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Preface

The 115th European Study Group with Industry took place at the Centre
de Recerca Matemática between 25-29 January, 2016.

The problems presented at the meeting were chosen to provide a wide
variety of subject areas and to appeal to local academics. Specifically, the
four problems concerned were:

• The manufacture of nanocrystals.

• Predicting burglaries in Catalunya.

• Equilibria in Tokamak plasmas.

• Waiting time for inventory.

Approximately 50 people attended the meeting, coming from as far afield
as France and Girona. There were also participants from Ireland, Bulgaria
and Georgia. Funding was primarily through the COST Action, TD1409,
Mathematics for Industry Network (MI-NET) as well as the Math-In
Network, the Barcelona Graduate School of Mathematics, the Catalan Maths
Society and the Càtedra Lluís A. Santaló of the University of Girona.

Tim Myers, Barcelona 2016
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Searching for a Predictive Model for
Burglaries in Catalonia

Problem presented by
Pere Boqué1

Report prepared by
Maria Aguareles2,9, Dusan Bikov3, Marta Canadell4, Enric Costa-Miracle5, Carlos Domingo6,
Jesús Fernández-Sánchez7, Núria Folguera5, Jordi Saludes7, Aleksandra Stojanova3, Zlatko
Varbanov8

Study group contributors
Maria Aguareles2,9, Dusan Bikov3, Marta Canadell4, Enric Costa-Miracle5, Carlos Domingo6,
Jesús Fernández-Sánchez7, Núria Folguera5, Jordi Saludes7, Isabel Serra5, Aleksandra Sto-
janova3, Zlatko Varbanov8

Abstract: In this report we present a summary of the discussions and results obtained
during the 115th European Study Group with Industry on the prediction of burglaries in
Catalonia. This problem was presented by the Police Department and the goal was to
obtain models for the dynamics of burglaries and to infer spatial and temporal patterns
based on data from 2010 until 2015.

1 Statement of the problem
Mossos d’Esquadra is the name of the Police Department in Catalonia who have compe-
tences for prevention and investigation of criminal actions concerning civil security. In the
last years burglaries have been one of the most relevant offences that they have dealt with.
These are serious offences against citizens privacy which, in many occasions, end up with

1Mossos d’Esquadra de Catalunya, Sabadell, Spain
2Universitat de Girona, Girona, Spain
3Goce Delcev University, Stip, Macedonia
4Brown University, USA
5Centre de Recerca Matemàtica, Barcelona, Spain
6Universitat de Barcelona, Barcelona, Spain
7Universitat Politècnica de Catalunya, Barcelona, Spain
8University of Veliko Turnovo, Bulgary
9Report co-ordinator: maria.aguareles@udg.edu

CRM Documents, vol. 12, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2017
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intimidation and violence. Furthermore, these type of crimes take place all around the
catalan territory and in all sort of environments, they occur in both flats and houses and
at any time of the year. Recently, the Mossos d’Esquadra have been especially interested
in the possibility of preventing burglaries by using prediction models.

Some cities around the world (see for instance [6]) have already implemented civil
security strategies based on mathematical predicting tools. However, these tools strongly
rely on a certain degree of regularity in the city planning and in the fact that offenders tend
to choose their next target mainly according to a geographical proximity. This is, in fact,
the major drawback when one tries to implement these models in Catalonia, where the
territory is very heterogeneous. Cities in Catalonia combine very different types of homes,
and it is very common to find neighbourhoods with detached houses and dense sets of
flat buildings. Also, the structure and urbanisation of large cities and small towns is very
different. According to police experience, burglars tend to specialize in particular types
of households and so they move according to parameters which go beyond the physical
proximity of houses. For instance, burglars often choose to burglarize places with fast
escaping routes which are close to highways, or houses with particular types of fences or
doors, etc.

In this report we present the results of the analysis of burglary data provided by
Mossos d’Esquadra and we propose different approaches to derive predicting models, thus
improving the algorithms that the police are now using. We start by exploring if geograph-
ical proximity patterns (the so-called near-repeat victimisation) can be deduced from the
data. We then first consider small regions, of the level of small cities, to devise if waves
of burglaries take place in concentrated periods of time. We thus remove the spatial de-
pendence of the data in this first approach. As we shall show, several features arise from
this first analysis: first, we observe that patterns arise only if a certain level of layer infor-
mation is used, and secondly we observe that if one considers small towns or cities, it is
indeed possible to predict the lapse of time between two consecutive waves of burglaries
in the town. We then broaden our analysis to the possibility of having non-trivial spatial
patterns of criminal activity. In particular we propose an algorithm to derive connections
between different regions of Catalonia, that is to say, the goal is to detect if two given sets
of burglaries which have taken place in regions that may be far away from each other have
any relation at all, in the sense that when a burglary takes place in, for instance, region A,
it is highly probable that burglaries in B will also take place. Finally we propose a model

2 Results

2.1 Exploring repeat-victimisation
The algorithms presented by the Mossos d’Esquadra in their initial exposition were based
on the theory of repeat (or near-repeat) victimization. This criminology theory states that
it is expectable that a target (in our case, a household or an area) suffers from repeated
criminal victimization in a short period of time. Near repeats refer to targets with similar
characteristics or situations, in the sense that the metric of the model is not necessarily
determined only by spatial distance. This idea can be modeled by means of the so-called
Hawkes process. The Hawkes process is a self-exciting point process that was introduced
in seismology to model earthquakes and their aftershocks. More precisely, one assumes
that there is a background rate at which events are likely to occur, and once an event does
occur, the rate jumps up and aftershocks are expected to follow. See [2] for an application
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of this theory to gang rivalries in Los Angeles. The original algorithm that the Mossos
d’Esquadra presented divided the territory in rectangular cells. Then, using data from
the previous two weeks, they determined the potential risk of burglary in each cell for the
following days. The algorithm heavily relied on the assumption that there was a near-
repeat victimization phenomenon. However, the consideration of uncategorized events
can hide these patterns. For instance, if we represent the burglaries in Sant Feliu de
Guíxols2 over time, it is hard to see any temporal cluster supporting the idea of repeated
victimization (see Figure 1).

Figure 1: Total number of burglaries in Sant Feliu de Guíxols. 2011–14.

Given the information that we had at hand about each burglary (mainly, the type of
construction), we decided to plot the same diagram but only for events that took place
in country houses (see Figure 2). In this case, one can observe that there are temporal
clusters that may be explained by a near-repeat victimization model, even in the case of
Girona3 city (see Figure 3).

Figure 2: Burglaries in Country Houses in Sant Feliu de Guíxols. 2011–14.

Sticking to the same category of country houses, we also plotted the burglaries in the
whole region of Girona4. In this case, the presence of temporal clusters is not as obvious
(see Figure 4), so even if we are considering a particular type of burglary, the size of the
region is still important if we want to find repetition patterns.

216,23 km2 and 21.810 inhabitants.
339,14 km2 and 97.227 inhabitants
45.905 km2 and 756.810 inhabitants.
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Figure 3: Burglaries in Country Houses in Girona City. 2011–14.

Figure 4: Burglaries in Country Houses in the Girona region. 2011 in
trimesters.

A similar test can be carried out with other types of households (apartments, or
houses), but these categories seem to be too broad (see Figure 5).

However, we are confident that if we could add additional data such as loot type in
order to create subcategories, there is a chance that we could observe patters as in the
country houses of Sant Feliu de Guíxols. Summing up, it could be useful to

• Define spatial cells adapted to the territory, using qualitative information such as
the orography or demography of the area.

• Categorize burglaries in a few classes that can help us classify different kinds of
events.

• Define different layers in each cell consisting of households (or areas) that could be
potential targets of each class of burglary.
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Figure 5: Burglaries in Apartments in Girona City. 2011–14.

• Run a near-repeat victimization based algorithm on each layer of each cell indepen-
dently, using just the data of the corresponding class.

2.2 Time-dependent statistical analysis
To efficiently manage police resources, the Mossos d’Esquadra need some information
of when and where the next wave of burglaries is most likely to take place. As a first
approximation we have clustered the information at the level of cities and towns and we
have computed the elapsed time between consecutive waves of events. The goal is to devise
for each town whether there is a mean for this waiting time between events, which would
indicate how long after a wave of burglaries in a city or town a new wave is expected.

We have used data corresponding to years from 2010 to 2014 and we have analysed
it by means of the coefficient of variation, CV . The coefficient of variation, CV , is a
standardized measure of dispersion of a probability distribution, that is to say, it explains
the extent of variability in relation to the mean of the data studied. More precisely, it is
defined as

CV =
σ

µ
, (1)

where σ is the standard deviation and µ is the mean of the sample.
In general, when studying this ratio, three main cases must be distinguished depending

on how far from unity this quantity is:

• CV � 1 implies that the variance is very small with respect to the mean and
therefore the events take place in almost a periodic way. For instance, this could
imply that a burglaries are occurring every two days or once per week (the same
day of the week). In this case, the corresponding density function is a Dirac delta
and there clearly is a time pattern in the burglaries.

• CV ' 1 implies that the mean and the standard deviation are of the same order.
In this case, when the standard deviation of an exponential function is equal to
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its mean, the waiting time distribution function decays like an exponential. Ex-
ponential density functions correspond to Poisson processes which have been used
to model near-repeat victimisation models (see for instance [3]). This models as-
sume that if there is an offence in a given area, the probability that the burglars
may strike in the same place or nearby is higher than in other places. This high
probability prevails for a short time and it rapidly falls afterwards.

• When CV � 1 the data has a high-variance with respect to the mean. In this case,
the distribution function for the waiting times does not decay exponentially but it
has a fat tail. This is due to the presence of cluster formations in time since the
events are self-attracting or self-activating. This would correspond to an scenario
where the waves of burglaries last longer than just one day and they are followed
by a longer period of peace.

We then want to compute the values for the coefficient of variation for some cities and
towns in Catalonia. We first start by removing the zero waiting time events from the
data, or, in other words, we don’t take into account if a given day one or more events have
taken place. The coefficient of variation after having removed the 0-waiting time events is
usually known as the coefficient of variation of the residuals (CVR).

When computing the CV R for all the cities/town/villages available in the data, we
observe the three different regimes explained above. For instance, the city of Sabadell,
which is a medium size city, is found to have a CVR well bellow one. Amposta, which is a
smaller town, has CV R ' 1 and El Bruc, that is even smaller, has CV R >> 1. In general
we observe that large cities tend to have CV R � 1 but its mean is 1 day, which simply
says that there are burglaries every day. This, in fact, does not give any information in
terms of prevention and it is clear that it is due to the high population density in these
cities. It is clear that in these cases one must consider smaller areas, probably at the level
of neighbourhoods. At the other end, very small towns seem to have CVR well over one.
It makes sense that in these towns or villages clusters appear since these locations are
not so well-connected by public transport or main roads. Then, once the burglars move
there, they stay around for a period of time. In table 1 we show the names of the cities in
Catalonia where the CVR has been found to be greater than 1 and the ones where it has
been found to be bellow 1:

CV R � 1 CV R � 1 CV R � 1

Barcelona Sabadell Begur
Tarragona Reus Cabrils
Girona Santa Coloma de Gramenet Creixell
Lleida Mataró El Bruc
Terrassa Badalona Sant Hilari Sacalm

Table 1: Cities with a CV R� 1 (1st and 2nd colum) and with CV R� 1
(3rd column).

Having a quick look at the table and knowing a little bit about Catalonia, the first
feature that can be deduced is that large cities like Barcelona tend to have a very defined
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mean (CV R� 1), but, as in the case of Barcelona in all these cities the mean is of one day.
In order to check this feeling in a more analytical way, we decided to search at the Catalan
Institute of Statistics (Idescat) the number of inhabitants of these cities. In Table 2, we
can see the number of inhabitants of the 11th largest cities in Catalonia:

An approach that the Mossos d’Esquadra were using was, in fact, to divide the whole
Catalonia in cells and to investigate the evolution of events in each of these cells according
to a near-repeat victimisation approach. In their simulations they already noticed that a
crucial point is the size of such cells. In this sense, they were interested in understanding
the optimal size of a cell in terms of predictions. Our conclusion with this results is that
the same cell size cannot be used in all Catalonia and large cities require a more local
analysis. As an example we have also computed the CVR for each neighbourhood in
Barcelona and, in this case the CVR becomes of order one, thus implying that a near-
repeat victimisation might be taking place. There are also other cities, like Granollers,
where Mossos d’Esquadra had explicitly checked that near-repeat victimisation models
where giving good predictions. Our conjecture is that only in areas where the CVR is
close to one such near-victimisation models will be useful. In this sense, the CVR may be
used as a tool to decide which cities require a more local analysis.

Position in the ranking City Number of inhab.

1 Barcelona 1.604.555
2 L’Hospitalet de Llobregat 252.171
3 Badalona 215.654
4 Terrassa 215.214
5 Sabadell 207.814
6 Lleida 138.542
7 Tarragona 131.255
8 Mataró 124.867
9 Santa Coloma de Gramenet 116.950
10 Reus 103.194
11 Girona 97.586

Table 2: Largest cities in Catalonia, IDESCAT, 2015.

To sum up we can conclude several things. The first one is that there seems to be
a clear relationship between the number of inhabitants of the place we are studying and
the value of the CV R. Large cities have CV R << 1 and thus, the near and repeat
victimization pattern cannot be applied straightforward since it will not work. A new
methodology should be designed and it seems that splitting the city into neighbourhoods
and then applying the cells’ model could be useful.

For medium size cities, that is cities that have between 10000 and 100000 inhabitants,
which normally have CV R ' 1, near-repeat victimization models should suit well as it
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happened with Granollers. For the towns and villages, usually with CV R >> 1, we know
that there are going to be clusters but we cannot assume that a near-repeat victimisation
model will work. In this cases there might be connections with cells which are which
are easily reached through highways, for instance. This idea will be more detailed in the
following section.

2.3 Exploring spatio-temporal patterns
Repeat victimisation does not only occur in the shape of hot-spot. That is to say, there
might be burglars who prefer to operate in the vicinity of highways and so they strike in
places that are kilometres apart from each other. We want to infer these type of relations
by exploring the data. To this aim, we have tried to design a model as simple as possible
that allows to predict burglaries in terms of the data provided by the mossos. We propose
the following algorithm:

• Start by partitioning the region in N cells (the smaller, the most accurate).

• We now define f(i, j, `) as the ”influence" of cell j on cell i during a time span of `
(for instance, ` could be 1 or 2 weeks):

f(i, j; `) := number of events in cell j occurring in a period of
` time steps after an event occurs in i

• A contingency table (or matrix) F (`) is constructed in this way for each value of `.
The bigger the entries the more related the cells i and j are.

• By normalizing the rows of this matrix so that each sums to one, we obtain a
transition matrix P (`), whose entries are estimates of the conditional probablilities

p(i|j; `) = probability of an event in cell j after an event i in a
time window of length `.

• After a burglary event occurs in one cell, say i, the maxima among the entries of
the corresponding row i of P (`) should indicate the cells where it is more probable
that another burglar event occurs in the following ` weeks. Moreover, studying the
monotony of the sequence {p(i|j; `)}` we can measure how long is the influence of
cell j in cell i.

Remark 1. A similar analysis can be performed restricting data to events recorded after
some particular date k0. The corresponding tables F (`; k0) and P (`, k0) should allow
conclusions about the influence between cells in terms of the seasons or periods of the
year. For example, different weeks of the year (different dates k0) may produce different
influence between cells. Parameters k0 and ` allow different analysis and would play an
important role for the analysis.

Remark 2. One could apply statistical analysis (namely, compute the chi-square statistic)
to test if the data contained in the table F (`) reveal dependence or independence between
the events registered. Another approach would be to estimate how far the contingency
table is from having rank one (this meaning independence among variables). To this aim,
one can compute the singular values {σm}m of the matrix F (`) and estimate the distance
of F (`) to the space of matrices of rank 1 as

√∑
m≥2 σ

2
m. This kind of analysis should
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allow to validate or reject the near-repeat victimization assumption between cells or in a
specified group of cells (for example, cells in the area of Barcelona).

This procedure should be improved by considering data associated to 1st or 2nd resi-
dence, or data of the metropolitan area and data of less-populated territories separately.
As stated before, some amount of layer information might be helpful to detect patterns.

2.4 Graph theory
In this section we describe a method to simulate street networks in a city and to use them
to detect possible hotspots. The idea is to think of the network map as a graph. The
classical way to model the street network map is: the vertices of the graph represent the
intersections between the streets and the links represent the streets which connect the
intersections. A positive integer number (called weight) can be assigned to any link. In
classical models the weight is the physical length of the street but for the purpose of this
work this weight can be defined as a value of a function with more arguments: the physical
length, the density of the flats/houses, the number of people living there, etc.

We shall denote by G = (V,E) a graph (network) where V = {v1, . . . , vn} is a non-
empty set of n vertices (nodes) and E ⊆ V × V is a set of links (edges) which connect
them. In figure 6 we show an example of a network represented by a graph.

Finding hot spots One method to find possible hot spots for crimes (especially
burglaries) was presented by T. Davies and S. Bishop (2013). A path in a network is
defined as an ordered sequence of vertices such that there exists a link between any two
consecutive vertices. The length of the path is the number of links (for an undirected
graph) or the sum of weights of these links (for a directed graph). The shortest path
between two vertices i and j (if there exists paths between them) is the one with minimal
length. The so called Betweenness centrality is a measure which quantifies how often
individual links are used during journeys through the network. These are the main steps
to calculate this measure:

1. initialize all links with a betweennes centrality of 0;

2. consider all pairs of nodes i and j;

3. for each pair i and j, find the shortest path(s) between them;

4. for every link that appears in the shortest path(s), increment its betweenness cen-
trality by 1/w, where w is the number of shortest paths between i and j

More formally, if σij is the total number of shortest paths between i and j, and σij(e)
is the total number of shortest paths between i and j which contain the link e ∈ E, the
betweenness centrality Cb(e) of a given link can be defined as:

Cb(e) =
∑ σij(e)

σij

for all vertices i, j such that there exists a path between i and j.
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Figure 6: Example network

Spatio-temporal patterns Actually, in this case, instead of a model for a street
network we need a model for the event’s (burglaries) network. Such model was presented
by T. Davis in his PhD Thesis (2015). This model can be firstly represented by means
of two networks: one is based on the distance between two events (spatial proximity) and
the other one is based on the time period between the events (temporal proximity). In
these two networks the events are vertices but the corresponding sets of links are defined
in different ways. If we take two threshold values D (spatial radius) and T (temporal
radius) then

EDd = {(i, j) | dij ≤ D},
and

ETt = {(i, j) | 0 < tij ≤ T}.
Here, if two events occur in a given time period T , they are connected by a directed

link from the earlier event to the later. This is the main difference: GDd is an undirected
graph but GTt is a directed graph.

The undirected graph GDd and the directed graph GTt contain all the relevant infor-
mation related to the set of events. By analysing both networks GDd and GTt , couples of
events i and j which are close in space and time can be found. If the events are close in
both space and time then the corresponding vertices are adjacent. One can now create an
specifically event directed network GDTdt , of pairs which are close in space and time. This
is the event network for the dataset, and it includes a space-time clustering analysis and
it shows relations between events. This new network is the intersection of the spatial and
temporal networks, that is,

EDTdt = {(i, j) | (i, j) ∈ EDd and (i, j) ∈ ETt }.

The relationship between these three networks GDd , G
T
t , GDTdt is presented in Figure 7.

Event network GDTdt is constructed using the other two, but it does not include the whole
information for events from them. For example, if two events are not linked in GDTdt , it
is impossible to know the reason for this disconnection, it could be because there is not a
link in GDd , or G

T
t , or in neither of them.

In Figures 7 and 8 we provide an example with a simple set of event’s data . We can
see there the relation between the spatial network GDd , the temporal network GTt and the
network of space-time pairs or events network GDTdt . The links of the event network GDTdt
appear in the same position for both the spatial network GDd and the temporal network GTt .
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Figure 7: Original data, relationship between the three networks GD
d , G

T
t

and GDT
dt

Figure 7 shows the connection for the original data while figure 8 shows how this can
be changed with a simple permutation σ(where2↔ 6) of temporal data. This can be used
in a Knox test with a Monte-Carlo approach.

Figure 8: Relationship between the three networks under permutation σ
of the temporal data

The Knox test is widely used in studies to detect space-time clustering or interactions
between spatial and temporal distributions of a set of events. The origin of the test is in
the study of childhood leukaemia. According to this concept, events are more likely to be
close in space when they are close in time, and vice versa. The basis for the test is the
concept of existing a close pair of events (close in time and close in space).
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