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Choban [et al.]. Chişinău : Institute of Mathematics and Com-
puter Science, 2017 (CEP USM ). 572 p.

Antetit.: Acad. of Sci. of Moldova, Inst. of Mathematics and
Computer Science, Moldova State Univ., Fac. of Mathematics
and Computer Science. Referinţe bibliogr. la sfârşitul art. Apare
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On Recursive Derivates of k-ary Operations

Aleksandra Mileva, Vesna Dimitrova

Abstract

We present several results about recursive derivates of k-ary
operations defined on a finite set Q. They are generalizations
of some binary cases given by Larionova-Cojocaru and Syrbu
[5]. Also, we present several experimental results about recursive
differentiability of ternary quasigroups of order 4.

Keywords: recursively differentiable quasigroups, orthogo-
nality

1 Introduction

Let Q be a nonempty set and let k be a positive integer. We will use
(xk

1
) to denote the k-tuple (x1, . . . , xk) ∈ Qk. A k−ary operation f

on the set Q is a mapping f : Qk → Q defined by f : (xk
1
) → xk+1,

for which we write f(xk
1
) = xk+1. A k-ary groupoid (k ≥ 1) is an

algebra (Q, f) on a nonempty set Q as its universe and with one k-ary
operation f . A k-ary groupoid (Q, f) is called a k-ary quasigroup (of
order |Q| = q) if any k of the elements a1, a2, . . . , ak+1 ∈ Q, satisfying
the equality f(ak

1
) = ak+1, uniquely specifies the remaining one.

The k−ary operations f1, f2, . . . , fd, 1 ≤ d ≤ k, defined on a set
Q are orthogonal if the system {fi(x

k
1
) = ai}

d
i=1

has exactly qk−d

solutions for any a1, . . . , ad ∈ Q, where q = |Q| [2]. There is an one-
to-one correspondence between the set of all k-tuples of orthogonal
k-ary operations < f1, f2, . . . , fk > defined on a set Q and the set of
all permutations θ : Qk → Qk ([2]), given by

θ(xk
1
) → (f1(x

k
1
), f2(x

k
1
), . . . , fd(x

k
1
)).
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The k-ary operation Ij , 1 ≤ j ≤ k, defined on Q with Ij(x
k
1
) = xj

is called the j-th selector or the j-th projection.

A system Σ = {f1, f2, . . . , fs}s≥k of k-ary operations is called
orthogonal, if every k operations of Σ are orthogonal. A system
Σ = {f1, f2, . . . , fr}, r ≥ 1 of distinct k−ary operations defined on a set
Q is called strong orthogonal if the system {I1, . . . , Ik, f1, f2, . . . , fr}
is orthogonal, where each Ij , 1 ≤ j ≤ k, is j−th selector. It follows that
each operation of a strong orthogonal system, which is not a selector,
is a k-ary quasigroup operation.

A code C ⊆ Qn is called a complete k-recursive code if there
exists a function f : Qk → Q (1 ≤ k ≤ n) such that every code word
(u0, . . . , un−1) ∈ C satisfies the conditions ui+k = f(ui+k−1

i ) for every
i = 0, 1, . . . , n−k−1, where u0, . . . , uk−1 ∈ Q. It is denoted by C(n, f).

C(n, f) can be represented by

C(n, f) = {(xk1 , f
(0)(xk1), . . . , f

(n−k−1)(xk1)) : (x
k
1) ∈ Qk}

where f (0) = f (0)(xk
1
) = f(xk

1
),

f (1) = f (1)(xk
1
) = f(xk

2
, f (0))

. . .
f (k−1) = f (k−1)(xk

1
) = f(xk, f

(0), . . . , f (k−2))
f (i+k) = f (i+k)(xk

1
) = f(f (i), . . . , f (i+k−1)) for i ≥ 0

are recursive derivatives of f . The general form of the recursive
derivatives for any k-ary operation f is given in [4], and f (n) = fθn,
where θ : Qk → Qk, θ(xk

1
) = (xk

2
, f(xk

1
)).

A k-quasigroup (Q, f) is called recursively t-differentiable if all
its recursive derivatives f (0), . . . , f (t) are k-ary quasigroup operations
[3]. A k-quasigroup (Q, f) is called t-stable if the system of all re-
cursive derivatives f (0) . . . , f (t) of f is an orthogonal system of k-ary
quasigroup operations, i.e. C(k + t + 1, f) is an MDS code [3]. A k-
ary quasigroup (Q, f) is called strongly recursively t-differentiable
if it is recursively t-differentiable and f (t+1) = I1 (introduced for bi-
nary case in [1]). A k-ary quasigroup (Q, f) is strongly recursively
0-differentiable if f (1) = I1.
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2 Main results

The following results are generalisation of binary cases for recursive
derivates from [5].

Proposition 1. Let (Q, f) be a k-ary groupoid. For every (xk
1
) ∈ Qk

the following equalities hold:

f (n)(xk
1
) = f (n−1)(xk

2
, f (0)(xk

1
)),∀n ∈ N

Proposition 2. Let (Q, f) be a k-ary groupoid. For every (xk
1
) ∈ Qk

and for every j = k−1, . . . , n−1, where n ≥ k, the following equalities

hold:

f (n)(xk
1
) = f (n−j−1)(f (j−k+1)(xk

1
), . . . , f (j)(xk

1
))

Proposition 3. If two k-ary groupoids (Q1, f) and (Q2, g) are iso-

morphic, then their recursive derivatives (Q1, f
(n)) and (Q2, g

(n)) are

isomorphic too, for every n ≥ 1.

Proposition 4. If (Q, f) is a k-ary groupoid, then Aut(Q, f) is a

subgroup of Aut(Q, f (n)), for every n ≥ 1.

3 Experimental results for ternary quasigroups

of order 4

By experiments, we obtained the following results:

• there are 96 recursively 1-differentiable ternary quasigroups of
order 4, and all are 1-stable

• there are no recursively t-differentiable ternary quasigroups of
order 4, for t ≥ 2,

• there are 64 strongly recursively 0-differentiable ternary qua-
sigroups of order 4,

• there are 8 strongly recursively 1-differentiable ternary qua-
sigroups of order 4.
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Bellow is an example of strongly recursively 1-differentiable and
1-stable ternary quasigroups of order 4.

{{{1, 2, 3, 4}, {3, 4, 1, 2}, {4, 3, 2, 1}, {2, 1, 4, 3}}, {{2, 1, 4, 3}, {4, 3, 2, 1}, {3, 4, 1, 2}, {1, 2, 3, 4}},

{{3, 4, 1, 2}, {1, 2, 3, 4}, {2, 1, 4, 3}, {4, 3, 2, 1}}, {{4, 3, 2, 1}, {2, 1, 4, 3}, {1, 2, 3, 4}, {3, 4, 1, 2}}}
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