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Conditions for the existence and representations of {2}-, {1}-, and {1, 2}-inverses which satisfy certain conditions on ranges and/or
null spaces are introduced. These representations are applicable to complex matrices and involve solutions of certain matrix
equations. Algorithms arising from the introduced representations are developed. Particularly, these algorithms can be used to
compute theMoore-Penrose inverse, theDrazin inverse, and the usualmatrix inverse.The implementation of introduced algorithms
is defined on the set of real matrices and it is based on the Simulink implementation of GNNmodels for solving the involvedmatrix
equations. In this way, we develop computational procedures which generate various classes of inner and outer generalized inverses
on the basis of resolving certainmatrix equations. As a consequence, some new relationships between the problem of solvingmatrix
equations and the problem of numerical computation of generalized inverses are established. Theoretical results are applicable to
complex matrices and the developed algorithms are applicable to both the time-varying and time-invariant real matrices.

1. Introduction, Motivation, and Preliminaries

Let C�푚×�푛 and C�푚×�푛�푟 (resp., R�푚×�푛 and R�푚×�푛�푟 ) denote the set of
complex (resp., real) 𝑚 × 𝑛 matrices and all complex (resp.,
real)𝑚×𝑛matrices of rank 𝑟. As usual, the notation 𝐼 denotes
the unitmatrix of an appropriate order. Further, by𝐴∗,R(𝐴),
rank(𝐴), and N(𝐴) are denoted as the conjugate transpose,
the range, the rank, and the null space of 𝐴 ∈ C�푚×�푛.

The problem of pseudoinverses computation leads to the,
so-called, Penrose equations:

(1) 𝐴𝑋𝐴 = 𝐴,
(2)𝑋𝐴𝑋 = 𝑋,
(3) (𝐴𝑋)∗ = 𝐴𝑋,
(4) (𝑋𝐴)∗ = 𝑋𝐴.

(1)

The set of all matrices obeying the conditions contained in
S is denoted by 𝐴{S}. Any matrix from 𝐴{S} is called the

S-inverse of 𝐴 and is denoted by 𝐴(S). 𝐴{S}�푠 is denoted as
the set of all S-inverses of 𝐴 of rank 𝑠. For any matrix 𝐴
there exists a unique element in the set 𝐴{1, 2, 3, 4}, called
the Moore-Penrose inverse of 𝐴, which is denoted by 𝐴†.
The Drazin inverse of a square matrix 𝐴 ∈ C�푛×�푛 is the
unique matrix 𝑋 ∈ C�푛×�푛 which fulfills matrix equation (2)
in conjunction with

(1�푘) 𝐴�푙+1𝑋 = 𝐴�푙, 𝑙 ≥ ind (𝐴) ,
(5) 𝐴𝑋 = 𝑋𝐴, (2)

and it is denoted by 𝑋 = 𝐴D. Here, the notation ind(𝐴)
denotes the index of a square matrix 𝐴 and it is defined by
ind(𝐴) = min {𝑗 | rank(𝐴�푗) = rank(𝐴�푗+1)}. In the case
ind(𝐴) = 1, the Drazin inverse becomes the group inverse𝑋 = 𝐴#. For other important properties of generalized
inverses see [1, 2].
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An element 𝑋 ∈ 𝐴{𝑆} satisfying R(𝑋) = R(𝐵) (resp.,
N(𝑋) = N(𝐶)) is denoted by 𝐴(�푆)

R(�퐵),∗
(resp., 𝐴(�푆)

∗,N(�퐶)
). If 𝑋

satisfies both the conditions R(𝑋) = R(𝐵) and N(𝑋) =
N(𝐶) it is denoted by 𝐴(�푆)

R(�퐵),N(�퐶)
. The set of all {𝑆}-inverses

of𝐴with the prescribed rangeR(𝐵) (resp., prescribed kernel
N(𝑋) = N(𝐶)) is denoted by 𝑋 = 𝐴{𝑆}R(�퐵),∗ (resp.,𝐴{𝑆}∗,N(�퐶)). Definitions and notation used in the further text
are from the books by Ben-Israel and Greville [1] and Wang
et al. [2].

Full-rank representation of {2}-inverses with the pre-
scribed range and null space is determined in the next
proposition, which originates from [3].

Proposition 1 (see [3]). Let 𝐴 ∈ C�푚×�푛�푟 , let 𝑇 be a subspace
of C�푛 of dimension 𝑠 ≤ 𝑟, and let 𝑆 be a subspace of C�푚 of
dimensions𝑚 − 𝑠. In addition, suppose that 𝑅 ∈ C�푛×�푚 satisfies
R(𝑅) = 𝑇, N(𝑅) = 𝑆. Let 𝑅 have an arbitrary full-rank
decomposition; that is, 𝑅 = 𝐹𝐺. If 𝐴 has a {2}-inverse 𝐴(2)�푇,�푆,
then

(1) 𝐺𝐴𝐹 is an invertible matrix;
(2) 𝐴(2)�푇,�푆 = 𝐹(𝐺𝐴𝐹)−1𝐺.
The Moore-Penrose inverse 𝐴†, the Drazin inverse 𝐴D,

and the group inverse 𝐴# are generalized inverses 𝐴(2)�푇,�푆 for
appropriate choice of subspaces 𝑇 and 𝑆. For example, the
following is valid for a rectangular matrix 𝐴 [2]:

𝐴† = 𝐴(2)
R(�퐴∗),N(�퐴∗),

𝐴D = 𝐴(2)
R(�퐴𝑘),N(�퐴𝑘)

,
𝑘 ≥ ind𝐴,

𝐴# = 𝐴(2)
R(�퐴),N(�퐴).

(3)

The full-rank representation 𝐴(2)�푇,�푆 = 𝐹(𝐺𝐴𝐹)−1𝐺 has
been applied in numerical calculations. For example, such a
representation has been exploited to define the determinantal
representation of the 𝐴(2)�푇,�푆 inverse in [3] or the determinantal
representation of the set 𝐴{2}�푠 in [4]. A lot of iterative
methods for computing outer inverses with the prescribed
range and null space have been developed. An outline of these
numerical methods can be found in [5–13].

A drawback of the representation given in Proposition 1
arises from the fact that it is based on the full-rank decom-
position 𝑅 = 𝐹𝐺 and gives the representation of 𝐴(2)

R(�푅),N(�푅)
.

Besides, it requires invertibility of 𝐺𝐴𝐹; in the opposite case,
it is not applicable. Finally, representations of outer inverses
with given only range or null space or the representations of
inner inverses with the prescribed range and/or null space
are not covered. For this purpose, our further motivation is
well-known representations of generalized inverses 𝐴(2)�푇,�푆 and𝐴(1,2)�푇,�푆 , given by the Urquhart formula. The Urquhart formula
was originated [14] and later extended in [2, Theorem 1.3.3]
and [1, Theorem 13, P. 72]. We restate it for the sake of
completeness.

Proposition 2 (Urquhart formula). Let𝐴 ∈ C�푚×�푛�푟 ,𝑈 ∈ C�푛×�푝,𝑉 ∈ C�푞×�푚, and 𝑋 = 𝑈(𝑉𝐴𝑈)(1)𝑉, where (𝑉𝐴𝑈)(1) is a fixed
but arbitrary element of (𝑉𝐴𝑈){1}. Then

(1) 𝑋 ∈ 𝐴{1} if and only if rank(𝑉𝐴𝑈) = 𝑟;
(2) 𝑋 ∈ 𝐴{2} and R(𝑋) = R(𝑈) if and only if

rank(𝑉𝐴𝑈) = rank(𝑈);
(3) 𝑋 ∈ 𝐴{2} and N(𝑋) = N(𝑉) if and only if

rank(𝑉𝐴𝑈) = rank(𝑉);
(4) 𝑋 = 𝐴(2)

R(�푈),N(�푉)
if and only if rank(𝑉𝐴𝑈) =

rank(𝑈) = rank(𝑉);
(5) 𝑋 = 𝐴(1,2)

R(�푈),N(�푉)
if and only if rank(𝑉𝐴𝑈) =

rank(𝑈) = rank(𝑉) = 𝑟.
Later, our motivation is the notion of a (𝑏, 𝑐)-inverse

of an element 𝑎 in a semigroup, introduced by Drazin in
[15]. Following the result from [9], the representation of
outer inverses given in Proposition 1 investigates (𝑅, 𝑅)-
inverses. Our tendency is to consider representations and
computations of (𝐵, 𝐶)-inverses, where 𝐵 and 𝐶 could be
different.

Finally, our intention is to define appropriate numerical
algorithms for computing generalized inverses

𝐴(2)�푇,�푆, 𝐴(1)�푇,∗, 𝐴(1)∗,�푆, 𝐴(1)�푇,�푆, 𝐴(2)�푇,∗, 𝐴(2)∗,�푆, 𝐴(1,2)�푇,∗ , 𝐴(1,2)∗,�푆 , 𝐴(1,2)�푇,�푆 (4)

in both the time-varying and time-invariant cases. For this
purpose, we observed that the neural dynamic approach has
been exploited as a powerful tool in solving matrix algebra
problems, due to its parallel distributed nature as well as
its convenience of hardware implementation. Recently, many
authors have shown great interest for computing the inverse
or the pseudoinverse of square and full-rank rectangular
matrices on the basis of gradient-based recurrent neural
networks (GNNs) or Zhang neural networks (ZNNs). Neural
network models for the inversion and pseudo-inversion of
square and full-row or full-column rank rectangular matrices
were developed in [16–18]. Various recurrent neural networks
for computing generalized inverses of rank-deficientmatrices
were introduced in [19–23]. RNNs designed for calculating
the pseudoinverse of rank-deficient matrices were created
in [21]. Three recurrent neural networks for computing the
weighted Moore-Penrose inverse were introduced in [22].
A feedforward neural network architecture for computing
the Drazin inverse was proposed in [19]. The dynamic
equation and induced gradient recurrent neural network for
computing the Drazin inverse were defined in [24]. Two
gradient-based RNNs for generating outer inverses with pre-
scribed range and null space in the time-invariant case were
introduced in [25]. Two additional dynamic state equations
and corresponding gradient-based RNNs for generating the
class of outer inverses of time-invariant real matrices were
proposed in [26].
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The global organization of the paper is as follows. Con-
ditions for the existence and representations of generalized
inverses included in (4) are given in Section 2. Numeri-
cal algorithms arising from the representations derived in
Section 2 are defined in Section 3. In this way, Section 3
defines algorithms for computing various classes of inner and
outer generalized inverses by means of derived solutions of
certain matrix equations. Main particular cases are presented
in the same section as well as the global computational
complexity of introduced algorithms. Illustrative simulation
and numerical examples are presented in Section 4.

2. Existence and Representations of
Generalized Inverses

Theorem 3 provides a theoretical basis for computing outer
inverses with the prescribed range space.

Theorem 3. Let 𝐴 ∈ C�푚×�푛 and 𝐵 ∈ C�푛×�푘.
(a) The following statements are equivalent:

(i) There exists a {2}-inverse 𝑋 of 𝐴 satisfying
R(𝑋) =R(𝐵), denoted by 𝐴(2)

R(�퐵),∗
.

(ii) There exists 𝑈 ∈ C�푘×�푚 such that 𝐵𝑈𝐴𝐵 = 𝐵.
(iii) N(𝐴𝐵) =N(𝐵).
(iv) rank(𝐴𝐵) = rank(𝐵).
(v) 𝐵(𝐴𝐵)(1)𝐴𝐵 = 𝐵, for some (equivalently every)(𝐴𝐵)(1) ∈ (𝐴𝐵){1}.

(b) If the statements in (a) are true, then the set of all outer
inverses with the prescribed rangeR(𝐵) is represented
by

𝐴 {2}R(�퐵),∗ = {𝐵 (𝐴𝐵)(1) | (𝐴𝐵)(1) ∈ (𝐴𝐵) {1}}
= {𝐵𝑈 | 𝑈 ∈ C�푘×�푚, 𝐵𝑈𝐴𝐵 = 𝐵} . (5)

Moreover,

𝐴 {2}R(�퐵),∗
= {𝐵 (𝐴𝐵)(1) + 𝐵𝑌 (𝐼�푚 − 𝐴𝐵 (𝐴𝐵)(1)) | 𝑌 ∈ C�푘×�푚} , (6)

where (𝐴𝐵)(1) ∈ (𝐴𝐵){1} is arbitrary but fixed.
Proof. (a) (i) ⇒ (ii). Let 𝑋 ∈ C�푛×�푚 such that 𝑋𝐴𝑋 = 𝑋
and R(𝑋) = R(𝐵). Then 𝑋 = 𝐵𝑈 and 𝐵 = 𝑋𝑊, for some𝑈 ∈ C�푘×�푚 and𝑊 ∈ C�푚×�푘, so 𝐵 = 𝑋𝑊 = 𝑋𝐴𝑋𝑊 = 𝑋𝐴𝐵 =𝐵𝑈𝐴𝐵.(ii) ⇒ (iii). As we know, N(𝐵) ⊆ N(𝐴𝐵). On the other
hand, taking into account 𝐵𝑈𝐴𝐵 = 𝐵 for some 𝑈 ∈ C�푘×�푚,
it follows that N(𝐴𝐵) ⊆ N(𝐵𝑈𝐴𝐵) = N(𝐵), and hence
N(𝐴𝐵) =N(𝐵).(iii) ⇒ (v). Let (𝐴𝐵)(1) be an arbitrary {1}-inverse of 𝐴𝐵.
AsN(𝐴𝐵) = N(𝐵) implies 𝐵 = 𝑉𝐴𝐵, for some 𝑉 ∈ C�푛×�푚, it
follows that

𝐵 = 𝑉𝐴𝐵 = 𝑉𝐴𝐵 (𝐴𝐵)(1) 𝐴𝐵 = 𝐵 (𝐴𝐵)(1) 𝐴𝐵. (7)

(v) ⇒ (i). Let 𝐵 = 𝐵(𝐴𝐵)(1)𝐴𝐵, for some (𝐴𝐵)(1) ∈(𝐴𝐵){1}, and set𝑋 = 𝐵(𝐴𝐵)(1). Then

𝑋𝐴𝑋 = 𝐵 (𝐴𝐵)(1) 𝐴𝐵 (𝐴𝐵)(1) = 𝐵 (𝐴𝐵)(1) = 𝑋, (8)

and by 𝑋 = 𝐵(𝐴𝐵)(1) and 𝐵 = 𝐵(𝐴𝐵)(1)𝐴𝐵 = 𝑋𝐴𝐵 it follows
that𝑋 is a {2}-inverse of 𝐴 which satisfiesR(𝑋) =R(𝐵).(iii) ⇒ (v). This result is well-known.

(b) From the proofs of (i) ⇒ (ii) and (iv) ⇒ (i), and the
fact that 𝐵 = 𝐵𝑈𝐴𝐵 implies 𝑈 ∈ (𝐴𝐵){1}, it follows that

𝐴 {2}R(�퐵),∗ ⊆ {𝐵𝑈 | 𝑈 ∈ C�푘×�푚, 𝐵𝑈𝐴𝐵 = 𝐵}
⊆ {𝐵 (𝐴𝐵)(1) | (𝐴𝐵)(1) ∈ (𝐴𝐵) {1}}
⊆ 𝐴 {2}R(�퐵),∗ ,

(9)

and hence (5) holds.
According to Theorem 1 [1, Section 2] (or [2,

Theorem 1.2.5]), the condition (v) ensures consistency
of the matrix equation 𝐵𝑈𝐴𝐵 = 𝐵 and gives its general
solution

{𝑈 ∈ C�푘×�푚 | 𝐵𝑈𝐴𝐵 = 𝐵} = {𝐵(1)𝐵 (𝐴𝐵)(1) + 𝑌
− 𝐵(1)𝐵𝑌𝐴𝐵 (𝐴𝐵)(1) | 𝑌 ∈ C�푘×�푚} , (10)

whence we obtain

𝐴 {2}R(�퐵),∗ = {𝐵𝑈 | 𝑈 ∈ C�푘×�푚, 𝐵𝑈𝐴𝐵 = 𝐵}
= {𝐵 (𝐴𝐵)(1) + 𝐵𝑌 (𝐼�푚 − 𝐴𝐵 (𝐴𝐵)(1)) | 𝑌 ∈ C�푘×�푚} .

(11)

This proves is that (6) is true.

Remark 4. Five equivalent conditions for the existence and
representations of the class of generalized inverses 𝐴(2)�푇,∗ were
given in [27, Theorem 1]. Theorem 3 gives two new and
important conditions (i) and (v).These conditions are related
with solvability of certain matrix equations. Further, the
representations of generalized inverses 𝐴(2)�푇,∗ were presented
in [27, Theorem 2]. Theorem 3 gives two new and important
representations: the second representation in (5) and repre-
sentation (6).

Theorem 5 provides a theoretical basis for computing
outer inverses with the prescribed kernel. These results are
new in the literature, according to our best knowledge.

Theorem 5. Let 𝐴 ∈ C�푚×�푛 and 𝐶 ∈ C�푙×�푚.
(a) The following statements are equivalent:

(i) There exists a {2}-inverse 𝑋 of 𝐴 satisfying
N(𝑋) =N(𝐶), denoted by 𝐴(2)

∗,N(�퐶)
.

(ii) There exists 𝑉 ∈ C�푛×�푙 such that 𝐶𝐴𝑉𝐶 = 𝐶.
(iii) R(𝐶𝐴) =R(𝐶).
(iv) rank(𝐶𝐴) = rank(𝐶).
(v) 𝐶𝐴(𝐶𝐴)(1)𝐶 = 𝐶, for some (equivalently every)(𝐶𝐴)(1) ∈ (𝐶𝐴){1}.
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(b) If the statements in (a) are true, then the set of all
outer inverses with the prescribed null space N(𝐶) is
represented by

𝐴 {2}∗,N(�퐶) = {(𝐶𝐴)(1) 𝐶 | (𝐶𝐴)(1) ∈ (𝐶𝐴) {1}}
= {𝑉𝐶 | 𝑉 ∈ C�푛×�푙, 𝐶𝐴𝑉𝐶 = 𝐶} . (12)

Moreover,

𝐴 {2}∗,N(�퐶)
= {(𝐶𝐴)(1) 𝐶 + (𝐼�푙 − (𝐶𝐴)(1) 𝐶𝐴)𝑌𝐶 | 𝑌 ∈ C�푛×�푙} , (13)

where (𝐶𝐴)(1) is an arbitrary fixed matrix from(𝐶𝐴){1}.
Proof. The proof is analogous to the proof ofTheorem 3.

Theorem 6 is a theoretical basis for computing a {2}-
inverse with the prescribed range and null space.

Theorem 6. Let 𝐴 ∈ C�푚×�푛, 𝐵 ∈ C�푛×�푘, and 𝐶 ∈ C�푙×�푚.
(a) The following statements are equivalent:

(i) There exists a {2}-inverse 𝑋 of 𝐴 satisfying
R(𝑋) =R(𝐵) andN(𝑋) =N(𝐶).

(ii) There exist 𝑈 ∈ C�푘×�푙 such that 𝐵𝑈𝐶𝐴𝐵 = 𝐵 and𝐶𝐴𝐵𝑈𝐶 = 𝐶.
(iii) There exist 𝑈,𝑉 ∈ C�푘×�푙 such that 𝐵𝑈𝐶𝐴𝐵 = 𝐵

and 𝐶𝐴𝐵𝑉𝐶 = 𝐶.
(iv) There exist 𝑈 ∈ C�푘×�푚 and 𝑉 ∈ C�푛×�푙 such that𝐵𝑈𝐴𝐵 = 𝐵, 𝐶𝐴𝑉𝐶 = 𝐶, and 𝐵𝑈 = 𝑉𝐶.
(v) There exist 𝑈 ∈ C�푘×�푚 and 𝑉 ∈ C�푛×�푙 such that𝐶𝐴𝐵𝑈 = 𝐶 and 𝑉𝐶𝐴𝐵 = 𝐵.
(vi) N(𝐶𝐴𝐵) =N(𝐵),R(𝐶𝐴𝐵) =R(𝐶).
(vii) rank(𝐶𝐴𝐵) = rank(𝐵) = rank(𝐶).
(viii) 𝐵(𝐶𝐴𝐵)(1)𝐶𝐴𝐵 = 𝐵 and 𝐶𝐴𝐵(𝐶𝐴𝐵)(1)𝐶 =𝐶, for some (equivalently every) (𝐶𝐴𝐵)(1) ∈(𝐶𝐴B){1}.

(b) If the statements in (a) are true, then the unique {2}-
inverse of 𝐴 with the prescribed range R(𝐵) and null
spaceN(𝐶) is represented by

𝐴(2)
R(�퐵),N(�퐶) = 𝐵 (𝐶𝐴𝐵)(1)𝐶 = 𝐵𝑈𝐶, (14)

for arbitrary (𝐶𝐴𝐵)(1) ∈ (𝐶𝐴𝐵){1} and arbitrary 𝑈 ∈
C�푘×�푙 satisfying 𝐵𝑈𝐶𝐴𝐵 = 𝐵 and 𝐶𝐴𝐵𝑈𝐶 = 𝐶.

Proof. (a) (i) ⇒ (ii). Let 𝑋 ∈ C�푛×�푚 be such that 𝑋𝐴𝑋 = 𝑋,
R(𝑋) = R(𝐵), and N(𝑋) = N(𝐶). Then there exists 𝑈 ∈
C�푘×�푙 such that 𝑋 = 𝐵𝑈𝐶. Also, 𝐵 and 𝐶 satisfy 𝐵 = 𝑋𝑊 and𝐶 = 𝑉𝑋, for some𝑊 ∈ C�푚×�푘, 𝑉 ∈ C�푙×�푛. This further implies

𝐵 = 𝑋𝑊 = 𝑋𝐴𝑋𝑊 = 𝑋𝐴𝐵 = 𝐵𝑈𝐶𝐴𝐵,
𝐶 = 𝑉𝑋 = 𝑉𝑋𝐴𝑋 = 𝐶𝐴𝑋 = 𝐶𝐴𝐵𝑈𝐶. (15)

(ii) ⇒ (vi). According to 𝐶𝐴𝐵𝑈𝐶 = 𝐶, for some 𝑈 ∈
C�푘×�푙, it follows that

R (𝐶) =R (𝐶𝐴𝐵𝑈𝐶) ⊆R (𝐶𝐴𝐵) ⊆R (𝐶) , (16)

and thus R(𝐶𝐴𝐵) = R(𝐶). Further, by 𝐵 = 𝐵𝑈𝐶𝐴𝐵, for
some 𝑈 ∈ C�푘×�푙, it follows that

N (𝐵) ⊆N (𝐶𝐴𝐵) ⊆N (𝐵𝑈𝐶𝐴𝐵) =N (𝐵) , (17)

which yieldsN(𝐶𝐴𝐵) =N(𝐵).(vi) ⇒ (viii). Let (𝐶𝐴𝐵)(1) be an arbitrary {1}-inverse of𝐶𝐴𝐵. Since R(𝐶𝐴𝐵) = R(𝐶) implies 𝐶 = 𝐶𝐴𝐵𝑊, for some𝑊 ∈ C�푘×�푚, it follows that
𝐶 = 𝐶𝐴𝐵𝑊 = 𝐶𝐴𝐵 (𝐶𝐴𝐵)(1) 𝐶𝐴𝐵𝑊
= 𝐶𝐴𝐵 (𝐶𝐴𝐵)(1) 𝐶. (18)

Similarly,N(𝐶𝐴𝐵) =N(𝐵) implies 𝐵 = 𝑉𝐶𝐴𝐵, for some𝑉 ∈ C�푛×�푙 and
𝐵 = 𝑉𝐶𝐴𝐵 = 𝑉𝐶𝐴𝐵 (𝐶𝐴𝐵)(1) 𝐶𝐴𝐵
= 𝐵 (𝐶𝐴𝐵)(1) 𝐶𝐴𝐵. (19)

(viii) ⇒ (i). Let𝐶𝐴𝐵(𝐶𝐴𝐵)(1)𝐶 = 𝐶, for some (𝐶𝐴𝐵)(1) ∈(𝐶𝐴𝐵){1}, and set𝑋 = 𝐵(𝐶𝐴𝐵)(1)𝐶. Then

𝑋𝐴𝑋 = 𝐵 (𝐶𝐴𝐵)(1) 𝐶𝐴𝐵 (𝐶𝐴𝐵)(1) 𝐶 = 𝐵 (𝐶𝐴𝐵)(1) 𝐶
= 𝑋 (20)

and by 𝑋 = 𝐵(𝐶𝐴𝐵)(1)𝐶, 𝐵 = 𝐵(𝐶𝐴𝐵)(1)𝐶𝐴𝐵 = 𝑋𝐴𝐵, and𝐶 = 𝐶𝐴𝐵(𝐶𝐴𝐵)(1)𝐶 = 𝐶𝐴𝑋 it follows that 𝑋 is a {2}-inverse
of 𝐴 which satisfiesR(𝑋) =R(𝐵),N(𝑋) =N(𝐶).(vi) ⇔ (vii). This statement follows from [2,
Theorem 1.1.3, P. 3].(ii) ⇒ (iii). This is evident.(iii) ⇒ (ii). Let 𝑈,𝑉 ∈ C�푘×�푙 be arbitrary matrices such
that 𝐵𝑈𝐶𝐴𝐵 = 𝐵 and 𝐶𝐴𝐵𝑉𝐶 = 𝐶. Then

𝐵𝑈𝐶 = 𝐵𝑈𝐶𝐴𝐵𝑉𝐶 = 𝐵𝑉𝐶, (21)

whence

𝐵 = 𝐵𝑈𝐶𝐴𝐵 = 𝐵𝑉𝐶𝐴𝐵,
𝐶 = 𝐶𝐴𝐵𝑉𝐶 = 𝐶𝐴𝐵𝑈𝐶. (22)

Thus, (ii) holds.(ii) ⇒ (iv). 𝑈 ∈ C�푘×�푙 such that 𝐵𝑈𝐶𝐴𝐵 = 𝐵 and𝐶𝐴𝐵𝑈𝐶 = 𝐶. Then

𝐵 = 𝐵 (𝑈𝐶)𝐴𝐵,
𝐶 = 𝐶𝐴 (𝐵𝑈)𝐶,

𝐵 (𝑈𝐶) = (𝐵𝑈)𝐶,
(23)

which means that (iv) is true.
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(iv) ⇒ (v). Let𝑈 ∈ C�푘×�푚 and𝑉 ∈ C�푛×�푙 such that𝐵𝑈𝐴𝐵 =𝐵, 𝐶𝐴𝑉𝐶 = 𝐶, and 𝐵𝑈 = 𝑉𝐶. Then

𝐵 = 𝐵𝑈𝐴𝐵 = 𝑉𝐶𝐴𝐵,
𝐶 = 𝐶𝐴𝑉𝐶 = 𝐶𝐴𝐵𝑈, (24)

which confirms (v).(v) ⇒ (iv). Let𝑈 ∈ C�푘×�푚 and𝑉 ∈ C�푛×�푙 such that𝐶𝐴𝐵𝑈 =𝐶 and 𝑉𝐶𝐴𝐵 = 𝐵. Then

𝑉𝐶 = 𝑉𝐶𝐴𝐵𝑈 = 𝐵𝑈,
𝐵 = 𝑉𝐶𝐴𝐵 = 𝐵𝑈𝐴𝐵,
𝐶 = 𝐶𝐴𝐵𝑈 = 𝐶A𝑉𝐶,

(25)

and hence (iv) holds.(iv) ⇒ (i). Let𝑈 ∈ C�푘×�푚 and𝑉 ∈ C�푛×�푙 such that 𝐵𝑈𝐴𝐵 =𝐵, 𝐶𝐴𝑉𝐶 = 𝐶, and 𝐵𝑈 = 𝑉𝐶, and set𝑋 = 𝐵𝑈 = 𝑉𝐶. Then

𝑋𝐴𝑋 = 𝐵𝑈𝐴𝐵𝑈 = 𝐵𝑈 = 𝑋; (26)

by 𝑋 = 𝐵𝑈 and 𝐵 = 𝐵𝑈𝐴𝐵 = 𝑋𝐴𝐵 it follows that R(𝑋) =
R(𝐵), and by 𝐶 = 𝐶𝐴𝑉𝐶 = 𝐶𝐴𝑋 it follows that N(𝑋) =
N(𝐶). Therefore, (i) is true.

(b) According to the proofs of (i)⇒(ii) and (iv)⇒(i) and
the fact that 𝐶 = 𝐶𝐴𝐵𝑈𝐶 and 𝐵𝑈𝐶𝐴𝐵 = 𝐵, for 𝑈 ∈ C�푘×�푙,
imply 𝑈 ∈ (𝐶𝐴𝐵){1}, it follows that

𝐴(2)
R(�퐵),N(�퐶) = 𝐵𝑈𝐶 = 𝐵 (𝐶𝐴𝐵)(1) 𝐶, (27)

and hence (14) holds.

Remark 7. After a comparison of Theorem 6 with the
Urquhart formula given in Proposition 2, it is evident that
conditions (vi) and (vii) ofTheorem 6 could be derived using
the Urquhart results. All other conditions are based on the
solutions of certain matrix equations, and they are new.

In addition, comparing the representations of Theo-
rem 6 with the full-rank representation restated from [3]
in Proposition 1, it is remarkable that the representations
given in Theorem 6 do not require computation of a full-
rank factorization 𝑅 = 𝐹𝐺 of the matrix 𝑅. More precisely,
representations of 𝐴(2)

R(�퐵),N(�퐶)
from Theorem 6 boil down to

the full-rank factorization of 𝐴(2)
R(�퐹),N(�퐺)

from Proposition 1
in the case when 𝐵𝐶 = 𝑅 is a full-rank factorization of 𝑅 and𝐶𝐴𝐵 is invertible.

It is worth mentioning that Drazin in [15] generalized the
concept of the outer inverse with the prescribed range and
null space by introducing the concept of a (𝑏, 𝑐)-inverse in a
semigroup. In the matrix case, this concept can be defined
as follows. Let 𝐴 ∈ C�푚×�푛, 𝑋 ∈ C�푛×�푚, 𝐵 ∈ C�푛×�푘, and 𝐶 ∈
C�푙×�푚. Then, we call 𝑋 a (𝐵, 𝐶)-inverse of 𝐴 if the following
two relations hold:

𝑋𝐴𝐵 = 𝐵,
𝐶𝐴𝑋 = 𝐶 (28)

𝑋 = 𝐵𝑈 = 𝑉𝐶, for some 𝑈 ∈ C�푘×�푚, 𝑉 ∈ C�푛×�푙. (29)

It is easy to see that 𝑋 is a (𝐵, 𝐶)-inverse of 𝐴 if and only if𝑋 is a {2}-inverse of 𝐴 satisfyingR(𝑋) =R(𝐵) andN(𝑋) =
N(𝐶).

The next theorem can be used for computing a {1}-inverse𝑋 of 𝐴 satisfyingR(𝑋) ⊆R(𝐵).
Theorem 8. Let 𝐴 ∈ C�푚×�푛 and 𝐵 ∈ C�푛×�푘.

(a) The following statements are equivalent:

(i) There exists a {1}-inverse 𝑋 of 𝐴 satisfying
R(𝑋) ⊆R(𝐵).

(ii) There exists 𝑈 ∈ C�푘×�푚 such that 𝐴𝐵𝑈𝐴 = 𝐴.
(iii) R(𝐴𝐵) =R(𝐴).
(iv) 𝐴𝐵(𝐴𝐵)(1)𝐴 = 𝐴, for some (equivalently every)(𝐴𝐵)(1) ∈ (𝐴𝐵){1}.
(v) rank(𝐴𝐵) = rank(𝐴).

(b) If the statements in (a) are true, then the set of all
inner inverses of 𝐴 whose range is contained in R(𝐵)
is represented by

{𝑋 ∈ 𝐴 {1} |R (𝑋) ⊆R (𝐵)}
= {𝐵 (𝐴𝐵)(1) | (𝐴𝐵)(1) ∈ (𝐴𝐵) {1}}
= {𝐵𝑈 | 𝑈 ∈ C�푘×�푚, 𝐴𝐵𝑈𝐴 = 𝐴} .

(30)

Moreover,

{𝑋 ∈ 𝐴 {1} |R (𝑋) ⊆R (𝐵)} = {𝐵 (𝐴𝐵)(1) 𝐴𝐴(1)
+ 𝐵𝑌 − 𝐵 (𝐴𝐵)(1) 𝐴𝐵𝑌𝐴𝐴(1) | 𝑌 ∈ C�푘×�푚} , (31)

where (𝐴𝐵)(1) ∈ (𝐴𝐵){1} and𝐴(1) ∈ 𝐴{1} are arbitrary
but fixed.

Proof. (a) (i) ⇒ (ii). Let 𝑋 ∈ C�푛×�푚 such that 𝐴𝑋𝐴 = 𝐴
and R(𝑋) ⊆ R(𝐵). Then 𝑋 = 𝐵𝑈, for some 𝑈 ∈ C�푘×�푚, so𝐴 = 𝐴𝑋𝐴 = 𝐴𝐵𝑈𝐴.(ii) ⇒ (iii). Let 𝐴𝐵𝑈𝐴 = 𝐴, for some 𝑈 ∈ C�푘×�푚. Then
R(𝐴) = R(𝐴𝐵𝑈𝐴) ⊆ R(𝐴𝐵). Since the opposite inclusion
always holds, we conclude thatR(𝐴𝐵) =R(𝐴).(iii) ⇒ (iv). Let (𝐴𝐵)(1) be an arbitrary {1}-inverse of𝐴𝐵.
By R(𝐴𝐵) = R(𝐴) it follows that 𝐴 = 𝐴𝐵𝑉, for some 𝑉 ∈
C�푘×�푛, so we have that

𝐴 = 𝐴𝐵𝑉 = 𝐴𝐵 (𝐴𝐵)(1) 𝐴𝐵𝑉 = 𝐴𝐵 (𝐴𝐵)(1) 𝐴. (32)

(iv) ⇒ (i). Let 𝐴𝐵(𝐴𝐵)(1)𝐴 = 𝐴, for some (𝐴𝐵)(1) ∈(𝐴𝐵){1}, and set 𝑋 = 𝐵(𝐴𝐵)(1). It is clear that 𝐴𝑋𝐴 = 𝐴,
and by𝑋 = 𝐵(𝐴𝐵)(1) we obtain the fact thatR(𝑋) ⊆R(𝐵).(iii) ⇔ (v). This follows from [2, Theorem 1.1.3, P. 3].
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(b) On the basis of the fact that 𝐴 = 𝐴𝐵𝑈𝐴 implies 𝑈 ∈(𝐴𝐵){1} and the arguments used in the proofs of (i) ⇒ (ii)
and (iv) ⇒ (i), we have that

{𝑋 ∈ 𝐴 {1} |R (𝑋) ⊆R (𝐵)}
⊆ {𝐵𝑈 | 𝑈 ∈ C�푘×�푚, 𝐴𝐵𝑈𝐴 = 𝐴}
⊆ {𝐵 (𝐴𝐵)(1) | (𝐴𝐵)(1) ∈ (𝐴𝐵) {1}}
⊆ {𝑋 ∈ 𝐴 {1} |R (𝑋) ⊆R (𝐵)} ,

(33)

which confirms that (30) is true.
Once again, according to Theorem 1 [1, Section 2] (or

Theorem 1.2.5 [2]) we have that

{𝑈 ∈ C�푘×�푚 | 𝐴𝐵𝑈𝐴 = 𝐴} = {(𝐴𝐵)(1) 𝐴𝐴(1) + 𝑌
− (𝐴𝐵)(1) 𝐴𝐵𝑌𝐴𝐴(1) | 𝑌 ∈ C�푘×�푚} , (34)

where (𝐴𝐵)(1) ∈ (𝐴𝐵){1} and (𝐴)(1) ∈ 𝐴{1} are arbitrary
elements, whence we obtain that

{𝑋 ∈ 𝐴 {1} |R (𝑋) ⊆R (𝐵)} = {𝐵𝑈 | 𝑈
∈ C�푘×�푚, 𝐴𝐵𝑈𝐴 = 𝐴} = {𝐵 (𝐴𝐵)(1)𝐴𝐴(1) + 𝐵𝑌
− 𝐵 (𝐴𝐵)(1) 𝐴𝐵𝑌𝐴𝐴(1) | 𝑌 ∈ C�푘×�푚} ,

(35)

and hence (31) is true.

Theorem 9 can be used for computing a {1}-inverse 𝑋 of𝐴 satisfying N(𝐶) ⊆ N(𝑋). Its proof is dual to the proof of
Theorem 8.

Theorem 9. Let 𝐴 ∈ C�푚×�푛 and 𝐶 ∈ C�푙×�푚.
(a) The following statements are equivalent:

(i) There exists a {1}-inverse 𝑋 of 𝐴 satisfying
N(𝐶) ⊆N(𝑋).

(ii) There exists 𝑉 ∈ C�푛×�푙 such that 𝐴𝑉𝐶𝐴 = 𝐴.
(iii) N(𝐶𝐴) =N(𝐴).
(iv) 𝐴(𝐶𝐴)(1)𝐶𝐴 = 𝐴, for some (equivalently every)(𝐶𝐴)(1) ∈ (𝐶𝐴){1}.
(v) rank(𝐶𝐴) = rank(𝐴).

(b) If the statements in (a) are true, then the set of all inner
inverses of 𝐴 whose null space is contained in N(𝐶) is
represented by

{𝑋 ∈ 𝐴 {1} |N (𝐶) ⊆N (𝑋)}
= {(𝐶𝐴)(1) 𝐶 | (𝐶𝐴)(1) ∈ (𝐶𝐴) {1}}
= {𝑉𝐶 | 𝑉 ∈ C�푛×�푙, 𝐴𝑉𝐶𝐴 = 𝐴} .

(36)

Moreover,

{𝑋 ∈ 𝐴 {1} |N (𝐶) ⊆N (𝑋)} = {𝐴(1)𝐴 (𝐶𝐴)(1)𝐶
+ 𝑌𝐶 − 𝐴(1)𝐴𝑌𝐶𝐴 (𝐶𝐴)(1) 𝐶 | 𝑌 ∈ C�푛×�푙} ,

(37)

where (𝐶𝐴)(1) ∈ (𝐶𝐴){1} and𝐴(1) ∈ 𝐴{1} are arbitrary
but fixed.

Theorem 10 provides several equivalent conditions for the
existence and representations for computing a {1, 2}-inverse
with the prescribed range.

Theorem 10. Let 𝐴 ∈ C�푚×�푛 and 𝐵 ∈ C�푛×�푘.
(a) The following statements are equivalent:

(i) There exists a {1, 2}-inverse 𝑋 of 𝐴 satisfying
R(𝑋) =R(𝐵), denoted by 𝐴(1,2)

R(�퐵),∗
.

(ii) There exist 𝑈,𝑉 ∈ C�푘×�푚 such that 𝐵𝑈𝐴𝐵 = 𝐵
and 𝐴𝐵𝑉𝐴 = 𝐴.

(iii) There exists𝑊 ∈ C�푘×m such that 𝐵𝑊𝐴𝐵 = 𝐵 and𝐴𝐵𝑊𝐴 = 𝐴.
(iv) N(𝐴𝐵) =N(𝐵) andR(𝐴𝐵) =R(𝐴).
(v) rank(𝐴𝐵) = rank(𝐴) = rank(𝐵).
(vi) 𝐵(𝐴𝐵)(1)𝐴𝐵 = 𝐵 and𝐴𝐵(𝐴𝐵)(1)𝐴 = 𝐴, for some

(equivalently every) (𝐴𝐵)(1) ∈ (𝐴𝐵){1}.
(b) If the statements in (a) are true, then the set of all {1, 2}-

inverses with the prescribed rangeR(𝐵) is represented
by

𝐴 {1, 2}R(�퐵),∗ = 𝐴 {2}R(�퐵),∗
= {𝑋 ∈ 𝐴 {1} |R (𝑋) ⊆R (𝐵)} . (38)

Proof. (a) First we note that the implication (i) ⇒ (vi) and
the equivalences (ii) ⇔ (iv) and (iv) ⇔ (vi) follow directly
from Theorems 3 and 8. Also, (iv) ⇔ (v) follows from
Theorem 1.1.3 [2] (or Example 10 [1, Section 1]).(vi) ⇒ (iii). If we set 𝑊 = (𝐴𝐵)(1), where (𝐴𝐵)(1) ∈(𝐴𝐵){1} is an arbitrary element, then (vi) implies that𝐵𝑊𝐴𝐵 = 𝐵 and 𝐴𝐵𝑊𝐴 = 𝐴.(iii) ⇒ (i). If 𝑊 ∈ C�푘×�푚 such that 𝐵𝑊𝐴𝐵 = 𝐵 and𝐴𝐵𝑊𝐴 = 𝐴, then by Theorem 3 we obtain the fact that𝑋 = 𝐵𝑊 is a {2}-inverse of 𝐴 satisfying R(𝑋) = R(𝐵), and
clearly𝑋 is also a {1}-inverse of 𝐴.(iii) ⇒ (ii). This implication is evident.

(b) If the statements in (a) hold, then the statements of
Theorems 3 and 8 also hold, and from these two theorems it
follows directly that (38) is valid.

Theorem 11 provides several equivalent conditions for the
existence and representations of 𝐴(1,2)

∗,N(�퐶)
.

Theorem 11. Let 𝐴 ∈ C�푚×�푛 and 𝐶 ∈ C�푙×�푚.
(a) The following statements are equivalent:

(i) There exists a {1, 2}-inverse 𝑋 of 𝐴 satisfying
N(𝑋) =N(𝐶), denoted by 𝐴(1,2)

∗,N(�퐶)
.

(ii) There exist𝑈,𝑉 ∈ C�푛×�푙 such that𝐶𝐴𝑈𝐶 = 𝐶 and𝐴𝑉𝐶𝐴 = 𝐴.
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(iii) There exists𝑊 ∈ C�푛×�푙 such that 𝐶𝐴𝑊𝐶 = 𝐶 and𝐴𝑊𝐶𝐴 = 𝐴.
(iv) N(𝐶𝐴) =N(𝐴) andR(𝐶𝐴) =R(𝐶).
(v) rank(𝐶𝐴) = rank(𝐴) = rank(𝐶).
(vi) 𝐶𝐴(𝐶𝐴)(1)𝐶 = 𝐶 and𝐴(𝐶𝐴)(1)𝐶𝐴 = 𝐴, for some

(equivalently every) (𝐶𝐴)(1) ∈ (𝐶𝐴){1}.
(b) If the statements in (a) are true, then the set of all {1, 2}-

inverses with the rangeR(𝐵) is given by

𝐴 {1, 2}∗,N(�퐶) = 𝐴 {2}∗,N(�퐶)
= {𝑋 ∈ 𝐴 {1} |N (𝐶) ⊆N (𝑋)} . (39)

Theorem 12 is a theoretical basis for computing a {1, 2}-
inverse with the predefined range and null space.

Theorem 12. Let 𝐴 ∈ C�푚×�푛, 𝐵 ∈ C�푛×�푘, and 𝐶 ∈ C�푙×�푚.
(a) The following statements are equivalent:

(i) There exists a {1, 2}-inverse 𝑋 of 𝐴 satisfying
R(𝑋) = R(𝐵) and N(𝑋) = N(𝐶), denoted by𝐴(1,2)

R(�퐵),N(�퐶)
.

(ii) There exist 𝑈 ∈ C�푘×�푚 and 𝑉 ∈ C�푛×�푙 such that𝐵𝑈𝐴𝐵 = 𝐵, 𝐴𝐵𝑈𝐴 = 𝐴, 𝐶𝐴V𝐶 = 𝐶, and𝐴𝑉𝐶𝐴 = 𝐴.
(iii) N(𝐴𝐵) = N(𝐵), R(𝐴𝐵) = R(𝐴), R(𝐶𝐴) =

R(𝐶), andN(𝐶𝐴) =N(𝐴).
(iv) rank(𝐴𝐵) = rank(𝐴) = rank(𝐵), rank(𝐶𝐴) =

rank(𝐴) = rank(𝐶).
(v) rank(𝐶𝐴𝐵) = rank(𝐶) = rank(𝐵) = rank(𝐴).
(vi) 𝐵(𝐴𝐵)(1)𝐴𝐵 = 𝐵, 𝐴𝐵(𝐴𝐵)(1)𝐴 = 𝐴,𝐶𝐴(𝐶𝐴)(1)𝐶 = 𝐶, and 𝐴(𝐶𝐴)(1)𝐶𝐴 = 𝐴, for

some (equivalently every) (𝐴𝐵)(1) ∈ (𝐴𝐵){1} and(𝐶𝐴)(1) ∈ (𝐶𝐴){1}.
(b) If the statements in (a) are true, then the unique {1, 2}-

inverse of 𝐴 with the prescribed range R(𝐵) and null
spaceN(𝐶) is represented by
𝐴(1,2)

R(�퐵),N(�퐶) = 𝐵 (𝐴𝐵)(1) 𝐴 (𝐶𝐴)(1) 𝐶 = 𝐵𝑈𝐴𝑉𝐶
= 𝐵 (𝐶𝐴𝐵)(1) 𝐶, (40)

for arbitrary (𝐴𝐵)(1) ∈ (𝐴𝐵){1}, (𝐶𝐴)(1) ∈ (𝐶𝐴){1},
and (𝐶𝐴𝐵)(1) ∈ (𝐶𝐴𝐵){1} and arbitrary 𝑈 ∈ C�푘×�푚

and 𝑉 ∈ C�푛×�푙 satisfying 𝐵𝑈𝐴𝐵 = 𝐵 and 𝐶𝐴𝑉𝐶 = 𝐶.
Proof. (a) The equivalence of the statements (i)–(iv) and
(vi) follows immediately from Theorem 10 and its dual. The
equivalence (i) ⇔ (v) follows immediately from part (4) of
the famous Urquhart formula [2, Theorem 1.3.7].

(b) Let 𝑈 ∈ C�푘×�푚 and 𝑉 ∈ C�푛×�푙 be arbitrary matrices
satisfying 𝐵𝑈𝐴𝐵 = 𝐵 and 𝐶𝐴𝑉𝐶 = 𝐶, and set 𝑋 = 𝐵𝑈𝐴𝑉𝐶.
Seeing that 𝑈 ∈ (𝐴𝐵){1} and 𝑉 ∈ (𝐶𝐴){1}, according to (v)

we obtain the fact that 𝐴𝐵𝑈𝐴 = 𝐴 and 𝐴𝑉𝐶𝐴 = 𝐴. This
implies that

𝑋𝐴𝑋 = 𝐵𝑈𝐴𝑉𝐶𝐴𝐵𝑈𝐴𝑉𝐶 = 𝐵𝑈𝐴𝑉𝐶 = 𝑋,
𝐴𝑋𝐴 = 𝐴𝐵𝑈𝐴𝑉𝐶𝐴 = 𝐴𝑉𝐶𝐴 = 𝐴,
R (𝑋) =R (𝐵𝑈𝐴𝑉𝐶) ⊆R (𝐵) ,
N (𝐶) ⊆N (𝐵𝑈𝐴𝑉𝐶) =N (𝑋) ,
R (𝐵) =R (𝐵𝑈𝐴𝐵) =R (𝐵𝑈𝐴𝑉𝐶𝐴𝐵) =R (𝑋𝐴𝐵)

⊆R (𝑋) ,
N (𝑋) ⊆ 𝑁 (𝐶𝐴𝑋) =N (𝐶𝐴𝐵𝑈𝐴𝑉𝐶) =N (𝐶𝐴𝑉𝐶)

=N (𝐶) ,

(41)

whichmeans that𝑋 is a {1, 2}-inverse of𝐴 satisfyingR(𝑋) =
R(𝐵) and N(𝑋) = N(𝐶), and hence the second equality in
(40) is true.

The same arguments confirm the validity of the first
equality in (40).

Corollary 13. Theorem 6 is equivalent to Theorem 12 in the
case rank(𝐶𝐴𝐵) = rank(𝐵) = rank(𝐶) = rank(𝐴).
Proof. According to assumptions, the output of Theorem 6
becomes𝐴(1,2)

R(�퐵),N(�퐶)
.Then the proof follows from the unique-

ness of this kind of generalized inverses.

Remark 14. It is evident that only conditions (v) of Theo-
rem 12 can be derived from the Urquhart results. All other
conditions are based on the solutions of certain matrix
equations and they are introduced in Theorem 12. Also, the
first two representations in (40) are introduced in the present
research.

3. Algorithms and Implementation Details

The representations presented in Section 2 provide two
different frameworks for computing generalized inverses.
The first approach arises from the direct computation of
various generalizations or certain variants of the Urquhart
formula, derived in Section 2. The second approach enables
computation of generalized inverses by means of solving
certain matrix equations.

The dynamical-system approach is one of the most
important parallel tools for solving various basic linear
algebra problems. Also, Zhang neural networks (ZNN) as
well as gradient neural networks (GNN) have been simulated
for finding a real-time solution of linear time-varying matrix
equation 𝐴𝑋𝐵 = 𝐶. Simulation results confirm the efficiency
of the ZNN and GNN approach in solving both time-varying
and time-invariant linear matrix equations. We refer to [28,
29] for further details. In the case of constant coefficient
matrices 𝐴, 𝐵, 𝐶, it is necessary to use the linear GNN of the
form

𝑋̇ = −𝛾𝐴�푇 (𝐴𝑋𝐵 − 𝐶) 𝐵�푇. (42)
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Figure 1: Block for the implementation of the power-sigmoid activation function (a) and its subsystem (b).

Require: Time varying matrices 𝐴(𝑡) ∈ C�푚×�푛 and 𝐵(𝑡) ∈ C�푛×�푘.
(1) Verify rank(𝐴(𝑡)𝐵(𝑡)) = rank(𝐵(𝑡)).

If these conditions are satisfied then continue.
(2) Solve the matrix equation 𝐵(𝑡)𝑈(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡) with respect to 𝑈(𝑡) ∈ C�푘×�푚.
(3) Return𝑋(𝑡) = 𝐵(𝑡)𝑈(𝑡) = 𝐴(𝑡)(2)

R(�퐵),∗.

Algorithm 1: Computing an outer inverse with the prescribed range.

The generalized nonlinearly activated GNN model (GGNN
model) is applicable in both time-varying and time-invariant
case and possesses the form

𝑋̇ (𝑡) = −𝛾𝐴 (𝑡)�푇F (𝐴 (𝑡)𝑋 (𝑡) 𝐵 (𝑡) − 𝐶 (𝑡)) 𝐵 (𝑡)�푇 , (43)

whereF(𝐶) is an odd andmonotonically increasing function
element-wise applicable to elements of a real matrix 𝐶 =(𝑐�푘�푗) ∈ R�푛×�푚; that is, F(𝐶) = (𝑓(𝑐�푘�푗)), wherein 𝑓(⋅) is
an odd and monotonically increasing function. Also, the
scaling parameter 𝛾 could be chosen as large as possible in
order to accelerate the convergence. The convergence could
be proved only for the situation with constant coefficient
matrices 𝐴, 𝐵, 𝐶.

Besides the linear activation function, 𝑓(𝑥) = 𝑥, in the
present paper we use the power-sigmoid activation function

𝑓 (𝑥) = {{{{{
𝑥�푝, if |𝑥| ≥ 1,
1 + exp (−𝑞)
1 − exp (−𝑞)

1 − exp (−𝑞𝑥)
1 + exp (−𝑞𝑥) , otherwise, 𝑞 ≥ 2, 𝑝 ≥ 3. (44)

Theorem 3 provides not only criteria for the existence
of an outer inverse 𝐴(𝑡)(2)

R(�퐵),∗
with the prescribed range, but

also a method for computing such an inverse. Namely, the
problemof computing a {2}-inverse𝑋 of𝐴 satisfyingR(𝑋) =
R(𝐵) boils down to the problem of computing a solution to
the matrix equation 𝐵𝑈𝐴𝐵 = 𝐵, where 𝑈 is an unknown
matrix taking values in C�푘×�푚. If 𝑈 is an arbitrary solution to
this equation, then a {2}-inverse 𝑋 of 𝐴 satisfying R(𝑋) =
R(𝐵) can be computed as𝑋 = 𝐵𝑈.

The Simulink implementation of Algorithm 1 in the set of
real matrices is based on GGNN model (43) for solving the
matrix equation 𝐵(𝑡)𝑈(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡) and it is presented
in Figure 5.TheSimulink Scope andDisplay Block denoted by𝑈(𝑡) display input signals corresponding to the solution 𝑈(𝑡)

of the matrix equation 𝐵(𝑡)𝑈(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡) with respect
to the time 𝑡. The underlying GGNNmodel in Figure 5 is

𝑈̇ (𝑡) = −𝛾𝐵 (𝑡)T F (𝐵 (𝑡) 𝑈 (𝑡) 𝐴 (𝑡) 𝐵 (𝑡) − 𝐵 (𝑡))
⋅ (𝐴 (𝑡) 𝐵 (𝑡))T . (45)

The Display Block denoted by 𝐵𝑈 displays inputs signals
corresponding to the solution𝑋(𝑡) = 𝐵(𝑡)𝑈(𝑡).

The block subsystem implements the power-sigmoid
activation function and it is presented in Figure 1.

Theorem 5 reduces the problem of computing a {2}-
inverse 𝑋 of 𝐴 satisfying N(𝑋) = N(𝐵) to the problem of
computing a solution to the matrix equation 𝐶𝐴𝑉𝐶 = 𝐶,
where 𝑉 is an unknown matrix taking values in C�푛×�푙. Then𝑋 fl 𝐴(2)

∗,N(�퐶)
= 𝑉𝐶.

The Simulink implementation of Algorithm 2 which is
based on the GGNN model for solving 𝐶(𝑡)𝐴(𝑡)𝑉(𝑡)𝐶(𝑡) =𝐶(𝑡) and computing𝑋(𝑡) = 𝑉(𝑡)𝐶(𝑡) is presented in Figure 6.
The underlying GGNNmodel in Figure 6 is

𝑉̇ (𝑡) = −𝛾 (𝐶 (𝑡) 𝐴 (𝑡))T
⋅F (𝐶 (𝑡) 𝐴 (𝑡) 𝑉 (𝑡) 𝐶 (𝑡) − 𝐶 (𝑡)) 𝐶 (𝑡)T . (46)

The Display Block denoted by 𝑉(𝑡) displays input signals
corresponding to the solution 𝑉(𝑡) of the matrix equation𝐶𝐴𝑉(𝑡)𝐶 = 𝐶 with respect to simulation time. The Display
Block denoted by 𝐴𝑇𝑆2 displays input signals corresponding
to the solution𝑋(𝑡) = 𝑉(𝑡)𝐶(𝑡).
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Require: Time varying matrices 𝐴(𝑡) ∈ C�푚×�푛 and 𝐶(𝑡) ∈ C�푙×�푚.
(1) Verify rank(𝐶(𝑡)𝐴(𝑡)) = rank(𝐶(𝑡)).

If these conditions are satisfied then continue.
(2) Solve the matrix equation 𝐶(𝑡)𝐴(𝑡)𝑉(𝑡)𝐶(𝑡) = 𝐶(𝑡) with respect to an unknown matrix 𝑉(𝑡) ∈ C�푛×�푙.
(3) Return𝑋(𝑡) = 𝑉(𝑡)𝐶(𝑡) = 𝐴(𝑡)(2)

∗,N(�퐶)
.

Algorithm 2: Computing an outer inverse with the prescribed null space.

+
−

0.5
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C(t)
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1.7606991874857 4.9497000176955 1.0470376833744
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Figure 2: GGNNmodel for computing 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡),𝑋(𝑡) = 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡).

Theorem 6 provides a powerful representation of a {2}-
inverse 𝑋 of 𝐴 satisfyingR(𝑋) = R(𝐵) andN(𝑋) = N(𝐶).
Also, it suggests the following procedure for computing those
generalized inverses. First, it is necessary to verify whether
rank(𝐶𝐴𝐵) = rank(𝐵) = rank(𝐶). If this is true, then
by Theorem 6 it follows that the equations 𝐵𝑈𝐶𝐴𝐵 = 𝐵
and 𝐶𝐴𝐵𝑉𝐶 = 𝐶 are solvable and have the same sets of
solutions.We compute an arbitrary solution𝑈of the equation𝐵𝑈𝐶𝐴𝐵 = 𝐵, and then𝑋 = 𝐵𝑈𝐶 is the desired {2}-inverse of𝐴.

The Simulink implementation of the GGNN model for
solving 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡) and computing the
outer inverse 𝑋(𝑡) = 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡) defined in Algorithm 3
is presented in Figure 2. The underlying GGNN model in
Figure 2 is

𝑈̇ (𝑡) = −𝛾𝐵 (𝑡)T
⋅F (𝐵 (𝑡) 𝑈 (𝑡) 𝐶 (𝑡) 𝐴 (𝑡) 𝐵 (𝑡) − 𝐵 (𝑡))
⋅ (𝐶 (𝑡) 𝐴 (𝑡) 𝐵 (𝑡))T .

(47)

The implementation of the dual approach, based on the
solution of 𝐶(𝑡)𝐴(𝑡)𝐵𝑉(𝑡)𝐶(𝑡) = 𝐶(𝑡) and generating the
outer inverse 𝑋(𝑡) = 𝐵(𝑡)𝑉(𝑡)𝐶(𝑡), is presented in Figure 4.
The underlying GGNNmodel in Figure 4 is

𝑉̇ (𝑡) = −𝛾 (𝐶 (𝑡) 𝐴 (𝑡) 𝐵 (𝑡))TF (𝐶 (𝑡) 𝐴 (𝑡) 𝐵 (𝑡) 𝑉 (𝑡)
⋅ 𝐶 (𝑡) − 𝐶 (𝑡)) 𝐶 (𝑡)T . (48)

Theorem 8 can be used in a similar way to Theorem 3:
if the equation 𝐴𝐵𝑈𝐴 = 𝐴 is solvable and its solution 𝑈
is computed, then a {1}-inverse 𝑋 of 𝐴 satisfying R(𝑋) ⊆
R(𝐵) is computed as𝑋 = 𝐵𝑈. Corresponding computational
procedure is given in Algorithm 4.

Similarly, Theorem 9 can be used for computing a {1}-
inverse 𝑋 of 𝐴 satisfying N(𝐶) ⊆ N(𝑋), as it is presented
in Algorithm 5.

An algorithm for computing a {1, 2}-inverse with the
prescribed range is based on Theorem 10. According to this
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Require: Time varying matrices 𝐴(𝑡) ∈ C�푚×�푛, 𝐵(𝑡) ∈ C�푛×�푘 and 𝐶(𝑡) ∈ C�푙×�푚.
(1) Verify rank(𝐶(𝑡)𝐴(𝑡)𝐵(𝑡)) = rank(𝐵(𝑡)) = rank(𝐶(𝑡)).

If these conditions are satisfied then continue.
(2) Solve the matrix equation 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡) with respect to an unknown matrix 𝑈(𝑡) ∈ C�푘×�푚.
(3) Return𝑋(𝑡) = 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡) = 𝐴(𝑡)(2)

R(�퐵),N(�퐶).

Algorithm 3: Computing a {2}-inverse with the prescribed range and null space.

Require: Time varying matrices 𝐴(𝑡) ∈ C�푚×�푛 and 𝐵(𝑡) ∈ C�푛×�푘.
(1) Check the condition rank(𝐴(𝑡)𝐵(𝑡)) = rank(𝐴(𝑡)).

If this condition is satisfied then continue.
(2) Solve the matrix equation 𝐴(𝑡)𝐵(𝑡)𝑈(𝑡)𝐴(𝑡) = 𝐴(𝑡) with respect to 𝑈(𝑡) ∈ C�푘×�푚.
(3) Return a {1}-inverse𝑋(𝑡) = 𝐵(𝑡)𝑈(𝑡) of 𝐴(𝑡) satisfyingR(𝑋) ⊆R(𝐵).

Algorithm 4: Computing a {1}-inverse𝑋 of 𝐴 satisfyingR(𝑋) ⊆R(𝐵).

Require: Time varying matrices 𝐴(𝑡) ∈ C�푚×�푛 and 𝐶(𝑡) ∈ C�푙×�푚.
(1) Check the condition rank(𝐶(𝑡)𝐴(𝑡)) = rank(𝐴(𝑡)).

If this condition is satisfied then continue.
(2) Solve the matrix equation 𝐴(𝑡)𝑉(𝑡)𝐶(𝑡)𝐴(𝑡) = 𝐴(𝑡) with respect to an unknown matrix 𝑉(𝑡) ∈ C�푛×�푙.
(3) Return a {1}-inverse𝑋(𝑡) = 𝑉(𝑡)𝐶(𝑡) of 𝐴(𝑡) satisfyingN(𝐶) ⊆N(𝑋).

Algorithm 5: Computing a {1}-inverse𝑋 of 𝐴 satisfyingN(𝐶) ⊆N(𝑋).

Require: Time varying matrices 𝐴(𝑡) ∈ C�푚×�푛 and 𝐵(𝑡) ∈ C�푛×�푘.
(1) Check the condition rank(𝐴(𝑡)𝐵(𝑡)) = rank(𝐴(𝑡)) = rank(𝐵(𝑡)).

If these conditions are satisfied then continue.
(2) If the previous condition is satisfied, then solve the matrix equation 𝐵(𝑡)𝑈(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡) with respect to an unknown

matrix 𝑈(𝑡) ∈ C�푘×�푚.
(3) Return a {1, 2}-inverse𝑋(𝑡) = 𝐵(𝑡)𝑈(𝑡) of 𝐴(𝑡) satisfyingR(𝑋) =R(𝐵).

Algorithm 6: Computing a {1, 2}-inverse with the prescribed range.

theorem we first check the condition rank(𝐴𝐵) = rank(𝐴) =
rank(𝐵). If it is satisfied, then the equation 𝐵𝑈𝐴𝐵 = 𝐵
is solvable and we compute an arbitrary solution 𝑈 to this
equation, after which we compute a {2}-inverse 𝑋 of 𝐴
satisfyingR(𝑋) =R(𝐵) as𝑋 = 𝐵𝑈. ByTheorem 10,𝑋 is also
a {1}-inverse of𝐴. Algorithm 1 differs from Algorithm 6 only
in the first step.Therefore, the implementation ofAlgorithm6
uses the Simulink implementation of Algorithm 1 in the case
when rank(𝐴𝐵) = rank(𝐴) = rank(𝐵).

Similarly, Theorem 11 provides an algorithm for com-
puting 𝐴(1,2)

∗,N(�퐶)
. The implementation of Algorithm 7 uses

the Simulink implementation of Algorithm 2 in the case
rank(𝐶𝐴) = rank(𝐶) = rank(𝐴).

Theorem 12 suggests the following procedure for com-
puting a {1, 2}-inverse 𝑋 of 𝐴 satisfying R(𝑋) = R(𝐵) and
N(𝑋) = N(𝐶). First we check the condition rank(𝐶𝐴𝐵) =
rank(𝐵) = rank(𝐶) = rank(𝐴). If this is true, then the
equations 𝐵𝑈𝐴𝐵 = 𝐵 and 𝐶𝐴𝑉𝐶 = 𝐶 are solvable, and

we compute an arbitrary solution 𝑈 to the first one and
an arbitrary solution 𝑉 of the second one. According to
Theorem 12, 𝑋 = 𝐵𝑈𝐴𝑉𝐶 is a {1, 2}-inverse 𝑋 of 𝐴 with
R(𝑋) =R(𝐵) andN(𝑋) =N(𝐶).

The Simulink implementation of Algorithm 8 based on
the GGNN models for solving 𝐵(𝑡)𝑈(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡)
and 𝐶(𝑡)𝐴(𝑡)𝑉(𝑡)𝐶(𝑡) = 𝐶(𝑡) and computing 𝑋(𝑡) =𝐵(𝑡)𝑈(𝑡)𝐴(𝑡)𝑉(𝑡)𝐶(𝑡) is presented in Figure 8. In this case, it
is necessary to implement two parallel GGNN models of the
form

𝑈̇ (𝑡) = −𝛾𝐵 (𝑡)T F (𝐵 (𝑡) 𝑈 (𝑡) 𝐴 (𝑡) 𝐵 (𝑡) − 𝐵 (𝑡))
⋅ (𝐴 (𝑡) 𝐵 (𝑡))T ,

𝑉̇ (𝑡) = −𝛾 (𝐶 (𝑡) 𝐴 (𝑡))T
⋅F (𝐶 (𝑡) 𝐴 (𝑡) 𝑉 (𝑡) 𝐶 (𝑡) − 𝐶 (𝑡)) 𝐶 (𝑡)T.

(49)
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Require: Time varying matrices 𝐴(𝑡) ∈ C�푚×�푛 and 𝐶(𝑡) ∈ C�푙×�푚.
(1) Check the condition rank(𝐶(𝑡)𝐴(𝑡)) = rank(𝐴(𝑡)) = rank(𝐶(𝑡)).

If these conditions are satisfied then continue.
(2) Solve the matrix equation 𝐶(𝑡)𝐴(𝑡)𝑊(𝑡)𝐶(𝑡) = 𝐶(𝑡) with respect to an unknown matrix𝑊(𝑡) ∈ C�푙×�푚.
(3) Return a {1, 2}-inverse𝑋(𝑡) = 𝑉(𝑡)𝐶(𝑡) of 𝐴(𝑡) satisfyingN(𝑋) =N(𝐶).

Algorithm 7: Computing a {1, 2}-inverse with the prescribed null space.

Require: Time varying matrices 𝐴(𝑡) ∈ C�푚×�푛, 𝐵(𝑡) ∈ C�푛×�푘 and 𝐶(𝑡) ∈ C�푙×�푚.
Require: Verify rank(𝐶(𝑡)𝐴(𝑡)𝐵(𝑡)) = rank(𝐵(𝑡)) = rank(𝐶(𝑡)) = rank(𝐴(𝑡)).

If these conditions are satisfied then continue.
(1) Solve the matrix equation 𝐵(𝑡)𝑈(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡) with respect to an unknown matrix 𝑈(𝑡) ∈ C�푘×�푚.
(2) Solve the matrix equation 𝐶(𝑡)𝐴(𝑡)𝑉(𝑡)𝐶(𝑡) = 𝐶(𝑡) with respect to an unknown matrix 𝑉(𝑡) ∈ C�푛×�푙.
(3) Return𝑋(𝑡) = 𝐵(𝑡)𝑈(𝑡)𝐴(𝑡)𝑉(𝑡)𝐶(𝑡) = 𝐴(𝑡)(1,2)

R(�퐵),N(�퐶).

Algorithm 8: Computing a {1, 2}-inverse with the prescribed range and null space.

There is also an alternativeway to compute a {1, 2}-inverse𝑋 of 𝐴 with R(𝑋) = R(𝐵) and N(𝑋) = N(𝐶). Namely,
first we check whether rank(𝐶𝐴𝐵) = rank(𝐵) = rank(𝐶) =
rank(𝐴). If this is true, then byTheorem 12 it follows that there
exists a {2}-inverse of 𝐴 with the prescribed rangeR(𝐵) and
null space N(𝐶), and each such inverse is also a {1}-inverse
of 𝐴. Therefore, to compute a {1, 2}-inverse of 𝐴 having the
range R(𝐵) and null space N(𝐶) we have to compute a {2}-
inverse 𝑋 of 𝐴 with R(𝑋) = R(𝐵) and N(𝑋) = N(𝐶) in
exactly the same way as in Algorithm 3. In other words, we
compute an arbitrary solution𝑈 to the equation𝐵𝑈𝐶𝐴𝐵 = 𝐵,
and then𝑋 = 𝐵𝑈𝐶 is the desired {1, 2}-inverse of 𝐴.
3.1. Complexity of Algorithms. The general computational
pattern for commuting generalized inverses is based on
the general representation 𝐵(𝐶𝐴𝐵)(1)𝐶, where the matrices𝐴, 𝐵, 𝐶 satisfy various conditions imposed in the proposed
algorithms.

The first approach is based on the computation of an
involved inner inverse (𝐶𝐴𝐵)(1), and it can be described in
three main steps:

(1) Compute the matrix product 𝑃 = 𝐶𝐴𝐵.
(2) Compute an inner inverse𝑈 = 𝑃(1) of 𝑃, for example,𝑈 = 𝑃†.
(3) Compute the generalized inverse as the matrix prod-

uct 𝐵𝑈𝐶.
The second general computational pattern for computing
generalized inverses can be described in three main steps:

(1) Compute matrix products included in the required
linear matrix equation.

(2) Solve the generated matrix equation with respect to
the unknown matrix 𝑈.

(3) Compute the generalized inverse of 𝐴 as the matrix
product which includes 𝑈.

According to the first approach, the complexity of computing
generalized inverses can be estimated as follows:

(1) Complexity of the matrix product 𝑃 = 𝐶𝐴𝐵
+(2) Complexity to compute an inner inverse of 𝑃
+(3) Complexity to compute the matrix product 𝐵𝑈𝐶
According to the second approach, the complexity of

computing generalized inverses can be expressed according
to the rule:

(1) Complexity of the matrix product 𝑃 included in
required matrix equation which should be solved.

+(2) Complexity to solve the linear matrix generated in (1)

+(3) Complexity of matrix products required in final
representation

Let us compare complexities of two representations from
(14). Twopossible approaches are available.Thefirst approach
assumes computation 𝐴(2)

R(�퐵),N(�퐶)
= 𝐵(𝐶𝐴𝐵)(1)𝐶 and the

second one assumes 𝐴(2)
R(�퐵),N(�퐶)

= 𝐵𝑈𝐶, where 𝐵𝑈𝐶𝐴𝐵 = 𝐵.
Complexity of computing the 𝐵(𝐶𝐴𝐵)(1)𝐶 is

(1) complexity of the matrix product 𝑃 = 𝐶𝐴𝐵,
+(2) complexity of computation of 𝑃(1),
+(3) complexity of matrix products required in final rep-

resentation 𝐵𝑃(1)𝐶.
Complexity of computing the second expression in (14) is

(1) complexity of matrix products 𝑃 = 𝐶𝐴𝐵,
+(2) complexity to solve appropriate linear matrix equa-

tion 𝐵𝑈𝑃 = 𝐵 with respect to 𝑈,
+(3) complexity of the matrix product 𝐵𝑈𝐶.
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3.2. Particular Cases. Themain particular cases ofTheorem 6
can be derived directly and listed as follows.

(a) In the case rank(𝐶𝐴𝐵) = rank(𝐵) = rank(𝐶) =
rank(𝐴) the outer inverse 𝐴(2)

R(�퐵),N(�퐶)
becomes

𝐴(1,2)
R(�퐵),N(�퐶)

.

(b) If 𝐴 is nonsingular and 𝐵 = 𝐶 = 𝐼, then the outer
inverse 𝐴(2)

R(�퐵),N(�퐶)
becomes the usual inverse 𝐴−1.

Then the matrix equation 𝐵𝑈𝐶𝐴𝐵 = 𝐵 becomes 𝑈𝐴 = 𝐼 and𝐴−1 = 𝑈.
(c) In the case 𝐵 = 𝐶 = 𝐴∗ or when 𝐵𝐶 = 𝐴∗ is a full-

rank factorization of 𝐴∗, it follows that 𝐴(2)
R(�퐵),N(�퐶)

=
𝐴†.

(d) The choice𝑚 = 𝑛, 𝐵 = 𝐶 = 𝐴�푙, 𝑙 ≥ ind(𝐴), or the full-
rank factorization 𝐵𝐶 = 𝐴�푙 implies 𝐴(2)

R(�퐵),N(�퐶)
= 𝐴D.

(e) The choice 𝑚 = 𝑛, 𝐵 = 𝐶 = 𝐴, or the full-rank
factorization 𝐵𝐶 = 𝐴 produces 𝐴(2)

R(�퐵),N(�퐶)
= 𝐴#.

(f) In the case 𝑚 = 𝑛 when 𝐴 is invertible, the inverse
matrix 𝐴−1 can be generated by two choices: 𝐵 = 𝐶 =𝐴∗ and 𝐵 = 𝐶 = 𝐼.

(g) Theorem 6 and the full-rank representation of {2, 4}-
and {2, 3}-inverses from [30] are a theoretical basis
for computing {2, 4}- and {2, 3}-inverses with the
prescribed range and null space.

(h) Further, Theorems 3 and 5 provide a way to charac-
terize {1, 2, 4}- and {1, 2, 3}-inverses of a matrix.

Corollary 15. Let 𝐴 ∈ C�푚×�푛 and 𝐶 ∈ C�푙×�푚.
(a) The following statements are equivalent:

(i) There exists a {2, 4}-inverse 𝑋 of 𝐴 satisfying
R(𝑋) =R((𝐶𝐴)∗) andN(𝑋) =N(𝐶).

(ii) There exist 𝑈 ∈ C�푙×�푙 such that(𝐶𝐴)∗𝑈𝐶𝐴(𝐶𝐴)∗ = (𝐶𝐴)∗ and 𝐶𝐴(𝐶𝐴)∗𝑈𝐶 =𝐶.
(iii) There exist 𝑈,𝑉 ∈ C�푙×�푙 such that(𝐶𝐴)∗𝑈𝐶𝐴(𝐶𝐴)∗ = (𝐶𝐴)∗ and 𝐶𝐴(𝐶𝐴)∗𝑉𝐶 =𝐶.
(iv) There exist 𝑈 ∈ C�푙×�푚 and 𝑉 ∈ C�푛×�푙 such that(𝐶A)∗𝑈𝐴(𝐶𝐴)∗ = (𝐶𝐴)∗, 𝐶𝐴𝑉𝐶 = 𝐶, and(𝐶𝐴)∗𝑈 = 𝑉𝐶.
(v) There exist 𝑈 ∈ C�푙×�푚 and 𝑉 ∈ C�푛×�푙 such that𝐶𝐴(𝐶𝐴)∗𝑈 = 𝐶 and 𝑉𝐶𝐴(𝐶𝐴)∗ = (𝐶𝐴)∗.
(vi) N(𝐶𝐴(𝐶𝐴)∗) = N((𝐶𝐴)∗), R(𝐶𝐴(𝐶𝐴)∗) =

R(𝐶).
(vii) rank(𝐶𝐴(𝐶𝐴)∗) = rank((𝐶𝐴)∗) = rank(𝐶).
(viii) (𝐶𝐴)∗(𝐶𝐴(𝐶𝐴)∗)(1)𝐶𝐴(𝐶𝐴)∗ = (𝐶𝐴)∗ and𝐶𝐴(𝐶𝐴)∗(𝐶𝐴(𝐶𝐴)∗)(1)𝐶 = 𝐶, for some (equiv-

alently every) (𝐶𝐴(𝐶𝐴)∗)(1) ∈ (𝐶𝐴(𝐶𝐴)∗){1}.

(b) If the statements in (a) are true, then the unique {2, 4}-
inverse of 𝐴 with the prescribed range R((𝐶𝐴)∗) and
null spaceN(𝐶) is represented by
𝐴(2,4)

R((�퐶�퐴)∗),N(�퐶) = (𝐶𝐴)∗ (𝐶𝐴 (𝐶𝐴)∗)(1) 𝐶
= (𝐶𝐴)∗𝑈𝐶, (50)

for arbitrary (𝐶𝐴(𝐶𝐴)∗)(1) ∈ (𝐶𝐴(𝐶𝐴)∗){1} and
arbitrary 𝑈 ∈ C�푙×�푙 satisfying (𝐶𝐴)∗𝑈𝐶𝐴(𝐶𝐴)∗ =(𝐶𝐴)∗ and 𝐶𝐴(𝐶𝐴)∗𝑈𝐶 = 𝐶.

Proof. (a) This part of the proof is particular case 𝐵 = (𝐶𝐴)∗
of Theorem 6.

(b) According to general representation of outer inverses
with prescribed range and null space, it follows that 𝑋 fl(𝐶𝐴)∗(𝐶𝐴(𝐶𝐴)∗)(1)𝐶 = 𝐴(2)

R((�퐶�퐴)∗),N(�퐶)
. Now, it suffices to

verify that𝑋 satisfies Penrose equation (4). For this purpose,
it is useful to use known result

𝐴 (𝐴∗𝐴)(1) 𝐴∗ = 𝐴𝐴†, (51)

which implies

𝑋𝐴 = (𝐶𝐴)∗ (𝐶𝐴 (𝐶𝐴)∗)(1) 𝐶𝐴 = (𝐶𝐴)∗ ((𝐶𝐴)∗)†
= (𝐶𝐴)† 𝐶𝐴

(52)

and later𝑋𝐴 = (𝑋𝐴)∗. Hence, (50) holds.
Corollary 16. Let 𝐴 ∈ C�푚×�푛 and 𝐵 ∈ C�푛×�푘.

(a) The following statements are equivalent:

(i) There exists a {2, 3}-inverse 𝑋 of 𝐴 satisfying
R(𝑋) =R(𝐵) andN(𝑋) =N((𝐴𝐵)∗).

(ii) There exist𝑈 ∈ C�푘×�푘 such that 𝐵𝑈(𝐴𝐵)∗𝐴𝐵 = 𝐵
and (𝐴𝐵)∗𝐴𝐵𝑈(𝐴𝐵)∗ = (𝐴𝐵)∗.

(iii) There exist𝑈,𝑉 ∈ C�푘×�푘 such that 𝐵𝑈(𝐴𝐵)∗𝐴𝐵 =𝐵 and (𝐴𝐵)∗𝐴𝐵𝑉(𝐴𝐵)∗ = (𝐴𝐵)∗.
(iv) There exist 𝑈 ∈ C�푘×�푚 and 𝑉 ∈ C�푛×�푘 such that𝐵𝑈𝐴𝐵 = 𝐵, (𝐴𝐵)∗𝐴𝑉(𝐴𝐵)∗ = (𝐴𝐵)∗, and𝐵𝑈 =𝑉(𝐴𝐵)∗.
(v) There exist 𝑈 ∈ C�푘×�푚 and 𝑉 ∈ C�푛×�푘 such that(𝐴𝐵)∗𝐴𝐵𝑈 = (𝐴𝐵)∗ and 𝑉(𝐴𝐵)∗𝐴𝐵 = 𝐵.
(vi) N((𝐴𝐵)∗𝐴𝐵) = N(𝐵), R((𝐴𝐵)∗𝐴𝐵) =

R((𝐴𝐵)∗).
(vii) rank((𝐴𝐵)∗𝐴𝐵) = rank(𝐵) = rank((𝐴𝐵)∗).
(viii) 𝐵((𝐴𝐵)∗𝐴𝐵)(1)(𝐴𝐵)∗𝐴𝐵 = 𝐵 and(𝐴𝐵)∗𝐴𝐵((𝐴𝐵)∗𝐴𝐵)(1)(𝐴𝐵)∗ = (𝐴𝐵)∗, for some

(equivalently every) ((𝐴𝐵)∗𝐴𝐵)(1) ∈ (𝐶𝐴𝐵){1}.
(b) If the statements in (a) are true, then the unique {2, 3}-

inverse of 𝐴 with the prescribed range R(𝐵) and null
spaceN((𝐴𝐵)∗) is represented by
𝐴(2,3)

R(�퐵),N((�퐴�퐵)∗) = 𝐵 ((𝐴𝐵)∗ 𝐴𝐵)(1) (𝐴𝐵)∗
= 𝐵𝑈 (𝐴𝐵)∗ ,

(53)
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for arbitrary ((𝐴𝐵)∗𝐴𝐵)(1) ∈ ((𝐴𝐵)∗𝐴𝐵){1} and
arbitrary 𝑈 ∈ C�푘×�푘 satisfying 𝐵𝑈(𝐴𝐵)∗𝐴𝐵 = 𝐵 and(𝐴𝐵)∗𝐴𝐵𝑈(𝐴𝐵)∗ = (𝐴𝐵)∗.

Corollary 17 shows the equivalence between the first
representation given in (53) of Corollary 16 and Corollary 1
from [31].

Corollary 17. Let𝐴 ∈ C�푚×�푛 and𝐵 ∈ C�푛×�푘 satisfy rank(𝐴𝐵) =
rank(𝐵). Then

𝐴(2,3)
R(�퐵),R(�퐴�퐵)⊥

= 𝐵 (𝐴𝐵)(1,3) . (54)

Proof. It suffices to verify

((𝐴𝐵)∗ 𝐴𝐵)(1) (𝐴𝐵)∗ = (𝐴𝐵)(1,3) . (55)

Indeed, since rank((𝐴𝐵)∗𝐴𝐵) = rank(𝐴𝐵), it follows that
𝐴𝐵 ((𝐴𝐵)∗ 𝐴𝐵)(1) (𝐴𝐵)∗ = 𝐴𝐵. (56)

Now, the proof can be completed using the evident fact that
𝐴𝐵((𝐴𝐵)∗𝐴𝐵)(1)(𝐴𝐵)∗ is the Hermitian matrix.

In dual case, Corollary 18 is an additional result to Cor-
ollary 1 from [31].

Corollary 18. Let𝐴 ∈ C�푚×�푛 and𝐶 ∈ C�푙×�푚 satisfy rank(𝐶𝐴) =
rank(𝐶). Then

𝐴(2,4)
N(�퐶�퐴)⊥ ,N(�퐶)

= (𝐶𝐴)(1,4) 𝐶. (57)

Proof. In this case, the identity

(𝐶𝐴)∗ (𝐶𝐴 (𝐶𝐴)∗)(1) = (𝐶𝐴)(1,4) (58)

can be verified similarly.

Theorem 19. Let 𝐴 ∈ C�푚×�푛. Then

𝐴 {1, 2, 4} = 𝐴 {2}R(�퐴∗),∗ = 𝐴 {1, 2}R(�퐴∗),∗
= {𝐴∗𝑈 | 𝑈 ∈ C�푚×�푚, 𝐴∗𝑈𝐴𝐴∗ = 𝐴∗} . (59)

Proof. The equalities

𝐴 {2}R(�퐴∗),∗ = 𝐴 {1, 2}R(�퐴∗),∗
= {𝐴∗𝑈 | 𝑈 ∈ C�푚×�푚, 𝐴∗𝑈𝐴𝐴∗ = 𝐴∗} (60)

follow immediately fromTheorem 3.
Let 𝑋 ∈ 𝐴{1, 2, 4}, that is, 𝐴 = 𝐴𝑋𝐴, 𝑋 = 𝑋𝐴𝑋, and(𝑋𝐴)∗ = 𝑋𝐴, and set 𝑈 = 𝑋∗𝑋. Then

𝑋 = 𝑋𝐴𝑋 = (𝑋𝐴)∗𝑋 = 𝐴∗𝑋∗𝑋 = 𝐴∗𝑈,
𝐴∗𝑈𝐴𝐴∗ = 𝐴∗𝑋∗𝑋𝐴𝐴∗ = 𝐴∗𝑋∗ (𝑋𝐴)∗ 𝐴∗

= (𝐴𝑋𝐴𝑋𝐴)∗ = 𝐴∗.
(61)

Conversely, let 𝑋 = 𝐴∗𝑈 and 𝐴∗𝑈𝐴𝐴∗ = 𝐴∗, for some 𝑈 ∈
C�푚×�푚. According to (5) we have that 𝑋 ∈ 𝐴{1, 2}. On the
other hand, by 𝑋 = 𝐴∗𝑈 and 𝐴∗𝑈𝐴𝐴∗ = 𝐴∗ it follows that𝑋𝐴𝐴∗ = 𝐴∗, and it is well-known that it is equivalent to𝑋 ∈𝐴{1, 4}. Thus,𝑋 ∈ 𝐴{1, 2, 4}.

The following theorem can be verified in a similar way.

Theorem 20. Let 𝐴 ∈ C�푚×�푛. Then

𝐴 {1, 2, 3} = 𝐴 {2}∗,N(�퐴∗) = 𝐴 {1, 2}∗,N(�퐴∗)
= {𝑉𝐴∗ | 𝑉 ∈ C�푛×�푛, 𝐴∗𝐴𝑉𝐴∗ = 𝐴∗} . (62)

4. Numerical Examples

All numerical experiments are performed starting from the
zero initial condition. MATLAB and the Simulink version is
8.4 (R2014b).

Example 21. Consider

𝐴 =
[[[[[[[
[

1 −1 0 0 0 0−1 1 0 0 0 0−1 −1 1 −1 0 0−1 −1 −1 1 0 0−1 −1 −1 0 2 −1−1 −1 0 −1 −1 2

]]]]]]]
]
∈ R6×65 ,

𝐵 =
[[[[[[[
[

0.793372 0.2656550.140305 0.6338240.329002 0.1849270.141169569 0.4274240.0468532 0.09793320.89494969 0.253673

]]]]]]]
]
∈ R6×22 ,

𝐶 = [[[
[

0.714297 0.734462 0.790305 1.1837035 0.850446 1.1432190.596075 0.5652303 0.745458 1.011021 0.785712 1.0135700.780387 0.931596 0.630581 1.23033 0.723199 1.08767170.298214 0.30235998 0.337657 0.496275 0.361875 0.482631
]]]
]
∈ R4×64 .

(63)
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(a) This part of the example illustrates results of Theorem 6
and it is based on the implementation of Algorithm 3. The
matrices 𝐴, 𝐵, 𝐶 satisfy rank(𝐵) = 2, rank(𝐶) = 4, and
rank(𝐶𝐴𝐵) = 2. Since the conditions in (vii) of Theorem 6
are not satisfied, there is no an exact solution of the system
of matrix equations 𝐵𝑈𝐶𝐴𝐵 = 𝐵 and 𝐶𝐴𝐵𝑈𝐶 = 𝐶. The
outer inverse 𝑋 = 𝐵(𝐶𝐴𝐵)(1)𝐶 can be computed using the
RNN approach, as follows. The Simulink implementation of
Algorithm 3, which is based on the GGNNmodel for solving
the matrix equation 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡), gives the
result which is presented in Figure 2. The display denoted by𝑈(𝑡) denotes an approximate solution of the matrix equation𝐵𝑈(𝑡)𝐶𝐴𝐵 = 𝐵. The time interval is [0, 0.5], the solver is
ode15s, the power-sigmoid activation is selected, and 𝛾 = 106.
Step 1. Solve the matrix equation 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡)𝐴(𝑡)𝐵(𝑡) =𝐵(𝑡) with respect to 𝑈(𝑡) using an appropriate adaptation of
the GGNN approach developed in [28, 29] and restated in
(43). In the particular case, the model becomes

𝑈̇ (𝑡) = −𝛾𝐵 (𝑡)T
⋅F (𝐵 (𝑡) 𝑈 (𝑡) 𝐶 (𝑡) 𝐴 (𝑡) 𝐵 (𝑡) − 𝐵 (𝑡))
⋅ (𝐶 (𝑡) 𝐴 (𝑡) 𝐵 (𝑡))T .

(64)

The matrix 𝐵 is of full-column rank, and it possesses the
left inverse 𝐵−1�푙 . Therefore, the matrix equation 𝐵𝑈𝐶𝐴𝐵 =𝐵 is equivalent to the equation 𝑈𝐶𝐴𝐵 − 𝐼 = 0. Then
the GGNN model (64) reduces to the well-known GNN
model for computing the pseudoinverse of 𝐶𝐴𝐵. The GNN
models for computing the pseudoinverse of rank-deficient
matrices were introduced and described in [21]. We further
confirm the results derived in MATLAB Simulink by means
of the programming package Mathematica. Mathematica
gives

(𝐶𝐴𝐵)†

= [ 1.76069 4.94967 −7.50589 1.04706
−1.49938 −4.03114 5.8936 −0.875175] ,

(65)

which coincides with the result displayed in 𝑈(𝑡) in Figure 2.

Step 2. Thematrix𝑋(𝑡) = 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡) is showed in Figure 2,
in the display denoted by 𝐴𝑇𝑆2. The residual norm of 𝑋 is
equal to ‖𝑋𝐴𝑋 − 𝑋‖2 = 6.5360016 ∗ 10−15.

As a confirmation,Mathematica gives

𝑋 = 𝐵 (𝐶𝐴𝐵)† 𝐶 =

[[[[[[[[[[[[[
[

−0.83127 −1.56045 0.352412 −1.03387 0.135393 −0.449024
0.360282 0.807398 −0.389035 0.384252 −0.267666 0.0308925
−0.28009 −0.509081 0.0886387 −0.356487 0.0189951 −0.172153
0.180706 0.424133 −0.22968 0.183394 −0.164812 −0.00844537
0.0220041 0.0596765 −0.0424447 0.0184201 −0.0328727 −0.0110591
−0.977459 −1.84514 0.432908 −1.21068 0.175583 −0.515159

]]]]]]]]]]]]]
]

, (66)

which coincides with the contents of the Display Block
denoted as ATS2 in Figure 2. Further, the matrix𝑈 = (𝐶𝐴𝐵)†
is an approximate solution of thematrix equations𝐶𝐴𝐵𝑈𝐶 =𝐶 and 𝐵𝑈𝐶𝐴𝐵 = 𝐵. Also, 𝑋 = 𝐵𝑈𝐶 is an approximate
solution of (28), since

‖𝐶𝐴𝐵𝑈𝐶 − 𝐶‖ = ‖𝐶𝐴𝑋 − 𝐶‖ = 2.23452290 ∗ 10−14,
‖𝐵𝑈𝐶𝐴𝐵 − 𝐵‖ = ‖𝑋𝐴𝐵 − 𝐵‖ = 9.4574123 ∗ 10−15. (67)

Therefore, the equations in (28) are satisfied. In addition,
(29) is satisfied by the definition of 𝑋. Therefore, 𝑋 is an
approximate (𝐵, 𝐶)-inverse of 𝐴.

Trajectories of the entries in the matrix 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡)
generated inside the time [0, 5 ∗ 10−2], using 𝛾 = 106 and
ode15s solver, are presented in Figure 3.

(b) Dual approach in Theorem 6, as well as in the
implementation of Algorithm 3, is based on the solution of𝐶(𝑡)𝐴(𝑡)𝑉(𝑡)𝐶(𝑡) = 𝐶(𝑡) and the associated outer inverse

𝑋1(𝑡) = 𝐵(𝑡)𝑉(𝑡)𝐶(𝑡). The Simulink implementation of
the GGNN model which is based on the matrix equation𝐶𝐴𝐵𝑉(𝑡)𝐶 = 𝐶 and the matrix product 𝑋1(𝑡) = 𝐵𝑉(𝑡)𝐶
gives the result which is presented in Figure 4. The display
denoted by 𝑉(𝑡) represents an approximate solution of the
matrix equation 𝐶𝐴𝐵𝑉(𝑡)𝐶 = 𝐶. The time interval is [0, 0.5],
the solver is ode15s, the linear activation is selected, and𝛾 = 1011.

Since the matrix 𝐶 is right invertible, the matrix equation𝐶𝐴𝐵𝑉(𝑡)𝐶 = 𝐶 gives the dual form of thematrix equation for
computing (𝐶𝐴𝐵)†; that is, 𝐶𝐴𝐵𝑉(𝑡) = 𝐼.

Therefore, both𝑋 and𝑋1 are approximations of the same
outer inverse of 𝐴, equal to 𝐵(𝐶𝐴𝐵)†𝐶. To that end, it can be
verified that𝑋 and𝑋1 satisfy ‖𝑋 − 𝑋1‖ = 4.143699 ∗ 10−11.

(c) The goal of this part of the example is to illustrate
Theorem 3 and Algorithm 1. The matrices 𝐴 and 𝐵 satisfy
rank(𝐴𝐵) = rank(𝐵), so that it is justifiable to search for a
solution 𝑈(𝑡) of the matrix equation 𝐵𝑈(𝑡)𝐴𝐵 = 𝐵 and the
initiated outer inverse 𝑋 = 𝐵𝑈. In order to highlight the
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Figure 3: Trajectories of elements of the matrix 𝐵𝑈𝐶.
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Figure 4: Simulink implementation of the GNNmodel for computing 𝐶𝐴𝐵𝑉(𝑡)𝐶 = 𝐶,𝑋1 = 𝐵𝑉𝐶.

results derived by the implementation of Algorithm 1 it is
important to mention that

(𝐴𝐵)† = [ 0.167297 −0.167297 0.00708203 −0.123801 −0.236308 0.239756−0.203528 0.203528 −0.279822 −0.0731705 −0.112743 −0.385548] ,

𝐵 (𝐴𝐵)† =
[[[[[[[
[

0.0786607 −0.0786607 −0.0687173 −0.117658 −0.217431 0.0877929−0.105529 0.105529 −0.176364 −0.0637471 −0.104615 −0.210730.0174033 −0.0174033 −0.0494166 −0.0542619 −0.098595 0.00758195−0.0633756 0.0633756 −0.118603 −0.0487517 −0.0815486 −0.130946−0.0120938 0.0120938 −0.027072 −0.0129663 −0.0221131 −0.02652460.0980931 −0.0980931 −0.0646451 −0.129357 −0.240083 0.116766

]]]]]]]
]
∈ 𝐴 {2}R(�퐵),∗ . (68)
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On the other hand, the Simulink implementation gives
another element 𝐵𝑈(𝑡) from 𝐴{2}R(�퐵),∗, different from 𝑋1 =(𝐴𝐵)†. The matrix 𝐵𝑈(𝑡) is presented in Figure 5.The display
denoted by 𝑈(𝑡) represents an approximate solution of the
matrix equation 𝐵𝑈(𝑡)𝐴𝐵 = 𝐵. The time interval is [0, 10−2]
and the solver is ode15s.

(d) The goal of this part of the example is to illustrate
Theorem 5 and Algorithm 2. Since rank(𝐶𝐴) = rank(𝐶),
it is justifiable to search for a solution of the matrix
equation 𝐶𝐴𝑉(𝑡)𝐶 = 𝐶. The Simulink implementation of
the GGNN model which is based on the matrix equation

𝐶(𝑡)𝐴(𝑡)𝑉(𝑡)𝐶(𝑡) = 𝐶(𝑡) gives the result which is presented in
Figure 6. The display denoted by 𝑉(𝑡) represents an approxi-
mation of 𝑉(𝑡). The display denoted by 𝐴𝑇𝑆2 represents the
matrix product 𝑋 = 𝑉(𝑡)𝐶(𝑡). The time interval is [0, 1] and
the solver is ode15s.The activation is achieved by the power-
sigmoid function. The corresponding outer inverse of 𝐴 is𝑋 = 𝑉𝐶 ∈ 𝐴{2}∗,N(�퐶).

It is important to mention that the results 𝑉(𝑡) and𝑋 = 𝑉(𝑡)𝐶 given by the implementation of Algorithm 2 are
different from the pseudoinverse of 𝐶𝐴 and (𝐶𝐴)†𝐶, since

(𝐶𝐴)† =

[[[[[[[[[[[[[[[
[

120140. 129792. 27421.9 −618952.
−90013.5 −47865.2 −6777.93 329013.
−52937.6 −1464.19 3452.26 120689.
23062. −103225. −30460.2 230800.
−36793.4 −112814. −28769.9 388910.
66669. 217503. 55777.9 −740399.

]]]]]]]]]]]]]]]
]

,

(𝐶𝐴)† 𝐶 =

[[[[[[[[[[[[[[[
[

0.800499 0.290122 −0.192667 −0.201861 −0.0498093 −0.0355252
−0.714584 −0.247028 −0.0707528 −0.0994969 −0.155725 −0.111067
−0.615629 −0.552896 0.153409 −0.291012 0.0511091 −0.0352418
0.408051 0.436046 −0.154673 0.37013 −0.115624 −0.15416
−0.373293 −0.441438 0.209825 −0.0172156 0.0895808 −0.149952
0.580871 0.558288 −0.208561 −0.0619027 −0.0250655 0.339354

]]]]]]]]]]]]]]]
]

∈ 𝐴 {2}∗,N(�퐶) .

(69)

Example 22. The aim of the present example is a verification
of Theorem 6 and Algorithm 3 in the important case 𝐵 =𝐶 = 𝐴T. For this purpose, we consider the same matrix 𝐴 as
in Example 21. The Mathematica function Pseudoinverse

gives the following exact Moore-Penrose inverse of 𝐴:

𝐴† =

[[[[[[[[[[[[[[[[[[[[[
[

1
4 −14 −

1
4 −
1
4 0 0

−14
1
4 −14 −14 0 0

0 0 12 0 −14 −14
0 0 0 1

2 −14 −14
0 0 −16 −

1
3
5
12

1
12

0 0 −13 −
1
6
1
12

5
12

]]]]]]]]]]]]]]]]]]]]]
]

. (70)

It can be approximated using the Simulink implementation
of Algorithm 3 corresponding to the choice 𝐵 = 𝐶 =𝐴T. Indeed, according to Example 21, the Simulink imple-
mentation of Algorithm 3 approximates the outer inverse𝐴T(𝐴T𝐴𝐴T)†𝐴T = 𝐴†. The implementation and generated
results are presented in Figure 7. The GGNNmodel underly-
ing the implementation is

𝑈̇ (𝑡) = −𝛾𝐴 (𝑡)
⋅F (𝐴 (𝑡)T𝑈 (𝑡) 𝐴 (𝑡)T 𝐴 (𝑡) 𝐴 (𝑡)T − 𝐴 (𝑡)T)
⋅ (𝐴 (𝑡)T 𝐴 (𝑡) 𝐴 (𝑡)T)T .

(71)

The display denoted by 𝑈(𝑡) represents an approximate
solution of the matrix equation𝐴T𝑈(𝑡)𝐴T𝐴𝐴T = 𝐴T and the
display denoted by 𝑀𝑃 represents an approximation of 𝐴†.
The time interval is [0, 0.001], the solver is ode15s, and the
scaling parameter is assigned to 𝛾 = 108.
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Figure 5: Simulink implementation of the GNNmodel for computing 𝐵𝑈𝐴𝐵 = 𝐵,𝑋 = 𝐵𝑈 ∈ 𝐴{2}R(�퐵),∗.
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Figure 6: Simulink implementation of the GNNmodel for computing 𝐶𝐴𝑉𝐶 = 𝐶,𝑋 = 𝑉𝐶 ∈ 𝐴{2}∗,N(�퐶).
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Example 23. Let us consider the same matrix 𝐴 as in
Example 21 and

𝐵 =
[[[[[[[[[[[
[

0.895516 0.0576096 0.25043 0.475532 0.862471
0.792079 0.248449 0.880375 0.567239 0.9282
0.808897 0.602233 0.0492111 0.88686 0.769442
0.258699 0.711749 0.961789 0.556687 0.880079
0.665172 0.164182 0.33616 0.892039 0.564932
0.640587 0.578898 0.278248 0.873279 0.660159

]]]]]]]]]]]
]

∈ R6×55 ,

𝐶 =
[[[[[[[[
[

0.351124 0.472523 0.796377 0.810286 0.484798 0.286383
0.505833 0.717046 0.246185 0.810956 0.22764 0.363135
0.499275 0.417029 0.442484 0.596716 0.573046 0.798864
0.513633 0.380053 0.317329 0.991615 0.917641 0.774303
0.969499 0.291356 0.926272 0.736567 0.609807 0.807355

]]]]]]]]
]

∈ R5×65 .

(72)

The matrices 𝐵 and 𝐶 are generated with the purpose of
illustrating Theorem 12 and Algorithms 8 and 9. Conditions
(iv) and (v) of Theorem 12 are satisfied. Therefore, it is
expectable that the results generated by Algorithms 8 and 9
are the same.

The Simulink implementation of Algorithm 9 generates
results presented in Figure 8. The simulation is performed

within the time interval which is [0, 10], the scaling constant
is 𝛾 = 107, and the selected solver is ode15s.

The Simulink implementation of Algorithm 8 generates
the results presented in Figure 9. The time interval is [0, 0.5],𝛾 = 1011, and the solver is ode15s.

As a verification, Mathematica gives the following
result:

𝑋1 = 𝐴(1,2)R(�퐵),N(�퐶) = 𝐵 (𝐴𝐵)† 𝐴 (𝐶𝐴)† 𝐶

=

[[[[[[[[[[[[[[[
[

0.0923811 −0.407619 −0.25 −0.25 −7.882583475 ∗ 10−15 −1.78745907 ∗ 10−14
−0.500161 −0.00016084 −0.25 −0.25 −1.776356839 ∗ 10−15 −3.44169138 ∗ 10−15
4.4104 −2.59426 −14.9626 −3.15303 3.96324 12.6509
4.73567 −2.269 −15.4626 −2.65303 3.96324 12.6509
3.75197 −3.2527 −15.6292 −3.48636 4.62991 12.9842
4.31832 −2.68635 −15.7959 −3.3197 4.29657 13.3175

]]]]]]]]]]]]]]]
]

.
(73)

Let us observe that 𝑋 = 𝐴(1,2)
R(�퐵),N(�퐶)

= 𝐵(𝐶𝐴𝐵)†𝐶 and
𝑋1 = 𝐵(𝐴𝐵)†𝐴(𝐶𝐴)†𝐶 are very close with respect to the
Frobenius norm, since ‖𝑋 − 𝑋1‖ = 4.710014456589536 ∗10−12. In the case 𝑈 = (𝐶𝐴𝐵)† and 𝑋 = 𝐵𝑈𝐶, the matrix
equations 𝐶𝐴𝑋 = 𝐶𝐴𝐵𝑈𝐶 = 𝐶 and 𝑋𝐴𝐵 = 𝐵𝑈𝐶 = 𝐵 are
satisfied, since

‖𝐶𝐴𝐵𝑈𝐶 − 𝐶‖ = 1.631647583439993 ∗ 10−13,
‖𝐵𝑈𝐶𝐴𝐵 − 𝐵‖ = 2.405407190529498 ∗ 10−13. (74)

Example 24. (a) Consider the time-varying symmetric
matrix 𝑆5, belonging to 𝑛 × 𝑛 matrices 𝑆�푛 of rank 𝑛 − 1 from
[32]:

𝑆5 (𝑡) =
[[[[[[[[
[

𝑡 + 1 𝑡 𝑡 𝑡 𝑡 + 1
𝑡 𝑡 − 1 𝑡 𝑡 𝑡
𝑡 𝑡 𝑡 + 1 𝑡 𝑡
𝑡 𝑡 𝑡 𝑡 − 1 𝑡
𝑡 + 1 𝑡 𝑡 𝑡 𝑡 + 1

]]]]]]]]
]

. (75)
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Figure 7: Simulink implementation of the GNNmodel for computing 𝐴† using Algorithm 3.

The Moore-Penrose inverse of 𝑆5(𝑡) is equal to

𝑆5 (𝑡)† =

[[[[[[[[[[[[[[[
[

1 − 𝑡
4

𝑡
2 − 𝑡2

𝑡
2

1 − 𝑡
4𝑡2 −𝑡 − 1 𝑡 −𝑡 𝑡2

− 𝑡2 𝑡 1 − 𝑡 𝑡 − 𝑡2𝑡2 −𝑡 𝑡 −𝑡 − 1 𝑡21 − 𝑡
4

𝑡
2 − 𝑡2

𝑡
2

1 − 𝑡
4

]]]]]]]]]]]]]]]
]

. (76)

Figure 10 shows the Simulink adopted computation of
𝑆5(𝑡)† in the time period [0, 5∗10−7] using the solver ode15s
and the parameter 𝛾 = 108.

Trajectories of approximations of the entries in thematrix
𝑆5(𝑡)† inside the time [0, 5∗10−7] and generated using 𝛾 = 108
are presented in Figure 11. It is evident that these trajectories
follow the graphs of the corresponding different expressions
(representing entries) in 𝑆†5 .

(b) Now, consider the following matrices 𝐵(𝑡) and 𝐶(𝑡) in
conjunction with 𝑆5(𝑡):

𝐵 (𝑡) =
[[[[[[[[[
[

2𝑡 + 1 𝑡 𝑡
𝑡 2𝑡 − 1 𝑡
𝑡 𝑡 2𝑡 + 1
𝑡 𝑡 𝑡

2𝑡 + 1 𝑡 𝑡

]]]]]]]]]
]

,

𝐶 (𝑡) = [[[
[

𝑡2 + 1 𝑡2 𝑡2 𝑡2 𝑡2 + 1
𝑡2 𝑡2 − 1 𝑡2 𝑡2 𝑡2
𝑡2 𝑡2 𝑡2 + 1 𝑡2 𝑡2

]]]
]
.

(77)

The outer inverse 𝑆5(𝑡)(2)R(�퐵),N(�퐶) of 𝑆5(𝑡) corresponding to𝐵(𝑡)
and 𝐶(𝑡) is equal to
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Figure 8: Simulink implementation of Algorithm 9.

𝑆5 (𝑡)(2)R(�퐵),N(�퐶) = 𝐵 (𝐶𝑆5 (𝑡) 𝐵)−1𝐶

=

[[[[[[[[[[[[[[[[[[
[

−10𝑡5 + 6𝑡4 + 3𝑡3 − 𝑡2 + 𝑡 + 1−63𝑡5 + 42𝑡4 − 𝑡3 + 2𝑡2 + 8𝑡 + 4
𝑡 (15𝑡4 + 𝑡3 + 6𝑡2 − 2)

63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4
𝑡 (−15𝑡4 + 13𝑡3 − 8𝑡2 + 4𝑡 + 2)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4

𝑡2 (−20𝑡3 + 6𝑡2 + 3𝑡 − 1)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4

−10𝑡5 + 6𝑡4 + 3𝑡3 − 𝑡2 + 𝑡 + 1
−63𝑡5 + 42𝑡4 − 𝑡3 + 2𝑡2 + 8𝑡 + 4𝑡 (−2𝑡4 + 3𝑡3 + 8𝑡2 − 3𝑡 − 2)

63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4
−66𝑡5 + 13𝑡4 − 25𝑡3 + 2𝑡2 + 12𝑡 + 4
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4

𝑡 (3𝑡4 + 𝑡3 + 16𝑡2 − 8𝑡 − 4)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4

𝑡2 (67𝑡3 − 9𝑡2 − 18𝑡 − 4)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4

𝑡 (−2𝑡4 + 3𝑡3 + 8𝑡2 − 3𝑡 − 2)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4𝑡 (−16𝑡4 + 13𝑡3 − 6𝑡2 + 3𝑡 + 2)

63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4
𝑡 (39𝑡4 − 7𝑡3 + 8𝑡2 − 4)

63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4
−24𝑡5 + 7𝑡4 + 15𝑡3 − 6𝑡2 + 4𝑡 + 4
−63𝑡5 + 42𝑡4 − 𝑡3 + 2𝑡2 + 8𝑡 + 4

𝑡2 (−31𝑡3 + 13𝑡2 + 2𝑡 − 4)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4

𝑡 (−16𝑡4 + 13𝑡3 − 6𝑡2 + 3𝑡 + 2)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4𝑡 (2𝑡4 − 3𝑡3 + 𝑡2 − 5𝑡 + 1)

−63𝑡5 + 42𝑡4 − 𝑡3 + 2𝑡2 + 8𝑡 + 4 − 𝑡 (3𝑡4 + 29𝑡3 + 6𝑡2 + 18𝑡 + 4)63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4
𝑡 (3𝑡4 + 𝑡3 − 2𝑡2 + 10𝑡 − 4)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4

𝑡3 (4𝑡2 + 33𝑡 − 1)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4

𝑡 (2𝑡4 − 3𝑡3 + 𝑡2 − 5𝑡 + 1)
−63𝑡5 + 42𝑡4 − 𝑡3 + 2𝑡2 + 8𝑡 + 4

−10𝑡5 + 6𝑡4 + 3𝑡3 − 𝑡2 + 𝑡 + 1
−63𝑡5 + 42𝑡4 − 𝑡3 + 2𝑡2 + 8𝑡 + 4

𝑡 (15𝑡4 + 𝑡3 + 6𝑡2 − 2)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4

𝑡 (−15𝑡4 + 13𝑡3 − 8𝑡2 + 4𝑡 + 2)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4

𝑡2 (−20𝑡3 + 6𝑡2 + 3𝑡 − 1)
63𝑡5 − 42𝑡4 + 𝑡3 − 2𝑡2 − 8𝑡 − 4

−10𝑡5 + 6𝑡4 + 3𝑡3 − 𝑡2 + 𝑡 + 1
−63𝑡5 + 42𝑡4 − 𝑡3 + 2𝑡2 + 8𝑡 + 4

]]]]]]]]]]]]]]]]]]
]

. (78)

Its computation in the time period [0, 5 ∗ 10−2] using solver
ode15s and the parameter 𝛾 = 1011 is presented in Figure 12. Example 25. Here we discuss the behaviour of Algorithm 3 in

the case when the condition rank(𝐶𝐴𝐵) = rank(𝐵) = rank(𝐶)
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Figure 9: Simulink implementation of Algorithm 8.

is not satisfied. For this purpose, let us consider the
matrices

𝐴 =
[[[[[[[[
[

5 −8 −16 24 0
6 −11 −18 24 0
−7 14 26 −36 0
−4 8 16 −23 0
2 −6 −10 12 −3

]]]]]]]]
]

,

𝐵 =
[[[[[[[[
[

18 −34 −52 72 −8
36 −72 −108 144 0
−36 82 130 −168 8
−18 43 70 −90 8
−36 70 100 −132 2

]]]]]]]]
]

,

𝐶 =
[[[[[[[[
[

−2 10 12 −12 4
4 −6 −12 16 0
2 −6 −4 4 −4
4 −10 −12 14 −4
6 −15 −22 26 −4

]]]]]]]]
]

.

(79)

These matrices do not satisfy the requirement rank(𝐶𝐴𝐵) =
rank(𝐵) = rank(𝐶) of Algorithm 3, since

rank (𝐴) = 5,
rank (𝐵) = 4,
rank (𝐶) = 3,

rank (𝐶𝐴𝐵) = 2.

(80)

On the other hand, the conditions rank(𝐴𝐵) = rank(𝐵) and
rank(𝐶𝐴) = rank(𝐶) are valid, so that the conditions required
in Algorithms 1 and 2 hold. An application of Algorithm 3 in
the time [0, 10−9], based on the scaling constant 𝛾 = 107 and
the ode15s solver, gives the results for𝑈(𝑡) and𝑋 = 𝐵𝑈𝐶 as
it is presented in Figure 13.

An application of the dual case of Algorithm 3 in the
time [0, 10−8], based on the scaling constant 𝛾 = 107 and the
ode15s solver, gives the results for𝑉(𝑡) and𝑋 = 𝐵𝑉𝐶 as it is
presented in Figure 14.

Trajectories of the elements of the matrix 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡) in
the period of time [0, 10−9] are presented in Figure 15.

According to the obtained results, the following can be
concluded.
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Figure 10: The Simulink adopted for computation of 𝑆5(𝑡)†.
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(1) The matrix equation 𝐵𝑈𝐶𝐴𝐵 = 𝐵 is not satisfied,
since ‖𝐵𝑈𝐶𝐴𝐵−𝐵‖ = 39.53256.This fact is expectable
since the conditions rank(𝐶𝐴𝐵) = rank(𝐵) = rank(𝐶)

are not satisfied nor is the matrix 𝐵 invertible. Simi-
larly, the matrix equation 𝐵𝑈𝐶𝐴𝐵 = 𝐵 is not satisfied,
since ‖𝐶𝐴𝐵V𝐶 − 𝐶‖ = 27.412588.
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(2) Both the matrices 𝑈 and 𝑉 are approximations of(𝐶𝐴𝐵)†, since

(𝐶𝐴𝐵)† =
[[[[[
[

0.0345588 0. 0.0321078 0.0154412 −0.0178922−0.0116558 0. −0.0105664 −0.00501089 0.006100220.0227669 0. 0.0216776 0.0105664 −0.01165580.000272331 0. −0.000272331 −0.000272331 −0.000272331−0.0230392 0. −0.0214052 −0.0102941 0.0119281

]]]]]
]
. (81)

This means that the solutions of the matrix equations𝐵𝑈𝐶𝐴𝐵 = 𝐵 and 𝐶𝐴𝐵𝑉𝐶 = 𝐶 given by the GNN
model approximate the solution of the GNN model
corresponding to thematrix equations𝑈𝐶𝐴𝐵 = 𝐼 and𝐶𝐴𝐵𝑉 = 𝐼, respectively, which is equal to (𝐶𝐴𝐵)†.

(3) Accordingly, the output denoted by 𝐴𝑇𝑆2 approxi-
mates the outer inverse

𝑋 = 𝐵 (𝐶𝐴𝐵)† 𝐶

=
[[[[[[[
[

−0.537582 1.57435 1.91993 −2.15033 0.614379
−0.492157 0.0127451 −2.01373 2.03137 1.01961
0.38366 1.01928 4.28693 −4.46536 −1.12418
0.237582 0.375654 1.98007 −2.04967 −0.614379
0.715033 −1.37974 −0.667974 0.860131 −1.04575

]]]]]]]
]

(82)

exactly in five decimals. In conclusion, the Simulink
implementation of Algorithm 3 computes the outer
inverse 𝑋 = 𝐵(𝐶𝐴𝐵)†𝐶 which satisfies condition
(29) from the definition of the (𝐵, 𝐶)-inverse, but
not condition (28) from the same definition. In other
words,𝑋 satisfies neitherR(𝑋) =R(𝐵) norN(𝑋) =
N(𝐶).

(4) Observations 2 and 3 finally imply that the GGNN
model can be used for online time-varying pseudo-
inversion of both the matrices 𝐴 and 𝐶𝐴𝐵.

5. Conclusion

The contribution of the present paper is both theoretical and
computationally applicable. Conditions for the existence and
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Figure 13: The implementation of Algorithm 3 when its conditions are not satisfied.

representations of {2}-, {1, 2}-, and {1}-inverses with some
assumptions on their ranges and null spaces are proposed. A
new computational framework for these generalized inverses
is proposed. This approach arises from the derived general
representations and involves solutions of certain matrix
equations. In general, the methods and algorithms proposed
in the present paper are aimed at computation of various
classes of generalized inverses of the form𝐵(𝐶𝐴𝐵)(1)𝐶, where(𝐶𝐴B)(1) are solutions of the proposed matrix equations
solvable under specified conditions.

Our decision is to apply the GGNN approach in find-
ing solutions of required matrix equations. Also, we use
Simulink implementation of the underlying RNN models.
This decision allows us to extend derived algorithms to time-
varying matrices. Also, such an approach makes it possible
to compute two types of generalized inverses, namely, inner
and/or outer inverses of 𝐴 and inner inverses of the matrix
product𝐶𝐴𝐵. Illustrative numerical examples and simulation

examples are presented to demonstrate validity of the derived
theoretical results and proposed methods.

It is worth mentioning that the blurring process which
is applied on the original image 𝐹 and produces the blurred
image𝐺 is expressed in the form of a certain matrix equation
of the form

𝐺 = 𝐻�푐𝐹𝐻�푇�푟 ,
𝐺 ∈ R�푚1×�푚2 , 𝐻�푐 ∈ R�푚1×�푟, 𝐹 ∈ R�푟×�푠, 𝐻�푟 ∈ R�푚2×�푠, (83)

wherein it is assumed that 𝑠 = 𝑚2 + 𝑛1 − 1, 𝑟 = 𝑚1 + 𝑛2 − 1,
where 𝑛1 (resp., 𝑛2) is the length of the horizontal (resp.,
vertical) blurring in pixels. Solutions of these types of matrix
equations which are based on the pseudoinverse of 𝐻�푐 and𝐻�푟 and least squares solutions were investigated in [33–35].
Possible application of the proposed algorithms in finding
least squares solutions ofmatrix equation (83) could be useful
for further research.
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Figure 14: Dual implementation of Algorithm 3 when its conditions are not satisfied.
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Require: Time varying matrices 𝐴(𝑡) ∈ C�푚×�푛, 𝐵(𝑡) ∈ C�푛×�푘 and 𝐶(𝑡) ∈ C�푙×�푚.
Require: Verify rank(𝐶(𝑡)𝐴(𝑡)𝐵(𝑡)) = rank(𝐵(𝑡)) = rank(𝐶(𝑡)) = rank(𝐴(𝑡)).

If these conditions are satisfied then continue.
(1) Solve the matrix equation 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡) with respect to an unknown matrix 𝑈(𝑡) ∈ C�푘×�푚.
(2) Return𝑋(𝑡) = 𝐵(𝑡)𝑈(𝑡)𝐶(𝑡) = 𝐴(𝑡)(1,2)

R(�퐵),N(�퐶).

Algorithm 9: Alternative computing of a {1, 2}-inverse with the prescribed range and null space.
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network for computing the Drazin inverse,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 26, no. 11, pp.
2830–2843, 2015.
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“Removal of blur in images based on least squares solutions,”
Mathematical Methods in the Applied Sciences, vol. 36, no. 17,
pp. 2280–2296, 2013.
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