UAB = Band AB(AB)(UA = A, for some
(equivalently every) (AB)Y € (AB){1}.

(b) Ifthe statements in (a) are true, then the set of all {1, 2}-
inverses with the prescribed range % (B) is represented

by
AL, 2 g . = A2l gm)

={XeA{l}| Z(X) < R(B)}.

(38)

Proof. (a) First we note that the implication (i) = (vi) and
the equivalences (ii) © (iv) and (iv) & (vi) follow directly
from Theorems 3 and 8. Also, (iv) & (v) follows from
Theorem 1.1.3 [2] (or Example 10 [1, Section 1]).

(vi) = (iii). If we set W = (AB)Y, where (AB)Y) €
(AB){1} is an arbitrary element, then (vi) implies that
BWAB = Band ABWA = A.

(iii)) = Q). fW € C*™ such that BWAB = B and
ABWA = A, then by Theorem 3 we obtain the fact that
X = BW is a {2}-inverse of A satistying %(X) = %(B), and
clearly X is also a {1}-inverse of A.

(iii) = (ii). This implication is evident.

(b) If the statements in (a) hold, then the statements of
Theorems 3 and 8 also hold, and from these two theorems it
follows directly that (38) is valid. O

Theorem 11 provides several equivalent conditions for the
existence and representations of A(*l’jz(c).
Theorem 11. Let A € C™" and C € C"™,

(a) The following statements are equivalent:

(i) There exists a {1,2}-inverse X of A satisfying

- (1,2)
N(X) = H(C), denoted by A"} .

(ii) There existU,V € C™ such that CAUC = C and
AVCA = A.

Complexity

(iii) There exists W € C™" such that CAWC = C and
AWCA = A.

(iv) /' (CA) = N (A) and R(CA) = R(C).

(v) rank(CA) = rank(A) = rank(C).

(vi) CA(CA)(I)C = CandA(CA)(l)CA = A, for some
(equivalently every) (CA)(U € (CA){1}.

(b) Ifthe statements in (a) are true, then the set of all {1, 2}-
inverses with the range R(B) is given by

A {1, 2}*,A/(C) =A {2}*,/1/((3)

={XeA{l} |/ (C)cH(X)}.

(39)

Theorem 12 is a theoretical basis for computing a {1, 2}-
inverse with the predefined range and null space.

Theorem 12. Let A € C™", B ¢ C™*, and C € C™™.

(a) The following statements are equivalent:

(i) There exists a {1,2}-inverse X of A satisfying
R(X) = R(B) and N/ (X) = N (C), denoted by

(1,2)
A%(B),/V ©y

(ii) There exist U € C*™ and V € C™ such that
BUAB = B, ABUA = A, CAVC = C, and
AVCA = A

(iii) /' (AB) = N(B), R(AB) = R(A), R(CA) =
R(C), and N (CA) = N(A).

(iv) rank(AB) = rank(A) = rank(B), rank(CA) =
rank(A) = rank(C).

(v) rank(CAB) = rank(C) = rank(B) = rank(A).

(vi) B(AB)"W AB B, ABAB)YA = A,
CA(CA)YC = C, and A(CA)VCA = A, for
some (equivalently every) (AB)(I) € (AB){1} and
AW e (cAa1).

(b) If the statements in (a) are true, then the unique {1, 2}-
inverse of A with the prescribed range R(B) and null
space N (C) is represented by

AL o =B(AB)Y A(CA)V C = BUAVC

R(B),N(C) (40)

= B(CcAB)\ C,

for arbitrary (AB)" € (AB){1}, (CA)™ € (CA){1},
and (CAB)Y € (CAB){1} and arbitrary U € clm
and V e C™ satisfying BUAB = B and CAVC = C.

Proof. (a) The equivalence of the statements (i)-(iv) and
(vi) follows immediately from Theorem 10 and its dual. The
equivalence (i) & (v) follows immediately from part (4) of
the famous Urquhart formula [2, Theorem 1.3.7].

(b) Let U € C* and Vv e C™ be arbitrary matrices
satisfying BUAB = B and CAVC = C, and set X = BUAVC.
Seeing that U € (AB){1} and V' € (CA){1}, according to (v)

we obtain the fact that ABUA = A and AVCA = A. This
implies that

XAX = BUAVCABUAVC = BUAVC = X,

AXA = ABUAVCA = AVCA = A,

% (X) = R (BUAVC) € % (B),

N (C) € ¥ (BUAVC) = ¥ (X),

% (B) = % (BUAB) = % (BUAVCAB) = & (XAB) “
CR(X),

N (X) € N (CAX) = N (CABUAVC) = W (CAVC)
=/ (0,

which means that X is a {1, 2}-inverse of A satisfying Z(X) =
R(B) and /(X) = H(C), and hence the second equality in
(40) is true.

The same arguments confirm the validity of the first
equality in (40). O

Corollary 13. Theorem 6 is equivalent to Theorem 12 in the
case rank(CAB) = rank(B) = rank(C) = rank(A).

Proof. According to assumptions, the output of Theorem 6
2)

B).H(C
ness of this kind of generalized inverses. O

becomes A(;?,f - Then the proof follows from the unique-

Remark 14. Tt is evident that only conditions (v) of Theo-
rem 12 can be derived from the Urquhart results. All other
conditions are based on the solutions of certain matrix
equations and they are introduced in Theorem 12. Also, the
first two representations in (40) are introduced in the present
research.

3. Algorithms and Implementation Details

The representations presented in Section 2 provide two
different frameworks for computing generalized inverses.
The first approach arises from the direct computation of
various generalizations or certain variants of the Urquhart
formula, derived in Section 2. The second approach enables
computation of generalized inverses by means of solving
certain matrix equations.

The dynamical-system approach is one of the most
important parallel tools for solving various basic linear
algebra problems. Also, Zhang neural networks (ZNN) as
well as gradient neural networks (GNN) have been simulated
for finding a real-time solution of linear time-varying matrix
equation AXB = C. Simulation results confirm the efficiency
of the ZNN and GNN approach in solving both time-varying
and time-invariant linear matrix equations. We refer to [28,
29] for further details. In the case of constant coefficient
matrices A, B, C, it is necessary to use the linear GNN of the
form

X =-yA" (AXB-C)B". (42)

Complexity

I Math .
Constant Function| Function Math Gainl
Functionl
lul AANENG D) Outl
Inl Abs gitch Outl Constant
L)
Constantl _ Math Add2 Math Gain2
Subsystem Function2 Function3

()

()

FIGURE 1: Block for the implementation of the power-sigmoid activation function (a) and its subsystem (b).

(3) Return X(t) = BOU(t) = A(t)

Require: Time varying matrices A(t) € C™" and B(t) € ™k,
(1) Verify rank(A(#)B(t)) = rank(B(¢)).
If these conditions are satisfied then continue.
(2) Solve the matrix equation B(t)U(¢)A(t)B(t) = B(t) with respect to U(t) € chm,

),

AvrcoriTHM 1: Computing an outer inverse with the prescribed range.

The generalized nonlinearly activated GNN model (GGNN
model) is applicable in both time-varying and time-invariant
case and possesses the form

X(t)=—A®) FAOXOBO-CE)BE)', (43)

where 7 (C) is an odd and monotonically increasing function
element-wise applicable to elements of a real matrix C =
(qj) € R™™; that is, #(C) = (f(g;)), wherein f() is
an odd and monotonically increasing function. Also, the
scaling parameter y could be chosen as large as possible in
order to accelerate the convergence. The convergence could
be proved only for the situation with constant coefficient
matrices A, B, C.

Besides the linear activation function, f(x) = x, in the
present paper we use the power-sigmoid activation function

xP, if |x] > 1,

1+exp(-q) 1 —exp(—gx)
1-exp(—q) 1+ exp(—gx)

fx) =

, otherwise,

Theorem 3 provides not only criteria for the existence
of an outer inverse A(t);)(B).x with the prescribed range, but
also a method for computing such an inverse. Namely, the
problem of computing a {2}-inverse X of A satisfying Z(X) =
R(B) boils down to the problem of computing a solution to
the matrix equation BUAB = B, where U is an unknown
matrix taking values in C*™. If U is an arbitrary solution to
this equation, then a {2}-inverse X of A satisfying Z(X) =
R(B) can be computed as X = BU.

The Simulink implementation of Algorithm 1in the set of
real matrices is based on GGNN model (43) for solving the
matrix equation B(t)U(t)A(t)B(t) = B(t) and it is presented
in Figure 5. The Simulink Scope and Display Block denoted by
U(t) display input signals corresponding to the solution U(t)

of the matrix equation B(t)U(¢)A(t)B(t) = B(t) with respect
to the time t. The underlying GGNN model in Figure 5 is

Ut)=-yB(0)' F (BEU (£) A1) B(t) - B(1))

“(A(t)B(t)".

The Display Block denoted by BU displays inputs signals
corresponding to the solution X(t) = B(t)U(¢).

The block subsystem implements the power-sigmoid
activation function and it is presented in Figure 1.

Theorem 5 reduces the problem of computing a {2}-
inverse X of A satistying //(X) = //(B) to the problem of
computing a solution to the matrix equation CAVC = C,
where V is an unknown matrix taking values in C"'. Then

X=A? =VC

The Simulink implementation of Algorithm 2 which is
based on the GGNN model for solving C(t)A(t)V(£)C(t) =
C(t) and computing X (t) = V(t)C(t) is presented in Figure 6.
The underlying GGNN model in Figure 6 is

V(t)=-y(Ct)A®)"
(46)
SFECHAHVEHCH-CH)CH".

The Display Block denoted by V (¢) displays input signals
corresponding to the solution V(¢) of the matrix equation
CAV (t)C = C with respect to simulation time. The Display
Block denoted by AT'S2 displays input signals corresponding
to the solution X (t) = V(t)C(t).

Complexity

Require: Time varying matrices A(t) € C™" and C(t) € chm,
(1) Verify rank(C(t)A(t)) = rank(C(t)).

If these conditions are satisfied then continue.

(2) Solve the matrix equation C(t) A(¢)V (t)C(t) = C(t) with respect to an unknown matrix V (¢) € c™.
(3) Return X(t) = V(£)C(t) = A1), -

AvrGoriTHM 2: Computing an outer inverse with the prescribed null space.

~0.83127264009724] —1.5604499799424 0.35241337340536| ~1.0338716867896 0.13539377889387 ~0.4490255026432)
0.36028388879596 0.80740007713549 —0.38903595958041 0.38425452897931 ~0.26766690538265| 0.030893247574464
~0.2800907909795 ~0.50908176804009) 0.088639219481888 ~0.35648785143559) 0.018995431146897] ~0.17215329332894]
0.1807072905018| 0.42413447770446| ~0.22968090595735] 0.18339543207204 ~0.1648125003271 —0.0084449478541179)
0.022004213257047)[0.059676688318691][—0.042444818952605][0.018420331287279][—0.032872759744816][-0.011059021309752]
~0.97746241779472| —1.8451484676669) 0.43290965435211]| ~1.2106876606893 0.1755839689128) ~0.51516055614443]
ATS2
5 1.7606991874857 4.9497000176955 ~7.5059158904756 1.0470376833744
—> Aﬂﬁﬁﬁy ~1.4993808484061 —4.0311621568775) 5.8936167921487][~0.87515478821938
- - u(t)
Matrix Multiplyl Integrator =
1 ~yB"F(BUCAB - B)(CAB)" /KI B"F(BUCAB - B)(CAB)"
s ~
Interprete T B!
MATLAB Fen Matrix
Clockl Multipl
B(1) Transpose | ultiply
Interpreted J Matrix Multiply2
@ MATLAB Fen 7
AlD) - Purelin
Clock Matix | BUCAB _BUCAB-B F(BUCAB - B)
Multiply =/
Matrix Multiply T —{In1 Outl= \anual switch
Interpreted
MATLAB Fen Interpreted 4.9098546333777¢ — 15
Clock2 o) MATLAB Fen
Matrix CAB Frobenius norm |BUCAB - B|
Multiply
u’ (cAB)”
Matrix Multiply3 -I [
Transposel

FIGURE 2: GGNN model for computing B(t)U (t)C(t)A(t)B(t) = B(t), X(¢t) = B(t)U(t)C(¢).

Theorem 6 provides a powerful representation of a {2}-
inverse X of A satistying Z(X) = %(B) and 4 (X) = #(C).
Also, it suggests the following procedure for computing those
generalized inverses. First, it is necessary to verify whether
rank(CAB) = rank(B) = rank(C). If this is true, then
by Theorem 6 it follows that the equations BUCAB = B
and CABVC = C are solvable and have the same sets of
solutions. We compute an arbitrary solution U of the equation
BUCAB = B, and then X = BUC is the desired {2}-inverse of
A.

The Simulink implementation of the GGNN model for
solving B(t)U(t)C(t)A(¢t)B(t) = B(t) and computing the
outer inverse X(f) = B(t)U(t)C(t) defined in Algorithm 3
is presented in Figure 2. The underlying GGNN model in
Figure 2 is

Ut)=-yB(®)"
-F(B(t)U (t)C (t) A(t) B(t) - B(1))
(CHAMBB®)".

(47)

The implementation of the dual approach, based on the
solution of C(t)A(t)BV(t)C(t) = C(t) and generating the
outer inverse X(t) = B(t)V(t)C(t), is presented in Figure 4.
The underlying GGNN model in Figure 4 is

V(t)=-y(CHAR)B®) FCEHAWLBDV () 1)
cH-cuycm’.

Theorem 8 can be used in a similar way to Theorem 3:
if the equation ABUA = A is solvable and its solution U
is computed, then a {1}-inverse X of A satisfying #(X) <
R (B) is computed as X = BU. Corresponding computational
procedure is given in Algorithm 4.

Similarly, Theorem 9 can be used for computing a {1}-
inverse X of A satistying /' (C) € A(X), as it is presented
in Algorithm 5.

An algorithm for computing a {1,2}-inverse with the
prescribed range is based on Theorem 10. According to this

10

Complexity

If these conditions are satisfied then continue.

(3) Return X(t) = BOUC() = AW) .10

Require: Time varying matrices A(f) € C™", B(t) € C™* and C(t) € C™™,
(1) Verify rank(C(t) A(¢)B(t)) = rank(B(t)) = rank(C(¢)).

(2) Solve the matrix equation B(¢)U(¢)C(t)A(t)B(t) = B(t) with respect to an unknown matrix U(t) € ckm,

AvrcoriTHM 3: Computing a {2}-inverse with the prescribed range and null space.

Require: Time varying matrices A(t) € C"™" and B(t) € C™*,
(1) Check the condition rank(A(t)B(t)) = rank(A(t)).
If this condition is satisfied then continue.
(2) Solve the matrix equation A(¢)B(t)U(t)A(t) = A(t) with respect to U(t) € chm,
(3) Return a {1}-inverse X (t) = B(t)U(t) of A(¢) satisfying % (X) < %(B).

ArGoriTHM 4: Computing a {1}-inverse X of A satisfying %#(X) < % (B).

If this condition is satisfied then continue.

Require: Time varying matrices A(t) € C™" and C(t) € C™™.
(1) Check the condition rank(C(t)A(t)) = rank(A(t)).

(2) Solve the matrix equation A()V (t)C(t)A(t) = A(t) with respect to an unknown matrix V (t) € c™.
(3) Return a {1}-inverse X (¢) = V(t)C(t) of A(t) satisfying #'(C) € N (X).

AvrcoriTHM 5: Computing a {1}-inverse X of A satisfying #'(C) € A (X).

Require: Time varying matrices A(f) € C™" and B(¢) € ™k,
If these conditions are satisfied then continue.

matrix U(¢) € CP.

(1) Check the condition rank(A(t)B(t)) = rank(A(t)) = rank(B(t)).
(2) If the previous condition is satisfied, then solve the matrix equation B(t)U(t) A(t)B(t) = B(t) with respect to an unknown

(3) Return a {1, 2}-inverse X(¢) = B(t)U(t) of A(t) satistying R (X) = % (B).

ALGoRrITHM 6: Computing a {1, 2}-inverse with the prescribed range.

theorem we first check the condition rank(AB) = rank(A) =
rank(B). If it is satisfied, then the equation BUAB = B
is solvable and we compute an arbitrary solution U to this
equation, after which we compute a {2}-inverse X of A
satisfying % (X) = % (B) as X = BU. By Theorem 10, X is also
a {1}-inverse of A. Algorithm 1 differs from Algorithm 6 only
in the first step. Therefore, the implementation of Algorithm 6
uses the Simulink implementation of Algorithm 1 in the case
when rank(AB) = rank(A) = rank(B).

Similarly, Theorem 11 provides an algorithm for com-
puting A(*l’j}(c). The implementation of Algorithm 7 uses
the Simulink implementation of Algorithm 2 in the case
rank(CA) = rank(C) = rank(A).

Theorem 12 suggests the following procedure for com-
puting a {1, 2}-inverse X of A satistying #(X) = %(B) and
N(X) = N(C). First we check the condition rank(CAB) =
rank(B) = rank(C) = rank(A). If this is true, then the
equations BUAB = B and CAVC = C are solvable, and

we compute an arbitrary solution U to the first one and
an arbitrary solution V' of the second one. According to
Theorem 12, X = BUAVC is a {1, 2}-inverse X of A with
R(X) = R(B) and #(X) = N (C).

The Simulink implementation of Algorithm 8 based on
the GGNN models for solving B(t)U(t)A(t)B(t) = B(t)
and C(t)A)V(t)C(t) = C(t) and computing X(t) =
B(U(t)A(t)V (+)C(t) is presented in Figure 8. In this case, it
is necessary to implement two parallel GGNN models of the
form

U(t)=—yB(®)" F (B()U (t) A(t) B(t) - B(t))
(ABOB®),

_ (49)

V() =-y(CH)AW®)"

CFCHAOVEHCEH -CH)CH".

Complexity

1

If these conditions are satisfied then continue.

Require: Time varying matrices A(t) € C™" and C(t) € C™™.
(1) Check the condition rank(C(t)A(t)) = rank(A(t)) = rank(C(t)).

(2) Solve the matrix equation C(¢) A(t)W (¢)C(t) = C(t) with respect to an unknown matrix W(t) € chm,
(3) Return a {1, 2}-inverse X(t) = V(t)C(t) of A(¢) satisfying A (X) = #(C).

ArcoriTHM 7: Computing a {1, 2}-inverse with the prescribed null space.

Require: Time varying matrices A(t) € C™", B(t) € C™* and C(t) € C*™.
Require: Verify rank(C(t) A(t)B(t)) = rank(B(t)) = rank(C(t)) = rank(A(t)).
If these conditions are satisfied then continue.
(1) Solve the matrix equation B(t)U(t)A(t)B(t) = B(t) with respect to an unknown matrix U(t) € chm,
(2) Solve the matrix equation C(t)A(t)V (¢t)C(t) = C(t) with respect to an unknown matrix V (¢) € cm™,
(3) Return X(t) = BOU®A®V()C(E) = A0, -

AvrGoriTHM 8: Computing a {1, 2}-inverse with the prescribed range and null space.

There is also an alternative way to compute a {1, 2}-inverse
X of A with Z(X) = %(B) and #(X) = #(C). Namely,
first we check whether rank(CAB) = rank(B) = rank(C) =
rank(A). If thisis true, then by Theorem 12 it follows that there
exists a {2}-inverse of A with the prescribed range %(B) and
null space #(C), and each such inverse is also a {1}-inverse
of A. Therefore, to compute a {1, 2}-inverse of A having the
range Z(B) and null space ./ (C) we have to compute a {2}-
inverse X of A with Z(X) = %(B) and /' (X) = A(C) in
exactly the same way as in Algorithm 3. In other words, we
compute an arbitrary solution U to the equation BUCAB = B,
and then X = BUC is the desired {1, 2}-inverse of A.

3.1. Complexity of Algorithms. The general computational
pattern for commuting generalized inverses is based on
the general representation B(CAB)"'C, where the matrices
A, B, C satisfy various conditions imposed in the proposed
algorithms.

The first approach is based on the computation of an
involved inner inverse (CAB)(I), and it can be described in
three main steps:

(1) Compute the matrix product P = CAB.

(2) Compute an inner inverse U = PW of P, for example,
U =P

(3) Compute the generalized inverse as the matrix prod-
uct BUC.

The second general computational pattern for computing
generalized inverses can be described in three main steps:

(1) Compute matrix products included in the required
linear matrix equation.

(2) Solve the generated matrix equation with respect to
the unknown matrix U.

(3) Compute the generalized inverse of A as the matrix
product which includes U.

According to the first approach, the complexity of computing
generalized inverses can be estimated as follows:

(1) Complexity of the matrix product P = CAB

+(2) Complexity to compute an inner inverse of P

+(3) Complexity to compute the matrix product BUC
According to the second approach, the complexity of

computing generalized inverses can be expressed according
to the rule:

(1) Complexity of the matrix product P included in
required matrix equation which should be solved.

+(2) Complexity to solve the linear matrix generated in (1)

+(3) Complexity of matrix products required in final
representation

Let us compare complexities of two representations from
(14). Two possible approaches are available. The first approach

assumes computation A(;)(B) reo = B(CAB)(DC and the

BLN(C) = BUC, where BUCAB = B.
Complexity of computing the B(CAB)"'C is

second one assumes A%)(

(1) complexity of the matrix product P = CAB,
+(2) complexity of computation of P,
+(3) complexity of matrix products required in final rep-
resentation BPUC.

Complexity of computing the second expression in (14) is

(1) complexity of matrix products P = CAB,

+(2) complexity to solve appropriate linear matrix equa-
tion BUP = B with respect to U,

+(3) complexity of the matrix product BUC.

12

3.2. Particular Cases. The main particular cases of Theorem 6
can be derived directly and listed as follows.

(a) In the case rank(CAB) = rank(B) =
rank(A) the outer inverse A

(1,2)
A@(B),/V)

(b) If A is nonsingular and B = C = I, then the outer
inverse A

rank(C) =

FBLNC) becomes

. -1
FBLNC) becomes the usual inverse A

Then the matrix equation BUCAB = B becomes UA = I and
-1
=U.

(c) In the case B = C = A or when BC = A is a full-
rank factorization of A*, it follows that A%

AT,

(d) The choicem =n,B=C = Al,1 > 1nd(A) or the full-
rank factorization BC = A implies A = AP

RB),N(C)

R(B),V(C)

=C = A or the full-rank
= A"

(e) The choice m = n, B

factorization BC = A produces A® RBLNC) =

(f) In the case m = n when A is invertible, the inverse
matrix A™" can be generated by two choices: B = C =
A"andB=C=1.

(g) Theorem 6 and the full-rank representation of {2, 4}-
and {2, 3}-inverses from [30] are a theoretical basis
for computing {2,4}- and {2,3}-inverses with the
prescribed range and null space.

(h) Further, Theorems 3 and 5 provide a way to charac-
terize {1, 2, 4}- and {1, 2, 3}-inverses of a matrix.

Corollary 15. Let A € C™" and C € C™™,

(a) The following statements are equivalent:

(i) There exists a {2,4}-inverse X of A satisfying

R(X) = R((CA)") and N/ (X) = V(C).

(ii) There exist U € c™ such that
(CA)"UCA(CA)" = (CA)" and CA(CA)"'UC =
C.

(iii) There exist U,V € C™ such that
(CA)"UCA(CA)" = (CA)" and CA(CA)*VC =
C

(iv) There exist U € C*™ and V € C™ such that
(CA)'UA(CA)" = (CA)Y, CAVC = C, and
(CA)*U =VC.

(v) There exist U € C*™ and V e C™ such that
CA(CA)'U = C and VCA(CA)* = (CA)".

(vi) /' (CA(CA)") = N ((CA)"), R(CA(CA)") =
R(C).

(vii) rank(CA(CA)") = rank((CA)") = rank(C).

(viii) (CA)*(CA(CA)*)VCA(CA)* = (CA)* and
CA(CA)*(CA(CA)"YVC = C, for some (equiv-
alently every) (CA(CA)")Y € (CA(CA)){1}.

Complexity

(b) If the statements in (a) are true, then the unique {2, 4}-
inverse of A with the prescribed range R((CA)") and
null space N (C) is represented by

A(2 4)

Ctearno = €A (cacay)Vc

(50)
= (CA)" UC,

for arbitrary (CA(CA)")Y € (CA(CA)*){1} and
arbitrary U € C™ satisfying (CA)*UCA(CA)* =
(CA)" and CA(CA)*UC = C.
Proof. (a) This part of the proof is particular case B = (CA)"
of Theorem 6.
(b) According to general representation of outer inverses
with prescribed range and null space, it follows that X =

% x4(1) _ (2)
(CA)(CA(CA))T'C = AL car©

verify that X satisfies Penrose equation (4). For this purpose,
it is useful to use known result

Now, it suffices to

A(AT AV A" = AAT, (51)

which implies

XA = (CA)* (CA(CA)) cA = (CA)* ((cA)")
(52)
= (cA)'ca

and later XA = (XA)". Hence, (50) holds. O

Corollary 16. Let A € C™" and B € C**,

(a) The following statements are equivalent:

(i) There exists a {2,3}-inverse X of A satisfying
R(X) = R(B) and /' (X) = N/((AB)™).

(ii) There exist U € C™* such that BU(AB)* AB = B
and (AB)"ABU(AB)" = (AB)".

(iii) There exist U,V € C** such that BU(AB)* AB =
Band (AB)* ABV(AB)* = (AB)".

(iv) There exist U € C*™ and V € C™* such that
BUAB = B, (AB)* AV(AB)" = (AB)", and BU =
V(AB)".

(v) There exist U € C*" and V e C™* such that
(AB)* ABU = (AB)" and V(AB)" AB = B.

(vi) #((AB)*AB) = W (B), R((AB)*AB) =
F((AB)").

(vii) rank((AB)* AB) = rank(B) = rank((AB)").

(viii) B((AB)*AB)"(AB)* AB = B and
(AB)* AB((AB)* AB)Y(AB)* = (AB)", for some
(equivalently every) ((AB)*AB)(I) € (CAB){1}.

(b) If the statements in (a) are true, then the unique {2, 3}-
inverse of A with the prescribed range R(B) and null
space N ((AB)") is represented by

A(2 »3)

* (1) *
®).ap) = B((AB)” AB)" (AB)

(53)
= BU (AB)",

Complexity

for arbitrary ((AB)*AB)Y € ((AB)*AB){1} and
arbitrary U € C™* satisfying BU(AB)* AB = B and
(AB)* ABU(AB)* = (AB)".

Corollary 17 shows the equivalence between the first
representation given in (53) of Corollary 16 and Corollary 1
from [31].

Corollary17. Let A € C™" and B € C* satisfy rank(AB) =
rank(B). Then

23) _ (1.3)
AgG)ap: = B(AB) ™. (54)
Proof. It suffices to verify
((AB)* AB)"" (AB)* = (AB)™ . (55)

Indeed, since rank((AB)* AB) = rank(AB), it follows that

AB((AB)* AB)"" (AB)" = AB. (56)

Now, the proof can be completed using the evident fact that
AB((AB)* AB)Y(AB)* is the Hermitian matrix. O

In dual case, Corollary 18 is an additional result to Cor-
ollary 1 from [31].

Corollary18. Let A € C™" andC € C™" satisfy rank(CA) =
rank(C). Then

2.4) _ (1.4)
Acarnc = (CATTC (57)
Proof. In this case, the identity

(CA)* (CA (cA))Y = (ca)™ (58)
can be verified similarly. O

1 -1 0 0 0 O

-11 0 0 0 O
111 -1 0 0 66
A=l 0211 0 of R

-1 -1-1 0 2 -1

-1 -1 0 -1 -1 2

[0.793372 0.265655

0.140305 0.633824
g | 0329002 0184927 | oo
~10.141169569 0.427424 22

0.0468532 0.0979332

L 0.89494969 0.253673
[0.714297 0.734462 0.790305
C- 0.596075 0.5652303 0.745458
~10.780387 0.931596 0.630581
1 0.298214 0.30235998 0.337657

13
Theorem 19. Let A € C™". Then
A{L,2,4) = A2 ganyn = AL 2 gany.s
* mxm * * * (59)
={A"U |U e C™™, A"UAA" = A"}.
Proof. The equalities
AL gpeany s = A{L 2} g iamy .
R(A"), R(A"), (60)

= {A"U|U e C™™, A"UAA" = A"}

follow immediately from Theorem 3.
Let X € A{l1,2,4}, thatis, A = AXA, X = XAX, and
(XA)" = XA, and set U = X" X. Then
X=XAX=(XA)"X=A"X"X=A"T,
A'UAA® = A" X" XAA® = A" X" (XA)" A*
= (AXAXA)" = A",

(61)

Conversely, let X = A*U and A"UAA™ = A", for some U ¢
C™. According to (5) we have that X € A{1,2}. On the
other hand, by X = AU and A"UAA" = A" it follows that
XAA™ = A, and it is well-known that it is equivalent to X €
A{l,4}. Thus, X € A{1,2,4}. O

The following theorem can be verified in a similar way.
Theorem 20. Let A € C™". Then

A{l,2,3} = A{Z}*,/V(A*) = A{1>2}*,./V(A*)

(62)
:{VA*lvechH) A*AVA*:A*}

4. Numerical Examples

All numerical experiments are performed starting from the
zero initial condition. MATLAB and the Simulink version is
8.4 (R2014b).

Example 21. Consider

(63)

1.1837035 0.850446 1.143219
1.011021 0.785712 1.013570

ER4X6
1.23033 0.723199 1.0876717 4

0.496275 0.361875 0.482631

14

(a) This part of the example illustrates results of Theorem 6
and it is based on the implementation of Algorithm 3. The
matrices A, B,C satisfy rank(B) = 2, rank(C) = 4, and
rank(CAB) = 2. Since the conditions in (vii) of Theorem 6
are not satisfied, there is no an exact solution of the system
of matrix equations BUCAB = B and CABUC = C. The
outer inverse X = B(CAB)"'C can be computed using the
RNN approach, as follows. The Simulink implementation of
Algorithm 3, which is based on the GGNN model for solving
the matrix equation B(t)U(¢)C(t)A(t)B(t) = B(t), gives the
result which is presented in Figure 2. The display denoted by
U(t) denotes an approximate solution of the matrix equation
BU(t)CAB = B. The time interval is [0,0.5], the solver is
ode15s, the power-sigmoid activation is selected, and y = 10°.

Step 1. Solve the matrix equation B(t)U(t)C(t)A(t)B(t) =
B(t) with respect to U(t) using an appropriate adaptation of
the GGNN approach developed in [28, 29] and restated in
(43). In the particular case, the model becomes

U(t) = —yB(t)"
FBOUBCEHA®)B()-B()) (64)

Complexity

The matrix B is of full-column rank, and it possesses the
left inverse B;". Therefore, the matrix equation BUCAB =
B is equivalent to the equation UCAB — I = 0. Then
the GGNN model (64) reduces to the well-known GNN
model for computing the pseudoinverse of CAB. The GNN
models for computing the pseudoinverse of rank-deficient
matrices were introduced and described in [21]. We further
confirm the results derived in MATLAB Simulink by means
of the programming package Mathematica. Mathematica
gives

(CAB)"

1.04706 1 (65
-0.875175]

1.76069 4.94967 -7.50589
[-1.49938 -4.03114 5.8936

which coincides with the result displayed in U(#) in Figure 2.

Step 2. The matrix X(t) = B(t)U(¢)C(t) is showed in Figure 2,
in the display denoted by AT'S2. The residual norm of X is
equal to | XAX - X[, = 6.5360016 = 10™"°.

-(C(t)A(t)B (l‘))T . As a confirmation, Mathematica gives
g
r—0.83127 -1.56045 0.352412 —-1.03387 0.135393 -0.449024 17
0.360282 0.807398 —0.389035 0.384252 —-0.267666 0.0308925
—0.28009 -0.509081 0.0886387 —0.356487 0.0189951 —-0.172153
X =B(CAB)'C = , (66)
0.180706 0.424133 —-0.22968 0.183394 —-0.164812 —0.00844537
0.0220041 0.0596765 —-0.0424447 0.0184201 -0.0328727 —0.0110591
L—0.977459 —-1.84514 0.432908 —1.21068 0.175583 -0.515159

which coincides with the contents of the Display Block
denoted as ATS2 in Figure 2. Further, the matrix U = (CAB)"
is an approximate solution of the matrix equations CABUC =
C and BUCAB = B. Also, X = BUC is an approximate
solution of (28), since

ICABUC - C|| = |[CAX - C|| = 2.23452290 10™*,
(67)
|[BUCAB - B|| = | XAB - B|| = 9.4574123 % 10",

Therefore, the equations in (28) are satisfied. In addition,
(29) is satisfied by the definition of X. Therefore, X is an
approximate (B, C)-inverse of A.

Trajectories of the entries in the matrix B(t)U(¢)C(t)
generated inside the time [0,5 % 107°], using y = 10° and
ode15s solver, are presented in Figure 3.

(b) Dual approach in Theorem 6, as well as in the
implementation of Algorithm 3, is based on the solution of
CH)AMV()C(t) = C(t) and the associated outer inverse

X,(t) = B@)V(#)C(t). The Simulink implementation of
the GGNN model which is based on the matrix equation
CABV(t)C = C and the matrix product X,(t) = BV(t)C
gives the result which is presented in Figure 4. The display
denoted by V(t) represents an approximate solution of the
matrix equation CABV (t)C = C. The time interval is [0, 0.5],
the solver is ode15s, the linear activation is selected, and
y=10".

Since the matrix C is right invertible, the matrix equation
CABV (t)C = C gives the dual form of the matrix equation for
computing (CAB)"; that is, CABV (¢) = I.

Therefore, both X and X, are approximations of the same
outer inverse of A, equal to B(CAB)'C. To that end, it can be
verified that X and X satisfy | X — X, || = 4.143699 * 107",

(c) The goal of this part of the example is to illustrate
Theorem 3 and Algorithm 1. The matrices A and B satisfy
rank(AB) = rank(B), so that it is justifiable to search for a
solution U(t) of the matrix equation BU(t)AB = B and the
initiated outer inverse X = BU. In order to highlight the

Complexity

B(U(1)C(t)

T

4 5 6
Time (seconds)

7 8 9

10

x107°

FIGURE 3: Trajectories of elements of the matrix BUC.

Clock2

C Interpreted
MATLAB Fen

T

C(t)

MATLAB Fc

Interpreted MATLAB
function

u -—-] o

9.1675942012173e - 06

ICABVC — Cl s

Transposel

results derived by the implementation of Algorithm 1 it is
important to mention that

(AB)"

B(AB)'

L 0.0980931

—-0.0633756 0.0633756
—-0.0120938 0.0120938
—0.0980931 -0.0646451

—-0.118603
-0.027072

—-0.240083

0.0877929
-0.21073

[0.167297 —-0.167297 0.00708203 —0.123801 —0.236308 0.239756

| —0.203528 0.203528 —0.279822 -0.0731705 —-0.112743 —0.385548 |’
[0.0786607 —0.0786607 -0.0687173 -0.117658 —0.217431
—-0.105529 0.105529 -0.176364 -0.0637471 -0.104615
0.0174033 -0.0174033 -0.0494166 -0.0542619

—-0.098595 0.00758195
—0.0487517 —0.0815486
—-0.0129663 —-0.0221131 -0.0265246
—-0.129357

—0.130946

0.116766

—0.83127264050867 —1.560449979842 0.35241337334856 —1.033871686715 0.13539377885379 —0.44902550245877
0.36028388905399 0.80740007707254 —0.3890359595448 0.38425452893249 —0.26766690535754 0.03089324745888
> Matrix | BVC -0.28009079110797 —0.50908176800874 0.088639219464149 —0.35648785141231 0.01899543113438 —0.17215329327134
K Multiply 0.18070729064287 0.42413447767004 —0.22968090593788 0.18339543204644 —0.16481250031338 | —0.0084449479173042
Matrix Multiply3 0.022004213279108 0.05967668831331 —0.04244481894956 0.018420331283273 —0.032872759742671 —0.01105902131963
—0.97746241828476 —1.8451484675474 0.43290965428446 —1.2106876606004 0.17558396886508 -0.51516055592478
ATS2
1.7605776275744 4.9497522856446 —7.5058924482781 1.0471630281558
—1.4992839755675 —4.0312037553365 5.8935981259533 —0.87525482630145
V(t)
Integrator -
~y(CAB)" F(CABVC - C)C" CAB)"F(CABVC - O)C"
Us y(CAB) F() <:EEE] (CAB) F()
Matrix T
Multiply ut (CAB)
Interpreted | . . 5
IMATLAB Fcn '—J Matrix Multiply2 Transpose Matrix
0))
Clock Purelin —>| Multiply
Interpreted - N
@H MATLAB F F(CABVC - C) Matrix Multiplyl
cn Matrix | CABVC CABVC-C
Clock1 B(t)) -0
LS| Multiply = |9 Inl Out1}— Manual switch
Matrix Multiply
c Subsystem
Interpreted

FIGURE 4: Simulink implementation of the GNN model for computing CABV(t)C = C, X, = BVC.

€ A{2bg). -

15

(68)

16

On the other hand, the Simulink implementation gives
another element BU(t) from A{2} 3, ., different from X, =

(AB)". The matrix BU(t) is presented in Figure 5. The display
denoted by U(t) represents an approximate solution of the
matrix equation BU(t)AB = B. The time interval is [0, 1072]
and the solver is ode15s.

(d) The goal of this part of the example is to illustrate
Theorem 5 and Algorithm 2. Since rank(CA) = rank(C),
it is justifiable to search for a solution of the matrix
equation CAV(t)C = C. The Simulink implementation of
the GGNN model which is based on the matrix equation

(CA)' =
23062. —103225. —30460.2 230800.
~36793.4 —112814. —28769.9 388910.
| 66669. 217503. 55777.9 —740399.]
cafc=

Example 22. The aim of the present example is a verification
of Theorem 6 and Algorithm 3 in the important case B =
C = A", For this purpose, we consider the same matrix A as
in Example 21. The Mathematica function Pseudoinverse
gives the following exact Moore-Penrose inverse of A:

rl 1 1 1 h
- == — 0 0
4 4 4 4
1 1 1 1
-~ = —— =0 0
4 4 4 4
1 1 1
0 0 = 0 —= —=
‘ 2 4 4
Al = 1 R (70)
0 0 0 - - ——
2 4 4
1 1 5 1
0 0 —- —- — —
6 3 12 12
1 1 1
0 0 —= = = —
L 3 6 12 12

[120140. 129792. 274219 -618952.7
-90013.5 —47865.2 —-6777.93 329013.

—52937.6 —1464.19 3452.26 120689.

[0.800499 0.290122 -0.192667 -0.201861 -0.0498093 —0.03552527
—0.714584 -0.247028 -0.0707528 -0.0994969 -0.155725 -0.111067
-0.615629 -0.552896 0.153409 -0.291012 0.0511091 -0.0352418
0.408051 0.436046 —-0.154673 0.37013 -0.115624 —0.15416
—-0.373293 -0.441438 0.209825 —0.0172156 0.0895808 —0.149952

L 0.580871 0.558288 —0.208561 -0.0619027 -0.0250655 0.339354 |

Complexity

C(t)A(t)V(t)C(t) = C(t) gives the result which is presented in
Figure 6. The display denoted by V() represents an approxi-
mation of V(¢). The display denoted by AT'S2 represents the
matrix product X = V(t)C(t). The time interval is [0, 1] and
the solver is ode 15s. The activation is achieved by the power-
sigmoid function. The corresponding outer inverse of A is
X = VC € A2}, yo-

It is important to mention that the results V(t) and
X = V(t)C given by the implementation of Algorithm 2 are

different from the pseudoinverse of CA and (CA)'C, since

(69)

€ A2}, yio-

It can be approximated using the Simulink implementation
of Algorithm 3 corresponding to the choice B = C =
A", Indeed, according to Example 21, the Simulink imple-
mentation of Algorithm 3 approximates the outer inverse
AT(ATAAT)TAT = AT The implementation and generated
results are presented in Figure 7. The GGNN model underly-
ing the implementation is

U(t) = —yA ()

FAOTUOAOTADA® -A®T) (1)

(A®TA®A®T) .

The display denoted by U(t) represents an approximate
solution of the matrix equation ATU()ATAAT = AT and the
display denoted by MP represents an approximation of A'.
The time interval is [0, 0.001], the solver is ode15s, and the
scaling parameter is assigned to y = 10°.

Complexity
0.078658723523794 —0.078658723523794 —0.068710085242188 —0.11764113059559 —0.21744462908836 0.087790541577969
—0.10552366022884 0.10552366022884 —0.17637122473086 —0.063717734134496 —0.1046255303545 —0.21073272486335
> Matrix 0.017403113160627| —0.017403113160627 —0.04941464892293 —0.054251479015544 —0.098601832706734 0.0075807572301646
s Multiply [1 ~0.063372526402258 0.063372526402258 ~0.11860691780687|[—0.048731638366816 ~0.08155673663585 ~0.13094763605936
—0.012093156431155 0.012093156431155 —0.027072773215094 —0.012961585764934 —0.022115097577233 —0.026524992280848
0.098090469472085 —0.098090469472085 —0.064636291292574 —0.12933971846588 —0.24009851433618 0.11676393765101
ATS2
U(t)
0.16729188613279 —0.16729188613279 0.0070960043000594 —0.12379431611517 —0.23632035736197 0.23975393715106
—0.20351950748583 0.20351950748583 —0.27983608953618 —0.073125619433718 —0.11275780439812 —0.38555088007922
uU(t)
I |
Matrix T T T T
Multiply v [T yB"F(BUAB - B)(AB) /KI B"F(BUAB - B)(AB)
Ls | ~J
T
Interpreted T B
MATLAB Fen “
B(t) |
F(BUAB - B i
BUAB_,~ BUAB- B _}M Matrix
i f Multiply
—\% Matrix J —
S| Multiply In Outl
B
Interpreted : AB Interpreted
MATLAB Fen| plx\[/[?:ml(> MATLAB Fenl 3.9860910728676¢ — 17
ultij
Al) 7 ind B |BUAB - Bl
u —l (AB)"
FIGURE 5: Simulink implementation of the GNN model for computing BUAB = B, X = BU € A{2}g 4 .-
—0.17082548456906 —0.27754179529444|| —0.005325888522527 —0.23346352316222 (| -0.040937537844981 —0.14614160882781
0.040185531945672 0.17317030071632 —0.19321890457667|| 0.0023816494468202 —0.1623652663921 —0.10036306322336)|
—0.15713833217974 —0.30853520532781 0.091058314343167 —0.18883343965806 0.047209632654563 —0.067947042566387|
0.15148261259427 0.34035173021587 —0.16515346840098 0.1611337678111 —0.11394059303356 0.011893103463677
—0.11579774423379 —0.26001914716377| 0.12596750797953 —0.12325118800571 0.086851321671616|| —0.0092858800568182|
—>| Matrix vVC 0.12145346381925 0.22820262227571 —0.051872353921715 0.15095085985266(| —0.020120361292624 0.065339819159522]
——>| Multiply ATS2
Matrix Multiply4 0.1161891282864 0.38202877097078 —0.64535479349693 0.074073186502406
—0.24995640722707 —0.60238233154962 0.79376692006694 —0.13967048298568
0.21672800795289 0.60430642822382 —0.91040238549288 0.12845719559664
—0.29750058221511 —0.78646447752763 1.133041996641 —0.1724702570021
0.22709689058146 0.60045687577324 —0.86520408703316 0.13166490424851
—0.14632431631923 —0.41829882646943 0.64256447588503 || —0.087651842843046
V(t)
Integrator —y
T —y(CA)'F(cavC - C)Ct 1, (cA)TF(cAvC - C)C"
s \,
A’
uT
Interpreted Transpose
MATLAB Fci
Clock2 C(t) . :
Matrix F(CAVC - C) Matrix
Multiply Matrix | CAVC N cAVC-C © Multiply
Multiply 5 Manual Switch Matrix Multiplyl
Matrix Multiply2 Matrix Maltiol
| atrix Multiply Io) Inl Outl
Subsystem
Interpreted Interpreted 8.4073012292565¢ — 06
IMATLAB Fen| IMATLAB Fcn|
Clock A(t) Interpreted MATLAB Error
T Function
u 1
cr

Transposel

FIGURE 6: Simulink implementation of the GNN model for computing CAVC = C, X = VC € A{2}, y(.

17

18

Example 23. Let us consider the same matrix A as in

Example 21 and

0.895516
0.792079
0.808897
0.258699
0.665172
| 0.640587

0.248449
0.602233
0.711749
0.164182
0.578898

0.0576096 0.25043 0.475532

0.880375 0.567239
0.0492111 0.88686
0.961789 0.556687

0.33616 0.892039
0.278248 0.873279

0.862471]
0.9282
0.769442
0.880079
0.564932
0.660159 |

[0.351124 0.472523 0.796377 0.810286 0.484798 0.286383]

€ IR6X5,

Complexity

(72)

0.505833
0.499275
0.513633
| 0.969499

The matrices B and C are generated with the purpose of
illustrating Theorem 12 and Algorithms 8 and 9. Conditions
(iv) and (v) of Theorem 12 are satisfied. Therefore, it is
expectable that the results generated by Algorithms 8 and 9
are the same.

The Simulink implementation of Algorithm 9 generates
results presented in Figure 8. The simulation is performed

0.717046 0.246185 0.810956 0.22764 0.363135
0.417029 0.442484 0.596716 0.573046 0.798864 | € IR?((’.
0.380053 0.317329 0.991615 0.917641 0.774303
0.291356 0.926272 0.736567 0.609807 0.807355]

within the time interval which is [0, 10], the scaling constant
is y = 107, and the selected solver is ode15s.

The Simulink implementation of Algorithm 8 generates
the results presented in Figure 9. The time interval is [0, 0.5],
y = 10", and the solver is ode15s.

As a verification, Mathematica gives the following
result:

X, =A%0 o =BABACA) C
[0.0923811 -0.407619 —0.25 —0.25 —7.882583475 % 10> —1.78745907 % 10™**]
-0.500161 —0.00016084 —0.25 —0.25 —1.776356839 % 107> —3.44169138 % 107"
44104 -2.59426 -14.9626 —3.15303 3.96324 12.6509 (73)
| 473567 -2269 -15.4626 —2.65303 3.96324 12.6509
375197 -32527 —15.6292 —3.48636 4.62991 12.9842
| 431832 -2.68635 -15.7959 -3.3197 429657 13.3175]
Let us observe that X = A%’g)’ 5o = B(CAB)'C and Example 24. (a) Consider the time-varying symmetric

X, = B(AB)'A(CA)'C are very close with respect to the
Frobenius norm, since | X — X,| = 4.710014456589536
1072, In the case U = (CAB)" and X = BUC, the matrix
equations CAX = CABUC = C and XAB = BUC = Bare
satisfied, since

[CABUC - C|| = 1.631647583439993 x 10,
(74)
IBUCAB — B|| = 2.405407190529498 * 10~ .

matrix Ss, belonging to n x n matrices S,, of rank n — 1 from
[32]:

S(ty=| t t (75)

Complexity

025 ~0.25 0.2 —0.29[5.5511151231258 — 17] 0
~0.25 0.25 ~0.25 ~0.29[-5.5511151231258¢ - 17] 0
A'ua” 0 0 0.5[-5.5511151231258¢ — 17 ~0.25 ~0.25
0 0|[F1.1102230246252¢ - 1 05 ~0.25 ~0.25
0 0 0.1 ~0.3333333333333 0.41 0.083333333333333
0 0 —0.33333333333333 ~0.16666666666667 0.083333333333333 0.41666666666667
MP
0.0625 —0.0625[8.2557324711657¢ — 18][7.0041336308666¢ — 1§[1.8151820277119% — 17][1.5856469791553¢ - 17]
-0.0625 0.0625 |[-8.2557498871472¢ — 18|[-7.0041111102113¢ — 1§[F1.8151698715192¢ — 17][~1.585646801239% — 17
~0.1875 ~0.1875 0.38194423117999 0.2430553422911][-0.28009280585705] -0.3449076206718¢]
~0.1875 ~0.1875 0.24305521974697 0.38194410863586 | —0.34490774321599|[-0.28009292840117
Matrix 0.125 0.125 ~0.23611109112805|[—0.26388886890582] 0.27314816813121] 0.22685187183492
P 0.125 0.125 ~0.2638912217375|[-0.23611344395972] 0.22684951900324] 0.27314581529954]
N Multiply
uU(t)
I u()
], AF (ATUATAAT - AT)(ATAAT)T A AF (A"UATAAT - AT)(ATAAT)T
1/s \KI
A
T
u Matrix
Multiply
Interpreted
MATLAB Fen
ATUATAAT ATUATAAT - AT F(ATUA"AAT - AT)
< Matrix N
g Multiply o/
T Outl —|

AT

Matrix

S Inl

Interpreted
MATLAB Fen

3.5406585819598¢ — 15 |

T |ATuATaaT AT
(47aAT)’

Multiply

FIGURE 7: Simulink implementation of the GNN model for computing A" using Algorithm 3.

The Moore-Penrose inverse of S;(t) is equal to

-t ottt 1-t]
4 2 2 2 4

t t
-1t -t -

2 2

t t

s () = -t -ttt - (76)

t t
-t ot —t-1 -

2 2

-t t t ot 1-t

[4 2 2 2 4 |

Figure 10 shows the Simulink adopted computation of
Ss ()" in the time period [0,5 % 1077] using the solver ode15s
and the parameter y = 10°,

Trajectories of approximations of the entries in the matrix
Ss(t)" inside the time [0, 5+10~7] and generated using y = 10
are presented in Figure 11. It is evident that these trajectories
follow the graphs of the corresponding different expressions
(representing entries) in S;.

conjunction with S;(#):

r2t+1 t
t o 2-1 t
B(t) = t t 2t+1,
t t t
[2t+1 t |
P +1 2 2 P+l
chH=| £ -1 ¢ ¢ ¢
S S T N

19

(b) Now, consider the following matrices B(t) and C(¢) in

(77)

The outer inverse Ss (t)gi BN (C) of 8;(t) corresponding to B(t)
and C(t) is equal to

20

Complexity

Matrix BU
Multiply
Matrix Multiply? ~10.751498611715 10.751498611747 40.316552401205 6.7362220764815 —11.375212503293 ~32.776568845287
~2.5772291939886 2.5772291939882 7.896663582301 1.6270290654044 ~3.0005317561452 —5.8142059726098
~3.8949578144041 3.8949578144099 1235521212003 2.1195190245352 ~3.29314897568 -10.262216133363
v 8.9220767088928 ~8.9220767089077 ~37.479305397879 ~7.6177318048375 11.144567836342 31.110629363823
7.8371255122176 —7.8371255122966 —25.601496267334 —3.8081779577343 6.8230107446933 20.247362392586
Integrator -y
T —yB"F(BUAB - B)(AB)" B'F(BUAB - B)(AB)"
] <
Interpreted T
Ca Fen |} u" L
Clockl B(O)
Transpose —>
1 Matrix
Purelin i
| BUAB BUAB- B Multiply
atrx ,_)" F(BUAB = B)| Matrix Multi
) plyl
Multiply &/ Manual Switch
Inl Outl
5 Matrix Multiply
Subsystem
(1)
MATLAB Fen D Matrix | 4B Tnterpreted 3.4658241374669% — 14
Clock A(t) ; T MATLAB Fen|
Multipl u
| Multply I TBUAB - Bl
Matrix Multiply2 Transposel (AB)"
2] Marix 0.09238098231749 ~0.40761901768234 0. 0.2 [8.79 12¢ - 14][-2.557398737224e - 13|
Multiply —0.50016128248247 |[=0.00016128248231701 0. 0.2 [8.3377749149349¢ — 14][-2.345901251033¢ — 13
| Mauix | Y|\ Multiply8 4.4102606865294 —2.5941870699514 —14.962180010095 ~3.1529694057795 3.963128471824] 12.650553912567]
Multiply 4735527864288 ~2.2689198921927 ~15.462180010095 ~2.6529694057795 3963128471824 12.650553912567]
Matrix Multiply6 3.7518238795571 3252623876923 ~15.628846676762 ~3.4863027391129 4.6297951384907 129838872459
4318176446056 —2.6862713104247 —15.795513343429 —3.3196360724462 4.2964618051573 13.317220579233
BUAVC
V() Integratorl . . —y1 . .
T —y(ca)" F(cave - o)C” Pl (cA)" F(cave - ¢)c!
(D
uT
Interpreted
MATLAB Fen Transpose2
Clock3 ot
® - F(CAVC-C) Matrix
3| Matrix Multiply
Multiply Matrix | CAVC —~ CAVC-C Purelin] ° | Switch
Multiply - Manual Switchl Matrix Multiply4
Matrix Multiply5
Matrix Multiply3 ¢
1 Subsystem1
u' MATLAB Fen
| W ICAVC -l
Transpose3
—0.70123112386684 —0.18810222575206 ~0.67280315932802 0.47801088814669 0.54062975152642
0.29757824353347 —0.41879362125917 1.1997162606285 —0.18936642264428 ~0.92267449899965
V() 0.63666320802554 0.10376425358301 ~0.221846983106 ~0.70313132706341 0.31169977769562
~0.26791030956442 1.3665202510312 —1.4690282729106 0.089886365190117 0.53811298413904
0.32905810481192 ~1.4475901373599 0.614778113078 0.65058887809846 —0.59466979268339
—0.69781066004455 || —0.022693987702354 1.0760972101004 || —0.037344805480117 —0.25514217052769

FIGURE 8: Simulink implementation of Algorithm 9.

S5 (0%) = B(CSs (1) B)'C

t(15t"+ £ + 617 - 2)

6315 —42t4 + 13— 21> — 8t — 4
—661° + 13t — 25¢° + 267 + 12t + 4
6315 —42t4 + 13 —2t2 — 8t — 4
t(39t* =76 + 86> - 4)
63t° —42t4 + 13 - 212 - 8t — 4
t (3" +29¢ +6t° + 18t + 4)
TGS —dut P - 22 -8t —4
t(15t* + £ + 6t” - 2)
63t° — 42t4 + 3 - 212 -8t — 4

£(-15¢" + 137 - 87 + 4t +2)
6315 —42t4 + 13 — 212 — 8t — 4
£(3t"+£ + 16t - 8t - 4)
6315 —42t4 + 13 —2t2 — 8t — 4
24t + 7t* + 156° — 617 + 4t + 4
—63t5 + 42t* — 13 + 212 + 8t + 4
t(3t'+£ -2 + 10t - 4)
6315 — 4264 + 13 - 212 — 8t — 4
t(-15¢" + 137 - 8> + 4t +2)
63t° —42t4 + 13 - 262 -8t — 4

£ (=208 + 6t +3t - 1)
6315 —42t* + 13 - 21> — 8t — 4
£ (677 — o — 18t - 4)
6315 —42t* + 13 - 2t2 — 8t — 4
£ (=316 +13¢° + 2t - 4)
63t% —42t4 + 13 - 212 - 8t — 4
£ (4 +33t 1)
63t5 —42t* + > —2t2 -8t — 4
£ (-206° + 6> +3t - 1)
63t° —42t4 + 3 - 212 - 8t — 4

—106° + 6t +3° — 1+t + 1
—63t° + 42t4 — 3 + 22 + 8t + 4
t(-2t 436 + 867 -3t - 2)
63t5 —42t* + 13 - 21> — 8t — 4
t(-16t" + 13t - 6t + 3t +2)
6315 —42t4 + 13 212 - 8t — 4
t(2t' =30+ -5t +1)
—63t° + 42t — 3 + 22 + 8t + 4
1087 + 6t* +3t° — 2+t + 1
L 631 + 42t — 3 + 212 + 8t + 4

—106° + 6t +3° — 1+t + 1
—63t° + 42t4 — 3 + 22 + 8t + 4
t(-2t 436 + 867 -3t - 2)
63t° —42t4 +13 - 212 -8t — 4
t(-16t" + 13t - 6t + 3t +2)
63t5 — 42t + 13 - 22 -8t — 4
t(2t' =30+ -5t +1)
—63t° + 42t — 3 + 22 + 8t + 4

1067 + 6t* +3t° — 2+t + 1
—63t° + 424 — 3 + 212 + 8t + 4 4

(78)

Its computation in the time period [0,5 % 1072] using solver

Example 25. Here we discuss the behaviour of Algorithm 3 in
ode15s and the parameter y = 10'! is presented in Figure 12.

the case when the condition rank(CAB) = rank(B) = rank(C)

Complexity 21
[0.092380982318144]| ~0.40761901768271| ~0.2500000000015][~0.25000000000022 || 4.2543746303636¢ — 13][1.2150280781498¢ — 12]
[-o0s50016128248173][-0.00016128248274683|[-0.25000000000182][-0.25000000000028 | 5.0892623448817¢ - 13|[1.4637180356658¢ 12]
| 4.4102606865299 || ~2.594187069951¢ ~14.962180010097 | ~3.1529694057797 | 3.9631284718244 12.650553912568]
%| 4.7355278642887 || ~2.2689198921931 ~15.462180010097 | ~2.6529694057798 | 3.9631284718245 12.650553912568]
| 3.7518238795575 || -3.252623876924| ~15.628846676763)| 3486302739131 | 4.629795138491] 12.983887245901 |
| 4.3181764460565 || -2.686271310423| -15.79551334343 -3.3196360724464| 4.2964618051577| 13.317220579234|
ATS2
| 92.590383013471 || ~12.9177675162 || ~22.193154963084 || ~38.323704008394 || ~8.9161712822721 |
| 17.417620599104“ 0.047026291111651 || ~1.5085689431031 “ ~10.003046551049 ” ~2.3147969989492 |
%l 29991719485412” ~4.7292289856368 || ~5.2206154373304 || ~11.939341072555 || —4.6060987122439 |
| ~83.287134501841 || 8.0407335641093 || 28.556089251603 || 33.802879298155 || 3.7860352483962 |
. Matrix | ~60.901701484491 “ 10.131321290954 “ 8.1353399058703 “ 25.843641008111 ” 9.2892198224631 |
Multiply
U
m —yB'F (BUCAB - B) (CAB)" B"F (BUCAB - B) (CAB)"
1/s Y <‘I
Interpreted
®—> MATLAB Fen , 5
ul
B(t) Matrix
) Multiply
Interpreted
MATLAB Fen
° A(T) Matrix | BUCAB /
Multiply BUCAE - B \%w F (BUCAB - B)
" ;
—|In1 Outl j
Interpreted
c® Matrix |BUCAB - Bl
Multiply | ~4p \ﬁ uT
_I (CAB)"

is not satisfied. For
matrices

[5
6
-7
-4
2
[18
36
-36
-18
—-36

[-2

4

this

FIGURE 9: Simulink implementation of Algorithm 8.

-8 -16 24 0
~11 -18 24 0
14 26 -36 0
8 16 -23 0
-6 -10 12 -3]
-34 52 72

~72 108 144

82 130 -168
43 70 -90

70 100 -132
10 12 -12 4]
-6 -12 16 0
-6 -4 4 -4
-10 -12 14 -4
-15 -22 26 -4

0
8 1,
8
2

purpose, let us consider the

(79)

These matrices do not satisfy the requirement rank(CAB) =
rank(B) = rank(C) of Algorithm 3, since

rank (A) = 5,
rank (B) = 4,

(80)
rank (C) = 3,

rank (CAB) = 2.

On the other hand, the conditions rank(AB) = rank(B) and
rank(CA) = rank(C) are valid, so that the conditions required
in Algorithms 1 and 2 hold. An application of Algorithm 3 in
the time [0, 107°], based on the scaling constant y = 107 and
the ode15s solver, gives the results for U(¢) and X = BUC as
it is presented in Figure 13.

An application of the dual case of Algorithm 3 in the
time [0, 107®], based on the scaling constant y = 10” and the
ode15s solver, gives the results for V(t) and X = BVC as it is
presented in Figure 14.

Trajectories of the elements of the matrix B()U(¢)C(t) in
the period of time [0, 10~°] are presented in Figure 15.

According to the obtained results, the following can be
concluded.

22

Complexity
0.24999987502929 || 2.5187499958003¢ — 07 || —2.456250394222¢ — 07| 2.5187499958003¢ — 07 0.24999987502929
2.5011717272136¢ — 07 ~1.0000004699997 || 5.0999997832212e — 07|| —4.6999973572826¢ — 07| 2.5011717272136e — 07
T T
SsUMSs | |5.4972658213084¢ — 07]| 5.1000003748157¢ — 07 0.99999952999982(| 5.1000003748157¢ — 07|| —2.4972658213084e — 07
2.5011717272136e — 07 || —4.6999973572826¢ — 07 || 5.0999997832212¢ — 07 ~1.0000004699997 | 2.5011717272136e — 07
0.24999987502929 || 2.5187499958003¢ — 07 || ~2.456250394222¢ — 07|| ~ 2.5187499958003¢ — 07 0.24999987502929 Time
Scope
MP
0.062499906257495 | 1.8656280084293¢ — 07|[—4.3531196096912¢ — 07| 1.8656280084293¢ — 07 0.062499906257495) D
MP
1.8744171368632¢ - 07 ~1.0000014700016][4.9000019142511¢ — 07][—1.4700016242253¢ — 06 |[1.8744171368632¢ — 07
~4.3736273115155¢ — 07 || 4.9000013109377¢ — 07 0.99999853000137| 4.9000013109377e — 07 || -4.3736273115155¢ — 07|
—
1.8744171368632¢ — 07 || —1.4700016242253¢ — 06|| 4.9000019142511e — 07 —1.0000014700016 || 1.8744171368632¢ — 07|
0.062499906257495 || 1.8656280084293¢ — 07 || —4.3531196096912¢ — 07| 1.8656280084293¢ — 07 0.062499906257495
Matrix u(t)
Multiply v EI
vo S (STUSTs,sT - sT) (sts,s7)" 8,F (STUSTS, ST - s7) (s0's,87)"
Ys(s 5 9595 5)(555) /I 5(5 5 9595 5)(555)
1/s \KI
T
T SS S
u IAT 5
Matrix
Multiply
Interpreted
MATLAB Fen
T T T T T T T T T T T
Matrix | SSUSES5SE o\ STUSES;SE - St F(S5US;SsSE - S5)
Multiply = j_o
> Inl QOutl
T Interpreted
u B
MATIAR Fen !| 7.039680128527¢ - 08 |
T T T T T
st [ssustssst - si |,
Tg g1 (shsssh)
Matrix 5585 T 595°8
Multiply “

FIGURE 10: The Simulink adopted for computation of S, (¢)".

S5 ®F

T T T T T T

0.6 1
0.4 1
0.2 :

-0.2 1
-0.4 1
-0.6 - 1

L L L L L L L L L

1.5 2 2.5 3 3.5 4 4.5 5
-7
Time (seconds) x10

FIGURE 11: Trajectories of elements of the matrix S(t)".

are not satisfied nor is the matrix B invertible. Simi-
larly, the matrix equation BUCAB = B is not satisfied,
since |CABVC - C|| = 27.412588.

(1) The matrix equation BUCAB = B is not satisfied,
since | BUCAB-B|| = 39.53256. This fact is expectable
since the conditions rank(CAB) = rank(B) = rank(C)

Complexity 23
| 024751316212924” 00049002478763203” ~0.0049978264290325 || 2.3759132869102¢ — 05 || 0.24751316212924 |
BoyS;(mce) || 0.0049732790342803] ~1.0097974891695) 0.009995587363911 || 0.00010246638891785 | 0.0049732790342803 |
—| ~0.0049738079785076 | 0.0098014979290623] | 0.99000432531613 || 9.7513150625793¢ — 05 || ~0.0049738079785076 |
| 0.0023285553564243] 0.010246138989783| 0.0095588440041668 || 1.6410962611816¢ 07 || 0.0023285553564243 |
Matrix | 024751316212924] 0.0049002478763203| -0.0049978264290325 || 23759132869102¢ - 05 || 0.24751316212924 |
| Multiply
ATS2
| 0.24273367499958 0.0053163229076298 || -0.014435906392517 | ATS2
0] | —00025681024227922” ~1.0304504347864 || —0.00033781927318434|
| —0.007326447896962 | 0.00053662386308981 || 0.97064171511977 |
T T T T
y —yBTF(BUCS;B - B)(CAB) - | BTF(BUCSsB - B)(CS5B)
: ~d
Interpreted T BT
(% MATLAB Fen u —| | Matris
B() Multiply
Interpreted Matrix BUCS;B /) BUCS.SB -B
MATLABFen [] Multiply — F(BUCS;B - B)
85(t) {In1 Outl—>-0
: Interpreted
Matrix P H| 4.5599877488947¢ — 11 |
Multiply s MATLAB Fen | |
Interpreted |BUCSsB - B,:
MATLAB Fen
u’ (cssB)"
ct) - —
FIGURE 12: The Simulink model for computing B(t)(C(t)S(t)B(t)) " C(¢).
(2) Both the matrices U and V are approximations of
(CAB)", since
0.0345588 0 0.0321078 0.0154412 -0.0178922
—-0.0116558 0. -0.0105664 —0.00501089 0.00610022
(CAB)T =1 0.0227669 0. 0.0216776 0.0105664 —0.0116558 |. (81)
0.000272331 0. —0.000272331 —0.000272331 -0.000272331
—0.0230392 0. -0.0214052 —0.0102941 0.0119281

This means that the solutions of the matrix equations
BUCAB = B and CABVC = C given by the GNN
model approximate the solution of the GNN model
corresponding to the matrix equations UCAB = I and
CABV = I, respectively, which is equal to (CAB)".

(3) Accordingly, the output denoted by AT'S2 approxi-
mates the outer inverse

exactly in five decimals. In conclusion, the Simulink
implementation of Algorithm 3 computes the outer
inverse X = B(CAB)'C which satisfies condition
(29) from the definition of the (B, C)-inverse, but
not condition (28) from the same definition. In other
words, X satisfies neither Z(X) = %(B) nor /(X) =
H(C).

(4) Observations 2 and 3 finally imply that the GGNN

X =B(CAB)'C model can be used for online time-varying pseudo-
~0.537582 157435 191993 -2.15033 0.614379 inversion of both the matrices A and CAB.
—0.492157 0.0127451 -2.01373 2.03137 1.01961 (82) 5. Conclusion

= 0.38366 1.01928 4.28693 —-4.46536 -1.12418
0.237582 0.375654 1.98007 -2.04967 -0.614379 The contribution of the present paper is both theoretical and
0.715033 —1.37974 —0.667974 0.860131 —1.04575 computationally applicable. Conditions for the existence and

24

Complexity

[—0.53745006046674] 1574148971102 | 1.9195397675613 | -2.1498002843638 || 0.61437908732852 |
| ~0.49189182050133 | 0.012347574509349] -2.0145205450294 || 2.0324326480401 | 1.0196078470241 |
S 0.38334824042184 1.0197488872679)| 4.2878637864231 || -4.4666070489731 || ~1.1241830059436 |
0.23741426274506 0.37590476311465 1.980567693541 ~2.0503429726238 ~0.61437908365583
0.71478920517829 ~1.3793733112874 ~0.66724336220439 0.85915675229007 ~1.0457516301852
- e
U
B(HU(H)C(t)
| 0.034558709411808 | ol 0.032107878451554 || 0.015441267570493 || -0.017892133698357
| ~0.011655850041973 || 0|| ~0.010566273064616 || ~0.0050110256153515 || 0.0061003612337245|
| 0.022766918918719 | o 0.021677709239603 || 0.010566124648059 || ~0.011655828133641]
[0.00027264049835933 | ol -0.00027251420403381 || -0.00027224851716762 || -0.00027205350626267]
Matrix | -0.023039223518072 || ol -0.021405243603255 || ~0.010294089203045 | 0.011928083015251
—| i
Multiply
0)
Matrix Multiply1 Integrator -y
—yB'F(BUCAB - B)(CAB)" | B'F(BUCAB - B)(CAB)"
1/s -K |
Interpreted T B
MATLAB Fen u Matrix
Clockl BO) Multiply
Transpose —>|
I Matrix Multiply2
Interpreted -/
MATLAB Fen [] [
Purelin
Clock AlD) Matrix | BUCAB _ ~—\ BUCAB-B F(BUCAB - B)
Multiply &
Matrix Multiply fin1 Outl Manual Switch
Interpreted | Subsystem
MATLAB Fen I d
Clodk2 merprete
C(t) MATLAB Fen _\—)“ 39.532562899612 ||
Frobenius Norm
|BUCAB - Bl
Matrix T
Multiply “
(CAB)"
Matrix Multiply3 Transposel

FIGURE 13: The implementation of Algorithm 3 when its conditions are not satisfied.

representations of {2}-, {1,2}-, and {1}-inverses with some
assumptions on their ranges and null spaces are proposed. A
new computational framework for these generalized inverses
is proposed. This approach arises from the derived general
representations and involves solutions of certain matrix
equations. In general, the methods and algorithms proposed
in the present paper are aimed at computation of various
classes of generalized inverses of the form B(CAB)Y'C, where
(CAB)Y are solutions of the proposed matrix equations
solvable under specified conditions.

Our decision is to apply the GGNN approach in find-
ing solutions of required matrix equations. Also, we use
Simulink implementation of the underlying RNN models.
This decision allows us to extend derived algorithms to time-
varying matrices. Also, such an approach makes it possible
to compute two types of generalized inverses, namely, inner
and/or outer inverses of A and inner inverses of the matrix
product CAB. Illustrative numerical examples and simulation

examples are presented to demonstrate validity of the derived
theoretical results and proposed methods.

It is worth mentioning that the blurring process which
is applied on the original image F and produces the blurred
image G is expressed in the form of a certain matrix equation
of the form

G = H,FH!,
(83)
Ge lexmz) Hc c lexr, Fe R'rxs’ Hr € Rmzxs,

wherein it is assumed that s = m, +n, — 1, v = m; +n, — 1,
where n; (resp., n,) is the length of the horizontal (resp.,
vertical) blurring in pixels. Solutions of these types of matrix
equations which are based on the pseudoinverse of H, and
H, and least squares solutions were investigated in [33-35].
Possible application of the proposed algorithms in finding
least squares solutions of matrix equation (83) could be useful
for further research.

Complexity

| -0.53749988918928)| 1.5742015082227 || 1919683199307 | 2150003134216 0.61435990856927 |
| -049197451716114]| 0.01240124304] -2.0143213496498 | 2032127791421 || 1.0195619178649 |
i BVC
| Matrix | 0.38349274457887 || 1.0195979086325 | 4287483217485 | 4460623229617 | ~1.1241437001102 |
Multiply
| 0.23750408679604 || 0.37579852055871 || 1980321071687 || -2.0499980368853 | ~0.61436203302564
Matrix Multiply3
ind | 0.71488837544356 || —1.3794674051883” —0.66750729689158” 0.85953879396388 || —1.0457137567425|
ATS2
0.034559009488761		—2.38497766541875—07” 0.032107746838562		0.015441438621505		~0.017893017643628	
~0.011654589427222		~1.0465325327233¢ — 06” ~0.010566076488502		~0.0050123582368668		0.0061016499063475	
0.022767835852904		763981826450862—08” 0.021677244456875		0.010567272396594		~0.011654012399172	
0.00027315390968663		3.0555862386093¢ - 07	—-0.00027246896200269		-0.00027213123054524		-0.00027070449861095
-0.023039186096751	1.6095471855119¢ - 07	-0.021405668797918	-0.010293801194368		0.011928494374085		
V()
Integrator —
~y(CAB)"F(CABVC - C)C" | (CAB)"F(CABVC - C)C*
1/s K- |
T
Matrix ur (CAB)
Interpreted | Multiply
_ MATLAB Fen L
le-08 Matrix Multiply2 Transpose Matrix
Al ;
Clock Purelin Multiply
Interpreted R R
MATLl,JAB Fen F(CABVC - C) Matrix Multiplyl
Clockl 0 Matrix | CABVC N | CABVC-C
Multipl =
7 il >|In1 Outl P\ fanual Switch
Matrix Multipl;
atrix Multiply Subsystem
Interpreted | c
MATLAB Fen Interpreted
Clock2 C®) o MATLAB Fen s | 27.412588349165
uT Interpreted MATLAB
Function ICABVC - C| ¢
Transposel

FIGURE 14: Dual implementation of Algorithm 3 when its conditions are not satisfied.

L L L L

-5
0 01 02 03 04 05 06 07 08 09 1
-9

Time (seconds) x10

FIGURE 15: Trajectories of elements in B(t)U(¢)C(t) in the period of time [0, 107°].

Require: Time varying matrices A(f) € C™", B(t) € C™* and C(t) € C™.
Require: Verify rank(C(t) A(t)B(t)) = rank(B(t)) = rank(C(t)) = rank(A(t)).
If these conditions are satisfied then continue.
(1) Solve the matrix equation B(t)U(t)C(t)A(t)B(t) = B(t) with respect to an unknown matrix U(t) € clm,

(2) Return X(t) = BOU(C() = AW) G010

ALGORITHM 9: Alternative computing of a {1, 2}-inverse with the prescribed range and null space.

26

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The first and second author gratefully acknowledge support
from the project supported by Ministry of Education and
Science of Republic of Serbia, Grant no. 174013. The first and
third author gratefully acknowledge support from the project
“Applying Direct Methods for Digital Image Restoring” of the
Goce Del¢ev University.

References

[1] A.Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory
And Applications, Springer, New York, NY, USA, 2nd edition,
2003.

[2] G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: Theory and
Computations, Science Press, New York, NY, USA, 2003.

[3] X. Sheng and G. Chen, “Full-rank representation of generalized

inverse A(TZ)S and its application,” Computers & Mathematics with
Applications, vol. 54, no. 11-12, pp. 1422-1430, 2007.

[4] P.Stanimirovi¢, S. Bogdanovi¢, and M. Cirié, “Adjoint mappings
and inverses of matrices,” Algebra Colloquium, vol. 13, no. 3, pp.
421-432, 2006.

[5] Y.-L. Chen and X. Chen, “Representation and approximation
of the outer inverse of A(;)S a matrix A, Linear Algebra and its
Applications, vol. 308, no. 1-3, pp. 85-107, 2000.

[6] X. Liu, H. Jin, and Y. Yu, “Higher-order convergent iterative
method for computing the generalized inverse and its applica-
tion to Toeplitz matrices,” Linear Algebra and Its Applications,
vol. 439, no. 6, pp. 1635-1650, 2013.

[7] X. Liu and Y. Qin, “Successive matrix squaring algorithm for
computing the generalized inverse A(%)S,” Journal of Applied
Mathematics, vol. 2012, Article ID 262034, 12 pages, 2012.

[8] P. S. Stanimirovi¢ and D. S. Cvetkovi¢-Ili¢, “Successive matrix
squaring algorithm for computing outer inverses,” Applied
Mathematics and Computation, vol. 203, no. 1, pp. 19-29, 2008.

[9] P.S. Stanimirovi¢ and E. Soleymani, “A class of numerical algo-
rithms for computing outer inverses,” Journal of Computational
and Applied Mathematics, vol. 263, pp. 236-245, 2014.

[10] Y. Wei, “A characterization and representation of the general-
ized inverse A(Tz)s and its applications;” Linear Algebra and Its
Applications, vol. 280, no. 2-3, pp. 87-96, 1998.

[11] Y. Wei and H. Wu, “The representation and approximation
for the generalized inverse A(%)s,” Applied Mathematics and
Computation, vol. 135, no. 2-3, pp. 263-276, 2003.

[12] Y. Wei and H. Wu, “(T, S) splitting methods for computing the
generalized inverse A(;)s and rectangular systems,” International
Journal of Computer Mathematics, vol. 77, no. 3, pp. 401-424,
2001.

[13] H. Yang and D. Liu, “The representation of generalized inverse
A%SS) and its applications,” Journal of Computational and
Applied Mathematics, vol. 224, no. 1, pp. 204-209, 2009.

[14] N. S. Urquhart, “Computation of generalized inverse matrices
which satisfy specified conditions,” SIAM Review, vol. 10, pp.
216-218, 1968.

Complexity

[15] M. P. Drazin, “A class of outer generalized inverses,” Linear
Algebra and Its Applications, vol. 436, no. 7, pp. 1909-1923, 2012.

[16] J.Jang, S. Lee, and S. Shin, “An optimization network for matrix
inversion,” in Neural Information Processing Systems, pp. 397-
401, College Park, Md, USA, 1988.

[17] L.Fa-Longand B. Zheng, “Neural network approach to comput-
ing matrix inversion,” Applied Mathematics and Computation,
vol. 47, no. 2-3, pp. 109-120, 1992.

[18] J. Wang, “A recurrent neutral network for real-time matrix
inversion,” Applied Mathematics and Computation, vol. 55, no.
1, pp. 89-100, 1993.

[19] A. Cichocki, T. Kaczorek, and A. Stajniak, “Computation of
the drazin inverse of a singular matrix making use of neural
networks,” Bulletin of the Polish Academy of Sciences, Technical
Sciences, vol. 40, pp- 387-394, 1992.

[20] A. Cichock and D. Rolf Unbehauen, “Neural networks for
solving systems of linear equations and related problems,” IEEE
Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 39, no. 2, pp. 124-138,1992.

[21] J. Wang, “Recurrent neural networks for computing pseudoin-
verses of rank-deficient matrices;,” SIAM Journal on Scientific
Computing, vol. 18, no. 5, pp. 1479-1493, 1997.

[22] Y. Wei, “Recurrent neural networks for computing weighted

Moore-Penrose inverse,” Applied Mathematics and Computa-

tion, vol. 116, no. 3, pp. 279-287, 2000.

Y. Xia, T. Chen, and J. Shan, “A novel iterative method for

computing generalized inverse;” Neural Computation, vol. 26,

no. 2, pp. 449-465, 2014,

[24] P.S. Stanimirovi¢, I. S. Zivkovié, and Y. Wei, “Recurrent neural
network for computing the Drazin inverse,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 26, no. 11, pp.
2830-2843, 2015.

[25] I.S. Zivkovié, P. S. Stanimirovié, and Y. Wei, “Recurrent neural
network for computing outer inverse,” Neural Computation, vol.
28, no. 5, pp. 970-998, 2016.

[26] P.S. Stanimirovi¢, L. S. Zivkovi¢, and Y. Wei, “Neural network
approach to computing outer inverses based on the full rank
representation,” Linear Algebra and Its Applications, vol. 501, pp.
344-362, 2016.

[27] C.-G. Cao and X. Zhang, “The generalized inverse A(%) and its
applications,” Journal of Applied Mathematics and Computing,
vol. 11, no. (1-2), pp. 155-164, 2003.

[28] K. Chen, S. Yue, and Y. Zhang, “MATLAB simulation and
comparison of zhang neural network and gradient neural
network for online solution of linear time-varying matrix
equation AXB — C = 0, in Proceeding of the International
Conference on Intelligent Computing (ICIC °08), D. S. Huang, D.
C. Wunsch, D. S. Levine, and K. H. Jo, Eds., vol. 5227 of LNAI,
pp. 68-75, Shanghai, China, 2008.

[29] Y. Zhang and K. Chen, “Comparison on zhang neural network
and gradient neural network for time-varying linear matrix
equation solving AXB = C Solving,” in Proceeding of the
International Conference on Industrial Technology (IEEE ICIT
°08), April 2008.

[30] P. S. Stanimirovi¢, D. S. Cvetkovi¢-Ili¢, S. Miljkovic,
and M. Miladinovi¢, “Full-rank representations of {2,4},
{2,3}—inverses and successive matrix squaring algorithm,”
Applied Mathematics and Computation, vol. 217, no. 22, pp.
9358-9367, 2011.

[31] S. Srivastava and D. K. Gupta, “A new representation for A%;) >
Applied Mathematics and Computation, vol. 243, pp. 514-521,
2014.

[23

Complexity

(32]

(33]

(34]

[35]

G. Zielke, “Report on test matrices for generalized inverses,”
Computing, vol. 36, no. 1-2, pp. 105-162, 1986.

P. S. Stanimirovi¢, I. Stojanovi¢, V. N. Katsikis, D. Pappas, and
Z. Zdravev, “Application of the least squares solutions in image
deblurring,” Mathematical Problems in Engineering, vol. 2015,
Article ID 298689, 18 pages, 2015.

P. S. Stanimirovi¢, S. Chountasis, D. Pappas, and I. Stojanovi¢,
“Removal of blur in images based on least squares solutions,”
Mathematical Methods in the Applied Sciences, vol. 36, no. 17,
pp. 22802296, 2013.

P. Stanimirovi¢, I. Stojanovi¢, S. Chountasis, and D. Pappas,
“Image deblurring process based on separable restoration meth-
ods,” Computational and Applied Mathematics, vol. 33, no. 2, pp.
301-323, 2014.

27

Advances in
Op ranons Research

Advances in

DeC|5|on SC|ences

Journal of

Ap ||ed Mathemancs

Algebra

Journal of
bability and Statistics

The Scientific
Wo‘rld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of

Mathematics

Journal of

clﬂhMbhemahcs

in Engmeermg

Mathematical Problems

Journal of

tion Spaces

Abstract and
Applied Analysis

International Journal of

Stochastic Analysis

International Journal of
D|fferent|a| Equations

Discrete Dynamics in
ure and Society

Optimization

