
Using GPU matrix vector multiplication for

computing Walsh spectra

Dusan Bikov, Aleksandra Stojanova

Faculty of Computer Science

“Goce Delcev” University -UGD

Stip, Macedonia

{dusan.bikov, aleksandra.stojanova}@ugd.edu.mk

Abstract — This paper discusses different approaches for

computing the Walsh spectra on graphics processor unite (GPU)

using CUDA C. Here we present the results from several

experiments that evaluate the performance of NVIDIA

processors, implementing on two GPU with different

performances. The conclusions from experiments made indicate

what speed-ups can be expected, when instead of standard CPUs,

accelerators in the form of presented GPUs are used, for

considered computational kernels.

Keywords — Walsh transforms, Hadamard matrix, CUDA,

GPU

I. INTRODUCTION

The use of modern graphics processing units (GPUs) has
become attractive for scientific computing which is due to its
massive parallel processing capability. The GPU’s advanced
capabilities were originally used primarily for 3D game and
graphics rendering but today’s modern GPUs are more than
very efficient devices used for rendering the graphics and
accelerate the creation of images. Their highly parallel
structure makes them more effective than general-purpose
CPU for algorithmic tasks because processing of large blocks
of data is done in parallel [1] [2]. Compared with multi-core
CPUs, new generation GPUs can have much higher
computation power and memory bandwidth. Therefore they
are attractive in many application areas. Capabilities of GPUs
are used to accelerate computational workloads in
financial modeling, scientific research, high computations,
oil and gas exploration [3] [4]. One of the most important
application domains is the linear algebra [5] [6].

The purpose of this paper is to assess the performance of
the recent, inexpensive and widely used NVIDIA GPUs in
performing Walsh Transforms. Here we experiment with
different approaches for calculation and present the results of
these experiments. Also we are focused on reducing the time
for calculation of Walsh transformations for different sizes of
the considered elements. Our approach for the calculation of
the Walsh spectrum is a matrix vector multiplication and the
mathematical background for this approach will be described
below in this paper.

A. Overview of this paper

In Section II we give a brief introduction in GPU
Computing model with CUDA. In Section III we present the

mathematical background for a Walsh. In Section IV, we
summarize the results and give some conclusions.

II. GPU COMPUTING MODEL WITH CUDA

GPUs are designed for efficient execution of thousands of

threads in parallel on as many processors as possible at each

moment. The computation processes are divided into many

simple tasks that can be performed at the same time. This

intensive multi-threading allows execution of various tasks on

the GPU processors while data is fetched from or stored to the

GPU global memory. It also ensures the scalability of the GPU

computing model, since processors are abstracted as threads,

and support parallel programming model [7].

A. CPU versus GPU

A simple way to understand the difference between a CPU
and GPU is to compare how they process tasks. A CPU
consists of a few cores optimized for sequential serial
processing while a GPU has a massively parallel architecture
consisting of thousands of smaller, more efficient cores
designed for handling multiple tasks simultaneously. This
ability of a GPU with hundred and more cores to process
thousands of threads can significantly accelerate the software
over a CPU.

B. The CUDA programming model and hardware interface

Modern NVIDIA GPUs are powerful computing platform
developed for general purpose computing using CUDA
(Compute Unified Device Architecture) [8]. It allows
programmers to interact directly with the GPU and run
programs on them, thus effectively utilizing the advantages of
parallelization. Depends of architecture CUDA cores can be
organized into SMs (streaming multiprocessor), each having a
set of registers, constants and texture caches, and on-chip
shared memory as fast as local registers (one cycle latency).
At any given cycle, each core executes the same instruction on
different data (SIMD), and communication between
multiprocessors is performed through global memory. As a
programming interface, CUDA C is not a new language, it is a
set of C language library functions with GPU specific
commands, options and operations [9], and the CUDA-specific
nvcc compiler generates the executable for the NVIDIA GPU
from a source code.

III. WALSH TRANSFORM

Boolean functions are basic objects in discrete

mathematics. A Boolean function f of n variables is a

mapping from
nF2 into 2F , where }1,0{2 F is a field with

2 elements. Any Boolean function f of n variables is uniquely

determined by its truth table, denoted by)(fTT , which is a

n2 -dimensional vector whose coordinates are the function

values of f after the lexicographic ordering of the inputs. We

denote the Truth Table considered as a vector-column by [f].

Associate with the Boolean function f is the function

ff 21)1( whose function values belong to the

set }1;1{ . The corresponding vector that contains the

function values of
f)1( is called polarity truth table (PTT) of

the function f . In the following, the 12 n
column matrix

])1[(f represents the transpose of)(fPTT . We use PTT

to obtain the Walsh spectrum [17] of a Boolean function.

Definition 1. The Walsh transform
Wf of the Boolean

function f is an integer valued function, defined by

 1)1()(

2

,)(







nFx

xaxfW af

 The values of
Wf are called Walsh coefficients of the

Boolean function f . To understand the Walsh coefficients,

we calculate

 2)()(,)(xfxfxaxf a

where nna xaxaxaxf  2211)(.

Hence,

 3),(22

)}()(,{#)}()(,{#

)1(1)1()(

22

)()(,)()(,

)()(

222

aH

n

a

n

a

n

xfxfFxxfxfFxFx

xfxfW

ffd

xfxfFxxfxfFx

af

a
n

a
nn

a





 




For any Boolean function f and any vector
nFa 2 we

have
nWn af 2)(2  . The function xaxfa ,)(

and 1,)( xaxf a have the maximum and minimum

Walsh coefficients, namely
nW

af 2 and
nW

af 2 .

Moreover, if 1)()( xfxf then

)4()()1(

)1()1()(

2

22

,)(

,)(1,)(

af

af

W

Fx

xaxf

Fx

xaxf

Fx

xaxfW

n

nn





















Consider the vectors of
nF2 ordered lexicographically.

Then we can order the Walsh coefficients)(af W

a and

consider them as coordinates of a vector. This vector is called
Walsh spectrum of the Boolean function and denoted by

][fW (consider as a column). Therefore,

)5()12(,),1(),0((][ nWWWT

f fffW 

The Walsh spectrum of a Boolean function measures its
distance to the linear and affine functions [17]. For better
understanding of this connection, it is necessary to understand

the)(fTT of the linear Boolean functions.

Let])[,],[],([
1210 


n

fffSn  be the matrix whose

columns are the)(fTT of all linear Boolean functions

ordered lexicographically.

 6

12,1212,10

1,121,10

000

]),12[,],,1[],,0([




























nnn

n

n

n xxxS











Obviously,    ,,,,, jiSijjijiS nn  for i0 ,

12  nj , which proves that this matrix is symmetric and

therefore its rows are)(fTT of all linear functions. Making

a connection with Coding Theory, we see that actually this

matrix consists of all code words in the]2,,2[1nn n binary

simplex code with added a zero coordinate in the beginning of
each codeword.

If we take x, instead of
x for

12,,1,0  n and replace the column][x by  x, ,

the matrix nA goes to nS . Where the matrix nA is a binary

matrix of size
nn 22  with determinant 1 [17]. Therefore,

we can expect that after some transformations we can have a
more effective algorithm.

 7)1()1()1()()(,,)(

22

xf

Fx

xa

Fx

xaxfW

nn

af  




According to equation (7) we obtain following equation
for Walsh spectrum:

 

   8)1(

)1(

)1(

)1(

)1()1(0

)1()1(0

000

)1()1(

)1()1(

)1(

)12(

)1(

)0(

)12(

)1(

)0(

12,1212,1

1,121,1

)(
,12

)(,1

)(

2

2

2

f

n

f

f

f

xf

Fx

x

xf

Fx

x

Fx

xf

nW

W

W

f

H

f

f

f

W

n
nnn

n

n

n

n

n


















































































































































Where jiH
ji

n ,))1((
,

 is a
nn 22  matrix.

It is obvious that the matrix nH can be obtained from nS by

replacing zeros with 1’s and ones with -1’s. Taking in mind

that the first coordinate of i is 0 if
12  ni and 1 otherwise,

we have

 9

2,2,2,21

2,2,2,2

2,2,2,

,

1111

1111

111



























nnnn

nnnn

nnn

jiji

jiji

jiji

ji

From equations (9) and (8), it follows that

 10
11

11















nn

nn

n
HH

HH
H

and the matrix nH can be defined recursively as

 ,10 H ,
11

11
1 










H 














11

11

nn

nn

n
HH

HH
H

 112,11   nHH n

The matrix nH is a Hadamard matrix of Sylvester type called

also Sylvester matrix or Walsh matrix [10]. Using that nH is

symmetric and nIHH nT

nn 2
2 we obtain that

 12
2

11

nnn HH 
.

A good survey on Hadamard matrices can be downloaded

from Encyclopedia of Design Theory [10].

IV. EXPERIMENTAL EVALUATION

The experiments that we run are the following:

a)])1[(][f

nf HW  on CPU versus GPU

b)])1[(][f

nf HW  different version of GPU

program implementation with global memory,
shared memory

c)])1[(][f

nf HW  on GPU use cuBLAS

library [7]

While the first one is used to check the validity of the
performance of equation (8) implementation, the second one is
often an underrepresented experiment that sheds light on the
issue of the quality of the speed up reported and third we use
special library for Basic Linear Algebra Subroutines.

The experiments were performed using an two different
computer configuration the first was with Intel i3-3110M [11]
with 2.4 GHz and 4 GB of RAM and NVIDIA GeForce GT
740M [12], cards with a total of 384 cores running at 0.9
GHz and a 28.8 GB/sec memory bandwidth and Intel
Pentium®4 [13] with 3.0 GHz and 2 GB of RAM and
NVIDIA GeForce GTS 450 [14], cards with a total of 192
cores running at 1.56 GHz and a 57.7 GB/sec memory
bandwidth. The CUDA [8] kernel were developed using MS
Visual Studio 2010.

We can use several metrics for evaluating the performance.
Here, we are focused only on execution time for computing
the Walsh spectrum. From the previous section we can say
that Walsh spectrum can calculate like matrix vector
multiplication, where matrix is a Hadamard matrix, and vector
is array of ±1 and from our experiment is a random array.

A graphic representation of results from [Wf] calculations
are shown in figure 1 (1. CPU WT ([Wf], i3-3110M), 2. CPU
WT ([Wf], Pentium®4). Results are as expected, we obtained
faster calculation and better performance for [Wf] with CPU
i3-3110M (because of the resolution of the picture, the
difference for small sizes is difficult to be noticed). We used
Visual Studio 2010, Active solution configuration Release and
Active solution platform Win32.

Fig. 1. Time for calculating [Wf] on CPU for different sizes

Results from calculations of Walsh spectra using GPU are
shown in Figure 2. In this figure are shown calculations with
different GPU program implementation: 1. GPU MV (GT
740M), 2. GPU MV (GTS 450) (this is simple Matrix vector
multiplication [6]), 1. GPU MV-SM (GT 740M), 2. GPU MV-
SM (GTS 450) (here we have matrix vector multiplication
with shared memory - shown as Algorithm 1), and 1. cuBLAS
(GT 740M), 2. cuBLAS (GTS 450) (here we use GPU-
accelerated version of the complete standard BLAS - Basic
Linear Algebra Subroutines library [15][16]). In this case we
also used Visual Studio 2010, Active solution configuration
Release, Active solution platform Win32.

Fig. 2. Time for calculating [Wf] on GPU for different sizes

Algorithm 1. CUDA matrix-vector product algorithm with shared memory

__global__ void mv_kernel(float * A_G, float *
x_G, float * y_G, int n)
{
//@@ Insert code to implement matrix vector here
 __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
 __shared__ float Xds[TILE_WIDTH];
 int bx = blockIdx.x, by = blockIdx.y,
 tx = threadIdx.x, ty = threadIdx.y,
 Row = by * TILE_WIDTH + ty,
 Col = bx * TILE_WIDTH + tx;
 float Pvalue = 0;

 for (int m = 0; m < (n-1)/TILE_WIDTH+1; ++m)
 {
 if (Row < n && m*TILE_WIDTH+tx < n)
 ds_M[ty][tx] = A_G[Row*n +m*TILE_WIDTH+tx];
 else
 ds_M[ty][tx] = 0;

 if(m*TILE_WIDTH + tx < n)
 Xds[tx] = x_G[m*TILE_WIDTH + tx];
 else
 Xds[tx] = 0;
 __syncthreads();
 for (int k = 0; k < TILE_WIDTH; ++k)
 Pvalue += ds_M[ty][k] * Xds[k];
 __syncthreads();
 }
 if (Row < n && Col < 1)
 y_G[Row*1+Col] = Pvalue;
}

The comparison between the fastest implementation from
the experimented sequential program is shown in Figure 3: 1.
CPU WT (i3-3110M), and run-time of the parallel algorithm
2. cuBLASGPU (GTS 450). For this comparison we use the
same Visual Studio and configurations.

Fig. 3. Comparison of times between CPU with fast time and GPU with
fast time

Speed up is defined by:

 13
)(

),1(

np

n

p
T

T
S 

Let),1(nT be the run-time of the fastest known sequential

algorithm and let)(npT be the run-time of the parallel

algorithm, where n is the size of the input.

TABLE I. CPU VS. GPU SPEED UP FOR DIFFERENT SIZE

Size 1.CPU WT 2. cuBLAS Speed up

8 0,000855 0,00947 /

16 0,001283 0,01053 /

32 0,005559 0,00989 /

64 0,017105 0,00995 1,7191

128 0,057730 0,01651 3,4967

256 0,211674 0,02966 7,1367

512 0,879621 0,06458 13,621

1024 4,496460 0,22896 19,639

2048 9,838760 0,86227 11,410

4096 18,98730 3,47539 5,4634

Table 1 shows the speed ups for different sizes of the
matrix. An important conclusion is that the GPU processing
makes sense only for large size problems. It is important the
prices of buffer creation and transfers to be acceptable, so in
this particular case when GPU is used, the experiment shows
that the size of the input has to be ≥ 64 which means that for
matrix vector multiplication the dimension of the vector (and
the size of the matrix is ≥ 64). CPU is faster for small
problems and can work faster than couple threads, which is the
reason for this limitation. For larger sizes more threads are

used and therefore the computation is faster than in the case of
sequential programming. However, there are boundaries
which depend on several things (the problem, the algorithm,
GPUs, the libraries, the model, etc.).

In our experiment with CUDA C program without using
library cuBLAS we have fixed the number of threads per
block (32 threads per block) and different number of blocks.
The usage of different configurations of grid will be in the
focus of our next research and other similar experiments.

Here, in our experiment we used sequential algorithm for
generating of Hadamard matrix. We can implement parallel
algorithm for generation of Hadamard matrix. That also is part
of our planed future research.

CONCLUSION

In this paper we proposed a performance model for
computing Walsh transform with wide use NVIDIA GPU by
using popular models in the parallel algorithm community. In
this paper we presented the effect of considering a CPU versus
GPU speed up contrasted by the use of GPU versus GPU
speed up measures. Wide used modern GPU has become
attractive for scientific computing. This is one of the many
examples and here we can see the benefits of using it. Note
that here we use low class of GPU.

This experiment shows that algorithms proposed for
matrix-vector product (Walsh transform), in CUDA, still can
be improved. By choosing proper matrix sizes and appropriate
methods one can get increased efficiency and improved
performances. This is a part of our planed future research.

REFERENCES

[1] D. Gajic, R. Stankovic “GPU Accelerated Computation of Fast Spectral

Transforms”, Facta universitatis (Nis) Electronics and Energetics 2011
Volume 24, Issue 3, Pages: 483-499, 2011

[2] D. A. Jamshidi, M. Samadi, S. Mahlke, “D2MA: accelerating coarse-
grained data transfer for GPUs ” PACT '14 Proceedings of the 23rd

international conference on Parallel architectures and compilation Pages
431-442, ISBN: 978-1-4503-2809-8, 2014.

[3] A. Mahajan, M.Chanana, D. Sharma, K.Sachdeva “General purpose
computing on Graphical Processing Unit: extending parallel
processing”, International Journal of Advanced Research in IT and
Engineering, ISSN: 2278-6244, Vol. 2 ,No. 11, November 2013

[4] J. Zhong, B. He “Kernelet: High-Throughput GPU Kernel Executions
with Dynamic Slicing and Scheduling”, IEEE Transactions on Parallel
and Distributed Systems, Volume 25 Issue 6, June 2014

[5] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips. “GPU Computing”. Proceedings of the IEEE, 96(5):879–899,
May 2008.

[6] P. Maciol and Krzysztof Banas. "Testing tesla architecture for scientific
computing: The performance of matrix-vector product." In Computer
Science and Information Technology, 2008. IMCSIT 2008. International
Multiconference on, pp. 285-291. IEEE, 2008.

[7] NVIDIA, OpenCL Programming Guide for the CUDA Architecture,
2011.

[8] CUDA homepage: http://www.nvidia.com/object/cuda_home_new.html.

[9] CUDA Programming Guide:
http://docs.nvidia.com/cuda/#axzz3HNpg3SNW.

[10] P. J. Cameron, Hadamard matrices, Encyclopaedia of Design Theory.
2006. Available from: http://designtheory.org/library/encyc/.

[11] i3-3110M specification [Online]. Available:
http://ark.intel.com/products/65700/Intel-Core-i3-3110M-Processor-3M-
Cache-2_40-GHz.

[12] NVIDIA GeForce GT 740M specification [Online]. Available:
http://www.geforce.com/hardware/notebook-gpus/geforce-gt-
740m/specifications.

[13] Pentium®4 specification [Online]. Available:
http://ark.intel.com/products/27508/Intel-Pentium-4-Processor-
supporting-HT-Technology-3_00E-GHz-1M-Cache-800-MHz-FSB.

[14] NVIDIA GeForce GTS 450 specification [Online]. Available:
http://www.geforce.com/hardware/desktop-gpus/geforce-gts-
450/specifications.

[15] A. Chrzeszczyk, Kielce, J. Chrzeszczyk, “Matrix computations on the
GPU CUBLAS and MAGMA by example”, book, August, 2013.

[16] cuBLAS library [Online]. Available:
https://developer.nvidia.com/cublas.

[17] Carlet C. (2010), Boolean Functions for Cryptography and Error
Correcting Codes. In: Crama C, Hammer PL, (Eds.), Boolean Models
and Methods in Mathematics, Computer Science, and Engineering,
Cambridge University Press, 257–397.

http://www.researchgate.net/researcher/7400598_Radomir_S_Stankovic
http://www.nvidia.com/object/cuda_home_new.html
http://docs.nvidia.com/cuda/#axzz3HNpg3SNW
http://designtheory.org/library/encyc/
http://ark.intel.com/products/65700/Intel-Core-i3-3110M-Processor-3M-Cache-2_40-GHz
http://ark.intel.com/products/65700/Intel-Core-i3-3110M-Processor-3M-Cache-2_40-GHz
http://www.geforce.com/hardware/notebook-gpus/geforce-gt-740m/specifications
http://www.geforce.com/hardware/notebook-gpus/geforce-gt-740m/specifications
http://ark.intel.com/products/27508/Intel-Pentium-4-Processor-supporting-HT-Technology-3_00E-GHz-1M-Cache-800-MHz-FSB
http://ark.intel.com/products/27508/Intel-Pentium-4-Processor-supporting-HT-Technology-3_00E-GHz-1M-Cache-800-MHz-FSB
http://www.geforce.com/hardware/desktop-gpus/geforce-gts-450/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gts-450/specifications
https://developer.nvidia.com/cublas

