

HYBRID pH-SENSITIVE NANOPARTICLES AS PLATFORMS FOR DELIVERY OF CURCUMIN

Elena Drakalska, Denitsa Momekova, Stanislav Rangelov, Nikolay Lambov, Bistra Angelovska

Introduction

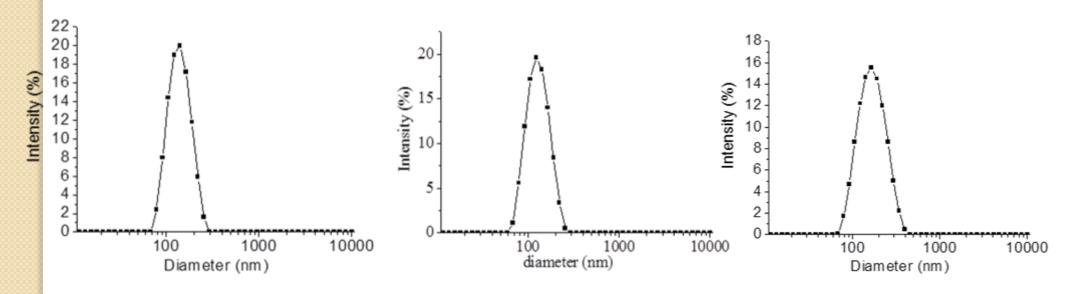
- Pleiotropic antineoplastic activity
- Without toxicity to normal cells

Disadvantages

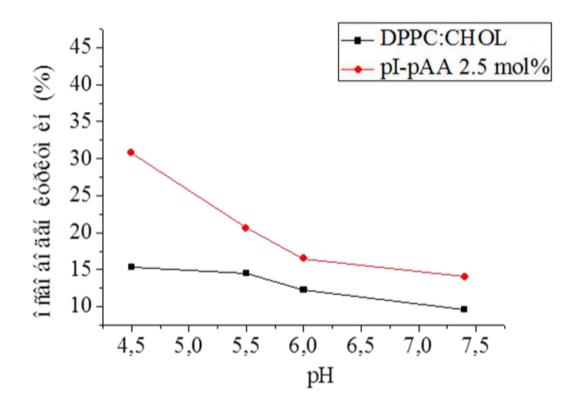
- Poor aqueous solubility (11ng/ml)

- Instability in physiological pH

- Low bioavailability


Approaches for optimization

- Design of nanoparticles


-Incorporation of curcumin into lipid bilayer and aqueous cavity in form of inclusion complex with BEC X

Results

- Monomodal distribution
- Size app.180 nm
- Zeta potential -20mV

In vitro drug release profile

<u>Figure 2.</u> In vitro curcumin release from hybrid non pH sensitive (black) and hybrid pH-sensitive liposomes

Cytotoxicity

- MTT- dye reduction assay
- Panel of human cancer cell lines

Formulations	IC ₅₀ (μmol/L) (n=8)	
	KG-1 ^a	RPMI-8226 ^b
Curcumin (DMSO solution)	$13,45 \pm 2,31$	$2,89 \pm 0,77$
Hybrid pH sensitive liposomes: curcumin	$2,19 \pm 0,71$	$0,59 \pm 0,21$
BEC-X supramolecular aggregates	8,70 ± 1,44	$2,22 \pm 0,79$

Conclusion

These findings give us a reason to conclude that the hybrid pH-sensitive liposomal nanoparticles are promising platforms for curcumin.