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Abstract — This paper discusses different approaches for 

computing the Walsh spectra on graphics processor unite (GPU) 

using CUDA C. Here we present the results from several 

experiments that evaluate the performance of NVIDIA 

processors, implementing on two GPU with different 

performances. The conclusions from experiments made indicate 

what speed-ups can be expected, when instead of standard CPUs, 

accelerators in the form of presented GPUs are used, for 

considered computational kernels. 
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I.  INTRODUCTION  

The use of modern graphics processing units (GPUs) has 
become attractive for scientific computing which is due to its 
massive parallel processing capability. The GPU’s advanced 
capabilities were originally used primarily for 3D game and 
graphics rendering but today’s modern GPUs are more than 
very efficient devices used for rendering the graphics and 
accelerate the creation of images. Their highly parallel 
structure makes them more effective than general-purpose 
CPU for algorithmic tasks because processing of large blocks 
of data is done in parallel [1] [2]. Compared with multi-core 
CPUs, new generation GPUs can have much higher 
computation power and memory bandwidth. Therefore they 
are attractive in many application areas. Capabilities of GPUs  
are  used  to accelerate  computational  workloads  in  
financial  modeling,  scientific  research,  high  computations, 
oil  and  gas  exploration [3] [4].  One of the most important 
application domains is the linear algebra [5] [6]. 

The purpose of this paper is to assess the performance of 
the recent, inexpensive and widely used NVIDIA GPUs in 
performing Walsh Transforms. Here we experiment with 
different approaches for calculation and present the results of 
these experiments. Also we are focused on reducing the time 
for calculation of Walsh transformations for different sizes of 
the considered elements. Our approach for the calculation of 
the Walsh spectrum is a matrix vector multiplication and the 
mathematical background for this approach will be described 
below in this paper. 

A. Overview of this paper 

In Section II we give a brief introduction in GPU 
Computing model with CUDA. In Section III we present the 

mathematical background for a Walsh. In Section IV, we 
summarize the results and give some conclusions. 

II. GPU COMPUTING MODEL WITH CUDA 

GPUs are designed for efficient execution of thousands of 

threads in parallel on as many processors as possible at each 

moment. The computation processes are divided into many 

simple tasks that can be performed at the same time. This 

intensive multi-threading allows execution of various tasks on 

the GPU processors while data is fetched from or stored to the 

GPU global memory. It also ensures the scalability of the GPU 

computing model, since processors are abstracted as threads, 

and support parallel programming model [7]. 

A. CPU versus GPU 

A simple way to understand the difference between a CPU 
and GPU is to compare how they process tasks. A CPU 
consists of a few cores optimized for sequential serial 
processing while a GPU has a massively parallel architecture 
consisting of thousands of smaller, more efficient cores 
designed for handling multiple tasks simultaneously. This 
ability of a GPU with hundred and more cores to process 
thousands of threads can significantly accelerate the software 
over a CPU. 

B. The CUDA programming model and hardware interface 

Modern NVIDIA GPUs are powerful computing platform 
developed for general purpose computing using CUDA 
(Compute Unified Device Architecture) [8]. It allows 
programmers to interact directly with the GPU and run 
programs on them, thus effectively utilizing the advantages of 
parallelization. Depends of architecture CUDA cores can be 
organized into SMs (streaming multiprocessor), each having a 
set of registers, constants and texture caches, and on-chip 
shared memory as fast as local registers (one cycle latency). 
At any given cycle, each core executes the same instruction on 
different data (SIMD), and communication between 
multiprocessors is performed through global memory. As a 
programming interface, CUDA C is not a new language, it is a 
set of C language library functions with GPU specific 
commands, options and operations [9], and the CUDA-specific 
nvcc compiler generates the executable for the NVIDIA GPU 
from a source code. 



III. WALSH TRANSFORM 

Boolean functions are basic objects in discrete 

mathematics. A Boolean function f  of n  variables is a 

mapping from 
nF2  into 2F , where }1,0{2 F  is a field with 

2 elements. Any Boolean function f of n variables is uniquely 

determined by its truth table, denoted by )( fTT , which is a 

n2 -dimensional vector whose coordinates are the function 

values of f  after the lexicographic ordering of the inputs. We 

denote the Truth Table considered as a vector-column by [f]. 

Associate with the Boolean function f  is the function 

ff 21)1(   whose function values belong to the 

set }1;1{ . The corresponding vector that contains the 

function values of 
f)1( is called polarity truth table (PTT) of 

the function f . In the following, the 12 n
column matrix 

])1[( f  represents the transpose of )( fPTT . We use PTT 

to obtain the Walsh spectrum [17] of a Boolean function. 

Definition 1. The Walsh transform 
Wf of the Boolean 

function f is an integer valued function, defined by 
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 The values of 
Wf are called Walsh coefficients of the 

Boolean function f . To understand the Walsh coefficients, 

we calculate 
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For any Boolean function f and any vector 
nFa 2 we 

have
nWn af 2)(2  . The function xaxfa ,)(   

and 1,)(  xaxf a  have the maximum and minimum 

Walsh coefficients, namely 
nW

af 2  and
nW

af 2 . 

Moreover, if 1)()(  xfxf then 
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Consider the vectors of 
nF2 ordered lexicographically. 

Then we can order the Walsh coefficients )(af W

a and 

consider them as coordinates of a vector. This vector is called 
Walsh spectrum of the Boolean function and denoted by 

][ fW  (consider as a column). Therefore, 

 )5()12(,),1(),0((][  nWWWT

f fffW    

The Walsh spectrum of a Boolean function measures its 
distance to the linear and affine functions [17]. For better 
understanding of this connection, it is necessary to understand 

the )( fTT of the linear Boolean functions.  

Let ])[,],[],([
1210 


n

fffSn  be the matrix whose 

columns are the )( fTT of all linear Boolean functions 

ordered lexicographically. 
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Obviously,    ,,,,, jiSijjijiS nn  for i0 , 

12  nj , which proves that this matrix is symmetric and 

therefore its rows are )( fTT  of all linear functions. Making 

a connection with Coding Theory, we see that actually this 

matrix consists of all code words in the ]2,,2[ 1nn n  binary 

simplex code with added a zero coordinate in the beginning of 
each codeword. 

If we take x,  instead of 
x  for 

12,,1,0  n and replace the column ][ x  by  x, , 

the matrix nA  goes to nS . Where the matrix nA  is a binary 

matrix of size 
nn 22   with determinant 1 [17]. Therefore, 

we can expect that after some transformations we can have a 
more effective algorithm. 
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According to equation (7) we obtain following equation 
for Walsh spectrum: 
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Where jiH
ji

n ,))1((
,

 is a 
nn 22  matrix. 

It is obvious that the matrix nH  can be obtained from nS by 

replacing zeros with 1’s and ones with -1’s. Taking in mind 

that the first coordinate of i  is 0 if 
12  ni and 1 otherwise, 

we have 
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The matrix nH is a Hadamard matrix of Sylvester type called 

also Sylvester matrix or Walsh matrix [10]. Using that nH  is 

symmetric and nIHH nT

nn 2
2  we obtain that  

 12
2

11

nnn HH 
. 

A good survey on Hadamard matrices can be downloaded 

from Encyclopedia of Design Theory [10]. 

 

IV. EXPERIMENTAL EVALUATION 

The experiments that we run are the following: 

a) ])1[(][ f

nf HW   on CPU versus GPU 

b) ])1[(][ f

nf HW   different version of GPU 

program implementation with global memory, 
shared memory  

c) ])1[(][ f

nf HW   on GPU use cuBLAS 

library [7] 

While the first one is used to check the validity of the 
performance of equation (8) implementation, the second one is 
often an underrepresented experiment that sheds light on the 
issue of the quality of the speed up reported and third we use 
special library for Basic Linear Algebra Subroutines. 

The experiments were performed using an two different 
computer configuration the first was with Intel i3-3110M [11] 
with 2.4 GHz and 4 GB of RAM and NVIDIA GeForce GT 
740M [12], cards  with  a  total of  384 cores running at 0.9 
GHz and a 28.8 GB/sec memory bandwidth and Intel 
Pentium®4 [13] with 3.0 GHz and 2 GB of RAM and 
NVIDIA GeForce GTS 450 [14], cards with a total of  192 
cores running at 1.56 GHz and a 57.7 GB/sec memory 
bandwidth. The CUDA [8] kernel were developed using MS 
Visual Studio 2010. 

We can use several metrics for evaluating the performance. 
Here, we are focused only on execution time for computing 
the Walsh spectrum. From the previous section we can say 
that Walsh spectrum can calculate like matrix vector 
multiplication, where matrix is a Hadamard matrix, and vector 
is array of ±1 and from our experiment is a random array. 

A graphic representation of results from [Wf] calculations 
are shown in figure 1 (1. CPU WT ([Wf], i3-3110M), 2. CPU 
WT ([Wf], Pentium®4). Results are as expected, we obtained 
faster calculation and better performance for [Wf] with CPU 
i3-3110M (because of the resolution of the picture, the 
difference for small sizes is difficult to be noticed).  We used 
Visual Studio 2010, Active solution configuration Release and 
Active solution platform Win32. 

 

Fig. 1. Time for calculating [Wf] on CPU for different sizes 



Results from calculations of Walsh spectra using GPU are 
shown in Figure 2. In this figure are shown calculations with 
different GPU program implementation: 1. GPU MV (GT 
740M), 2. GPU MV (GTS 450) (this is simple Matrix vector 
multiplication [6]), 1. GPU MV-SM (GT 740M), 2. GPU MV-
SM (GTS 450) (here we have matrix vector multiplication 
with shared memory - shown as Algorithm 1), and 1. cuBLAS 
(GT 740M), 2. cuBLAS (GTS 450) (here we use GPU-
accelerated version of the complete standard BLAS - Basic 
Linear Algebra Subroutines library [15][16]). In this case we 
also used Visual Studio 2010, Active solution configuration 
Release, Active solution platform Win32. 

 

Fig. 2. Time for calculating [Wf] on GPU for different sizes 

 

Algorithm 1. CUDA matrix-vector product algorithm with shared memory 

__global__ void  mv_kernel(float * A_G, float * 
x_G, float * y_G, int n) 
{ 
//@@ Insert code to implement matrix vector here 
   __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH]; 
   __shared__ float Xds[TILE_WIDTH]; 
   int bx = blockIdx.x, by = blockIdx.y, 
   tx = threadIdx.x, ty = threadIdx.y, 
   Row = by * TILE_WIDTH + ty, 
   Col = bx * TILE_WIDTH + tx; 
   float Pvalue = 0; 
  
   for (int m = 0; m < (n-1)/TILE_WIDTH+1; ++m)  
 { 
 if (Row < n && m*TILE_WIDTH+tx < n) 
 ds_M[ty][tx] = A_G[Row*n +m*TILE_WIDTH+tx]; 
 else 
 ds_M[ty][tx] = 0; 
 
 if(m*TILE_WIDTH + tx < n) 
 Xds[tx] = x_G[m*TILE_WIDTH + tx];  
        else 
       Xds[tx] = 0; 
   __syncthreads(); 
        for (int k = 0; k < TILE_WIDTH; ++k) 
 Pvalue += ds_M[ty][k] * Xds[k]; 
   __syncthreads(); 
        } 
        if (Row < n && Col < 1) 
        y_G[Row*1+Col] = Pvalue; 
} 
 

The comparison between the fastest implementation from 
the experimented sequential program is shown in Figure 3: 1. 
CPU WT ( i3-3110M), and run-time of the parallel algorithm 
2. cuBLASGPU (GTS 450). For this comparison we use the 
same Visual Studio and configurations. 

 

Fig. 3. Comparison of times between CPU with fast time and GPU with 
fast time 

 

Speed up is defined by: 
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Let ),1( nT be the run-time of the fastest known sequential 

algorithm and let )(npT be the run-time of the parallel 

algorithm, where n is the size of the input. 

TABLE I.  CPU VS. GPU SPEED UP FOR DIFFERENT SIZE 

Size 1.CPU WT 2. cuBLAS Speed up 

8 0,000855 0,00947 / 

16 0,001283 0,01053 / 

32 0,005559 0,00989 / 

64 0,017105 0,00995 1,7191 

128 0,057730 0,01651 3,4967 

256 0,211674 0,02966 7,1367 

512 0,879621 0,06458 13,621 

1024 4,496460 0,22896 19,639 

2048 9,838760 0,86227 11,410 

4096 18,98730 3,47539 5,4634 

 

Table 1 shows the speed ups for different sizes of the 
matrix. An important conclusion is that the GPU processing 
makes sense only for large size problems. It is important the 
prices of buffer creation and transfers to be acceptable, so in 
this particular case when GPU is used, the experiment shows 
that the size of the input has to be ≥ 64 which means that for  
matrix vector multiplication the dimension of the vector (and 
the size of the matrix is  ≥ 64). CPU is faster for small 
problems and can work faster than couple threads, which is the 
reason for this limitation. For larger sizes more threads are 



used and therefore the computation is faster than in the case of 
sequential programming. However, there are boundaries 
which depend on several things (the problem, the algorithm, 
GPUs, the libraries, the model, etc.). 

In our experiment with CUDA C program without using 
library cuBLAS we have fixed the number of threads per 
block (32 threads per block) and different number of blocks. 
The usage of different configurations of grid will be in the 
focus of our next research and other similar experiments. 

Here, in our experiment we used sequential algorithm for 
generating of Hadamard matrix. We can implement parallel 
algorithm for generation of Hadamard matrix. That also is part 
of our planed future research.  

CONCLUSION  

In this paper we proposed a performance model for 
computing Walsh transform with wide use NVIDIA GPU by 
using popular models in the parallel algorithm community. In 
this paper we presented the effect of considering a CPU versus 
GPU speed up contrasted by the use of GPU versus GPU 
speed up measures. Wide used modern GPU has become 
attractive for scientific computing. This is one of the many 
examples and here we can see the benefits of using it. Note 
that here we use low class of GPU. 

This experiment shows that algorithms proposed for 
matrix-vector product (Walsh transform), in CUDA, still can 
be improved. By choosing proper matrix sizes and appropriate 
methods one can get increased efficiency and improved 
performances. This is a part of our planed future research.  
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