
Journal of Computer and Communications, 2017, 5, 98-111
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2017.55008 March 31, 2017

Steganography of Hypertext Transfer Protocol
Version 2 (HTTP/2)

Biljana Dimitrova, Aleksandra Mileva

Faculty of Computer Science, University Goce Delčev, Štip, Republic of Macedonia

Abstract
Network steganography consists of different steganographic technics that utilize
network protocols for hiding data. We present nine new covert channels which
utilize the new standard, HTTP/2, and which can be used regardless its trans-
port carrier (TLS or clear TCP). These covert channels use a protocol feature
that has dual nature (for example, no padding can be represented in two ways);
or a feature that is not mandatory (as streams prioritization and dependencies);
or random value field (as PING frame payload field); or there is no strict rule
how to obtain new values for some fields (as stream identifiers). As far as we
know, this is the first research about hiding data in HTTP/2. Also, we give a
small survey of existing covert channels that can be created using HTTP/1.x,
with the analysis do they work or not work with the HTTP/2.

Keywords
Network Steganography, Network Security, Information Hiding, Covert Channels

1. Introduction

Network steganography is the art of hiding secret data in legitimate transmis-
sions in communication networks without destroying the used hidden data car-
rier [1]. Usually it deploys different network protocols as carriers, while trying to
conceal the presence of hidden data from network devices. The main area of
study in the modern steganography, consequently are in the network stegano-
graphy, also, are the covert channels. A covert channel is any communication
channel that can be exploited by a process to transfer information in a manner
that violates the systems security policy [2]. Network-based covert channels can
be used illegally to coordinate distributed denial of service attacks or spreading
of malware (e.g., the worm W32. Morto used DNS records to communicate with
its command and control server), for secret communication between terrorists

How to cite this paper: Dimitrova, B. and
Mileva, A. (2017) Steganography of Hyper-
text Transfer Protocol Version 2 (HTTP/2).
Journal of Computer and Communications,
5, 98-111.
https://doi.org/10.4236/jcc.2017.55008

Received: February 22, 2017
Accepted: March 28, 2017
Published: March 31, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2017.55008
http://www.scirp.org
https://doi.org/10.4236/jcc.2017.55008
http://creativecommons.org/licenses/by/4.0/

B. Dimitrova, A. Mileva

99

and criminals, industrial espionage, but also legally, for circumvention of the li-
mitation in using Internet in some countries (e.g., Infranet [3]), secure network
management communication [4], copyright protection, etc.

One possible classification of network steganography methods is given in [5],
where three broad groups are separated:
• Methods that modify protocol data unit (PDU), including fields with proto-

col control information from protocol header or/and the protocol payload.
• Methods that modify the structure of PDU streams, by PDU reordering, in-

tentional losses, use of inter-packet delays, modification of timestamps, etc.
• Hybrid methods, which involve a combination of previous two types of me-

thods.
The best choices of network protocols as a carrier of secret data are the most

popular and most used protocols, so, the Hypertext Transfer Protocol (HTTP)
arises as a natural choice. While the Web has dramatically evolved over the last
two decades, in its bloodstream, the HTTP/1.1 till 2014 has remained without
modification from its standardization in RFC 2068 in 1997 and its improve-
ments in RFC 2616 in 1999. Previous years showed many shortcomings and in-
flexibilities in HTTP/1.1 when coping with new web technologies. In June 2014,
the HTTPbis Working Group of the IETF released an updated specification
from six parts (RFC 7230-5) and in May 2015 released a new major version
HTTP/2 in RFC 7540. HTTP/2 is a binary protocol and it brings many im-
provements and benefits, compared to its predecessor, like:
a) Multiplexing and concurrency: Several HTTP requests can be sent on the

same TCP connection as separate streams, and their responses can be re-
ceived out of order in the same streams. This feature eliminates the need for
multiple TCP connections between the client and the server;

b) Server push: If the server has a knowledge that some resources are needed
and will be requested later for a given web site, the server can send these re-
sources without a request, and the client will cache the resources till later;

c) Header compression: HTTP header size is drastically reduced using special
frames and compression;

d) Stream dependencies and priorities: The client can indicate to the server,
which of the streams are more important than the others, and need to be de-
livered first.

HTTP/2 is the newest member of the TCP/IP protocol suite built with security
in mind, but still in his design there are many dualities, that can be used for
building covert channels. These dualities come from the possibilities that some
feature can be obtained in more than one way, or deployment of that feature is
not mandatory. Interesting, designers of HTTP/2 learned how to deal with co-
vert channels that use the header fields with random padding or reserved fields,
by setting them to zero, or with covert channels that use PDU reordering, by
making the order of the frames for header block to matter, but still they leave
many ways how to build a covert channel. In this paper, we present several co-
vert channels that can be created using the HTTP/2. The main HTTP/2 functio-

B. Dimitrova, A. Mileva

100

nalities and concepts are presented in Section 2. Section 3 presents different ex-
isting covert channels that can be created using HTTP/1.x, additionally with the
explanation do they work/not work with the new version also. The main Section
4 describes nine groups of new covert channels in HTTP/2, that can be used re-
gardless its transport carrier (TLS or clear TCP).

2. How HTTP/2 Works?

HTTP/2 retains the same semantics as HTTP/1.1 and does not make any
changes in its basic concepts and functionality. It provides an optimized trans-
portation mechanism for HTTP/1.1 requests/responses by changing the syntax
how these semantics are conveyed. The main difference between the two proto-
cols is that HTTP/2 is a binary protocol. HTTP/2 connection is a TCP connec-
tion between client and server which consists of three elements:
• Stream: A bidirectional flow that carries messages between the endpoints;
• Message: Logical HTTP message consisting of one or more frames;
• Frame: The smallest unit of communication that carries the specific type of

data.
HTTP/2 connection can carry many independent bidirectional streams, where

many streams can exchange messages in parallel. Each message is separated into
smaller frames that are sent to the endpoint. Each frame transmitted via HTTP/2
is associated to a stream, and all streams are assigned to stream identifiers that
are unique and cannot be used by other streams. There are 10 different types of
frames consisting of fixed 9-octet header and variable-length payload which de-
pends on the frame type. Each frame consists from a header and a payload. Each
frame header further contains the following fields: 24-bit Length (of frame payl-
oad), 8-bit Type (of frame), 8-bit Flags, 1-bit reserved field (R) and 31-bit Stream
Identifier. This is presented with connection lines between the header and its
components on Figure 1.

HTTP/2 compresses header metadata in order of reducing overhead and im-
proves performance using a new compressor HPACK. Types of frames that are
used in HTTP/2 are: DATA, HEADERS, PRIORITY, RST STREAM, SETTINGS,
PUSH PROMISE, PING, GOAWAY, WINDOWS UPDATE and CONTINUATION.
RST STREAM and GOAWAY frames contain error codes that are used for indi-
cation of errors relating to any particular stream or for the entire connection.
The order in which frames are sent from one stream is of great importance, be-
cause the recipient processes within the order in which they are received.

HTTP/2 connection is initiated by the client by first sending a request to the
server to determine whether the server supports HTTP/2. This process is differ-
ent for “http” and “https” URIs, where identification of protocols is made with
different identifiers. String “h2” is used to identify use of HTTP/2 over TLS and
string “h2c” for HTTP/2 over clear TCP. When client wants to use regular,
non-encrypted channel, it must use an HTTP Upgrade mechanism to negotiate
the protocol. The client first sends HTTP/1.1 request that contains Upgrade
header field with the “h2c” token and a HTTP2-Setting header field (Figure 2).

B. Dimitrova, A. Mileva

101

Figure 1. Frame layout.

Figure 2. Upgrading from HTTP/1.1 to HTTP/2.

B. Dimitrova, A. Mileva

102

When the server does not support HTTP/2, it responds with an HTTP 1.1 re-
sponse where the Upgrade header field is absent. On the contrary, by sending a
101 Switching Protocols response, the server confirms the upgrade and begins
sending HTTP/2 frames. As a final confirmation of the protocol, the client and
the server must establish the settings of the connection by sending different
connection preface. The client connection preface starts with fix 24-octets se-
quence, followed by a potentially empty SETTINGS frame, and the server an-
swers with connection preface which consists of a potentially empty SETTINGS
frame. After establishment of the connection, the client and the server exchange
frames of any type. By sending GOAWAY frame the endpoints gracefully close
the connection and after receiving all frames from previously establish streams,
data are no longer sent. For closing any particular stream, either endpoint can
send: RST STREAM frame or frame that contains END STREAM flag.

3. Covert Channels in Previous Versions of the HTTP/2

One interesting feature of HTTP in the protocol description is the absence of
limits on the sizes of the URI string, HTTP header or HTTP message body.
Usually different limitations are introduced in different implementations. For
example, Apache servers accept HTTP headers with size up to 8 KB, and IIS up
to 8 KB or 16 KB depending on the version.

Many of the existing steganographic methods for HTTP/1.x are suppressed in
HTTP/2, by design. For example, the methods presented in [6] [7] use the fact
that HTTP/1.x treats any amount of consequent linear white space characters
(optional line feed [CLRF], spaces [SP] and tabs [HT]) present in the header, in
the same way as a single space character (e.g., [HT] can be a binary one and [SP]
can be a binary zero). This is suppresed in HTTP/2 by requirement that requests
and responses with invalid header names and with characters not permitted in a
header field values, must be treated as malformed. Intermediary nodes must not
forward a malformed request or response. Also, because header names are
case-insensitive in the HTTP/1.x, one can use different capitalization for the
header field values for covert channel [8]. This cannot be done in HTTP/2, be-
cause the header fields names must be converted to lowercase prior to their en-
coding in HTTP/2. Other three methods presented by Dyatlov and Castro [8]
that use HTTP header fields reordering, their presence/absence when is possible
(e.g., Accept-Encoding header field), and HTTP message body can be extended
to HTTP/2 also.

Alman [9] showed that due to a weakness in the CONNECT method in the
HTTP protocol, arbitrary connection can be made through an HTTP proxy
server. These HTTP tunnels are not restricted only to the ports 80 and 443, but
they are capable of passing any outbound traffic on any TCP port as long as the
client warps the appropriate HTTP CONNECT header around the data stream.
There are many tools for tunneling different protocols over HTTP, like
Corkscrew [10], which tunnels SSH over HTTP proxy. These are examples of
cross-protocol attacks, when an attacker causes a client to submit a request in

B. Dimitrova, A. Mileva

103

one protocol to a server that understands a different protocol, and this request to
be valid in the second protocol also. The clear text version of HTTP/2 does not
offer sufficient protection against these kinds of attacks, but in RFC 7540 is
stated: “Completing a TLS handshake with an ALPN identifier for HTTP/2 can
be considered sufficient protection against cross-protocol attacks”.

Bauer [11] suggests a protocol “Muted Posthorn” that allows to create an
anonymous overlay network by exploiting the web browsing activities of regular
users. The protocol uses five HTTP/HTML mechanisms: redirects, cookies, Re-
ferer headers, HTML elements and Active contents.

Van Horenbeeck [12] implemented a tool Wondjina that creates a bidirec-
tional covert channel using the HTTP ETag and If-None-Match header fields,
which allows a client to verify whether its local cached copy is still current.
When a specific document is served, the web server is allowed to include an
ETag header field that contains a string which describes the page, without a spe-
cification how it should look like. Upon first retrieval, the client caches both the
page and its ETag. If-None-Match is primarily used in conditional GET requests
to enable efficient updates of cached information with a minimum amount of
transaction overhead. When a client desires to update one or more stored res-
ponses that have entity-tags, the client should generate an If-None-Match header
field containing a list of currently cached ETags, when making a GET request.
The author suggests also a Content-MD5 header field to be used for sending 128
bits of secret data per HTTP message in one way. But this header field has been
removed from the protocol specification from 2014 (RFC 7231).

Duncan and Martina [13] suggest modulating the least significant bits of the
date-based fields such as Date and Last-Modified in HTTP response and use of
Content-Location header field, which is designed to provide an alternative URL
for the resource currently being accessed. Eßer and Freiling [14] suggest covert
timing channel using HTTP, in which a web server sends covert data to a client
by delaying a response (binary 1) or responding immediately (binary 0).

Infranet [3] is a framework which uses covert channels in HTTP to circum-
vent censorship in the Internet in some countries. Infranet’s web servers receive
covert requests for censured web pages encoded as a sequence of HTTP requests
to harmless web pages and return their content hidden inside harmless images
using steganography.

Another covert channel for HTTP 1.1 and up, given by Graniszewski, et al
[15], uses Trailer field in the HTTP header for hiding data. The Trailer response
header field allows the sender to include additional fields at the end of chunked
messages in order to supply metadata that might be dynamically generated while
the message body is sent, such as a message integrity check, digital signature, or
post-processing status.

4. Covert Channels in the HTTP/2

There are several ways how one can create new covert channels in HTTP/2. For
this purpose, usually we use a protocol feature that has dual nature, i.e., the same

B. Dimitrova, A. Mileva

104

feature can be obtained in more than one way, the feature is not mandatory,
there exist a random value field, or there is no strict rule how to obtain new val-
ues for some fields.

4.1. Covert Channel Using Padding

Three frames in HTTP/2, DATA, HEADERS and PUSH PROMISE frames, use
padding as a security feature to obscure the size of messages. It is provided to
mitigate specific attacks within HTTP, like BREACH, where compressed content
includes both attacker-controlled plaintext and secret data. Another way to mi-
tigate these attacks is by disabling or limiting the compression. Padding octets
must be set to zero when used, to prevent other attacks. When padding is used,
the third flag, PADDED (0 × 8), is set to 1, and at the beginning of Frame Payl-
oad there is a 8-bit field Pad Length containing the length of the frame padding
(with position at the end of Frame Payload) in units of octets. Pad Length and
Padding fields are present only if PADDED flag is set to 1. When no padding is
used, there are two representations with the same effect:
• PADDED flag set to 0, and
• PADDED flag set to 1, together with Pad Length field set to 0.

These two representations can be used as binary zero and one (Figure 3). In
the RFC 7540 one can find that: “Intermediaries SHOULD retain padding for
DATA frames, but MAY drop padding for HEADERS and PUSH PROMISE
frames. A valid reason for an intermediary to change the amount of padding of
frames is to improve the protections that padding provides”. So, for DATA
frames, no intermediaries will change padding, and this can be used as bidirec-
tional one-bit covert channel per DATA frame between client and server.

4.2. Covert Channel Using Stream Identifiers

A stream identifier is presented by an unsigned 31-bit integer. The value 0 × 0 is
reserved for connection control messages, and the value 0 × 1 is reserved for
HTTP/1.1 request, prior to upgrading to HTTP/2. Odd-numbered stream iden-
tifiers are used for streams initiated by a client, and even numbered stream iden-
tifiers are used for streams initiated by the server. Any new stream must have a
stream identifier greater than the stream identifiers of all opened or reserved

Figure 3. Representation of binary 0 and 1 with covert channel using padding.

B. Dimitrova, A. Mileva

105

streams by the endpoint. Stream identifiers cannot be reused, so, they can be
exhausted by a long-lived connection, which results in establishing of a new
connection. Streams can be in one of seven different states: “idle”, “reserved (lo-
cal)”, “reserved (remote)”, “open”, “half closed (remote)”, “half closed (local)”
and “closed”.

Let MAX CSI be the greatest used stream identifier for streams initiated by the
client in a given moment, and let MAX SSI be the greatest used stream identifier
for streams initiated by the server at the same moment. One bi-directional covert
channel between the client and the server can be created in the following way
(Figure 4):
• If the client wants to send binary 1 to the server, it initiates a new stream with

stream identifier MAX CSI + 2, and for binary 0, with stream identifier MAX
CSI + 4

• If the server wants to send binary 1 to the client, it initiates a new stream with
stream identifier MAX SSI + 2, and for binary 0, with stream identifier MAX
SSI + 4.

In this way, for a long-lived connection, one side can transmit maximum be-
tween 229 − 1 (for all bits-binary 0) and 230 − 1 bits (for all bits-binary 1), without
rising any anomaly. One limit on number of concurrently active streams can be
introduced be either communication site using the SETTINGS MAX
CONCURRENT STREAMS parameter within a SETTINGS frame. Initially,
there is no limit to the value of this parameter, only a recommendation to be no
smaller than 100. As active streams appear only streams in “open”, “half closed
(remote)”, or “half closed (local)” states.

4.3. Covert Channel Using PING Frame

The PING frames can be sent from both sides, from the client and from the
server, and they are associated only with stream identifier 0 × 0. They are used
for determining whether an idle connection is still functional, and for measuring
a minimal round trip time from the sender. The PING frame without ACK flag,
must be acknowledged by sending a PING frame as a response with ACK bit set,

Figure 4. Representation of binary 0 and 1 with covert channel using stream identifiers.

B. Dimitrova, A. Mileva

106

with identical payload, and with higher priority. The payload of the PING frame
can be any 64-bit number. There is no restriction, so one can create a covert
channel by sending 64 bits per PING frame.

4.4. Covert Channels Using Stream Priorities and Dependencies

HTTP/2 use streams with or without assigning priorities, making them to be or
not to be dependent on the competition of other streams. When there is a li-
mited capacity for sending, the sender will make a selection of a stream for
transmitting frame, based on priorities. Additionally, on each dependency is as-
signed a relative weight between 1 and 256. If several streams depend on the
same stream, the weight will be used to determine the relative proportion of
available resources that are assigned to them. All streams are initially non- ex-
clusively dependent on the stream 0 × 0, and pushed streams initially depend on
their associated stream. Default weight in both cases is 16.

Opening a stream is done by one HEADERS frame, which additionally can as-
sign a priority to the stream. After that, the priority of a given stream can be
changed, at any time, by PRIORITY frame.

For the new covert channels, other details about prioritisation and dependen-
cies are not important. Only important is that the prioritization process is only
advisory, and not mandatory, for the other communication endpoint - there is
no guarantee that it will be fulfilled. So, we can use this for creating new covert
channels.

If the PRIORITY (0 × 20) flag of the HEADERS frame is set to 1, then in the
frame payload, the Exclusive Flag (E), Stream Dependency, and Weight fields
are present. Making the new stream to be dependant on the previously created
one (other previous streams also can come into account), one can use 9 bits per a
HEADERS frame, 1 bit from the E flag, and 8 bits from the Weight field, for
creating a bidirectional covert channel, without rising a suspicious situation. So,
if one HTTP/2 connection has n streams in one direction over its lifetime, one
can send 9n bits per HTTP/2 connection in one direction.

The PRIORITY frame has an advisory role and specifies the sender-advised
priority of a stream. It can be sent in any stream state and any time, except be-
tween consecutive frames that comprise a single header block. Again, we can use
9 bits per a PRIORITY frame, 1 bit from the E flag, and 8 bits from the Weight
field, for creating a covert channel. The number of PRIORITY frames sends
during one HTTP/2 connection, should not be an anomaly by itself.

4.5. Covert Channels Using Different Number of Specific Kind of
Frames

An HTTP request consists of:
• one HEADERS frame, followed by zero or more CONTINUATION frames,

containing the header block;
• zero or more DATA frames containing the payload body;
• optionally, one HEADERS frame, followed by zero or more CONTINUATION

B. Dimitrova, A. Mileva

107

frames containing the trailer-part.
The structure of the HTTP response is similar, with additional zero or more

HEADERS frames at the beginning, each followed by zero or more CONTINUATION
frames, containing the header blocks of informational (1xx) HTTP responses.
Additionally, when PUSH PROMISE frame is used, the header block starts in-
side this frame, and it can be followed by zero or more CONTINUATION
frames. Each header block is transmitted as a contiguous sequence of frames,
with no interleaved frames of any other type or from any other stream, and with
preservation of frame order. An important property that can be deployed for
covert channel creation, is the fact that DATA and CONTINUATION frames
are variable-length sequences of octets and they can be sent in different number.
So, we can create one covert channel using:
• odd number of DATA frames to be binary 1, and
• even number of DATA frames to be binary 0.

In this way, we can send at most one bit per stream in each direction, or at
most n bits per HTTP/2 connection consisting of n streams, in each direction.
Similarly, we can create another covert channel using:
• odd number of CONTINUATION frames to be binary 1, and
• even number of CONTINUATION frames to be binary 0.

In this way, we can send at most two bits to the server and at most k bits to the
client per stream, if there are k different HEADERS and PUSH PROMISE
frames with CONTINUATION frames after, per stream. Or, at most 2n bits to
the server, and at most kn bits to the client, per HTTP/2 connection consisting
of n streams.

4.6. Covert Channel Using Cookie Header Field

For better compression efficiency, the HTTP/2, differently from the rules in
HTTP/1.x, can allow separation of cookie-pairs from one Cookie header field
into several Cookie header fields, each with one or more cookie-pairs. So, be-
cause of this duality, we can create a one directional covert channel from a client
(which supports HTTP/2) to the server by:
• only one present Cookie header field to be binary 1, and
• more than one present Cookie header fields to be binary 0.

Normally, to do this, there must be at least two cookie-pairs. In this way, we
can send at most n bits to the server, per HTTP/2 connection consisting of n
streams.

4.7. Covert Channel Using SETTINGS Frames

SETTINGS frames are used in connection preface phase for configuring differ-
ent connection specific parameters by both sides, but also, they can be sent at
any time during HTTP/2 connection. The values of parameters in the SETTINGS
frame replace any existing values for those parameters, and they are acknowl-
edged by empty SETTINGS frame with ACK bit set to 1. The payload of a
SETTINGS frame consists of zero or more parameters, defined by unsigned

B. Dimitrova, A. Mileva

108

16-bit Identifier field, and unsigned 32-bit Value field. Parameters are processed
in the order in which they appear in the payload. There are six defined parame-
ters in the protocol specification:
• SETTINGS HEADER TABLE SIZE (0 × 1)-acceptable maximum size of the

header compression table used to decode header blocks, in octets. The initial
value is 4096 octets.

• SETTINGS ENABLE PUSH (0 × 2)-enabling/ disabling server push. The ini-
tial value is 1, which indicates that server push is allowed.

• SETTINGS MAX CONCURRENT STREAMS (0 × 3)-maximum number of
concurrent streams that the sender will allow. Initially, there is no limit to
this value.

• SETTINGS INITIAL WINDOW SIZE (0 × 4)-sender’s initial window size, in
octets, for stream-level flow control. The initial value is 216 − 1 octets.

• SETTINGS MAX FRAME SIZE (0 × 5)-size of the largest frame payload that
the sender is willing to receive, in octets. The initial value is 214 octets.

• SETTINGS MAX HEADER LIST SIZE (0 × 6)-maximum size of header list
that the sender is prepared to accept, in octets. Initially, there is no limit to
this value.

We can define a covert channel using different values of these parameters. We
can exclude the SETTINGS ENABLE PUSH parameter because of his Boolean
nature and influence on the connection. For each other parameter we can define
that
• even Value field for a given parameter to be binary 0, and
• odd Value field for a given parameter to be binary 1.

Additionally, we can define an interval for changing these values, if this is ne-
cessary, for correct protocol functioning. So, we can send 5 bits per SETTINGS
frame in one direction.

4.8. Covert Channel Using Flow Control

Flow control in HTTP/2 can be made on each individual stream or on the entire
connection. This is made in hop-by-hop manner, not over the entire end-to-end
path. Receiver, using credit based scheme, sends information to the sender about
the amount of data that is prepared to receive, and the sender must respect these
limits. The initial window size for new streams can be adjusted by including a
value for SETTINGS INITIAL WINDOW SIZE in the SETTINGS frame in the
connection preface. After that, the window size can be changed at any time by
sending WINDOW UPDATE or SETTINGS frames. The connection flow-control
window can only be changed using WINDOW UPDATE frames. The default
value of stream and connection flow control window is 65,535 octets. Subject of
flow control are only DATA frames.

The payload of WINDOW UPDATE frame contains one reserved bit field and
Windows Size Increment field, which is an unsigned 31-bit integer (0 value is
not allowed) that indicates the number of octets that the sender can transmit in
addition of the existing flow-control window. There is no strictly define method

B. Dimitrova, A. Mileva

109

of how or when the endpoints can advertise the size of the frame, so this can be
used for making new covert channel. Additionally, separate WINDOW UP-
DATE frames are sent for different streams, and there are no limits on the
stream state for which these frames can be sent. One bi-directional covert chan-
nel between two neighboring hops can be done using the following:
• even value for Windows Size Increment field to be binary 0, and
• odd value for Windows Size Increment field to be binary 1.

In this way, if there are k streams in one HTTP/2 connection, one can send k
bits in one direction, by sending a separate WINDOW UPDATE frame per each
stream, at any time without raising any anomaly.

4.9. Covert Channels Using HPACK

HTTP/2 comes with a new compressor which eliminates the redundancy present
in the header fields, HPACK. It threats header fields as an ordered collection of
name-value pairs, considered as sequences of octets, with the possibility of their
duplication. One header field can be encoded using static or dynamic tables into
indexed values (references), or it can be represented as a literal value by specify-
ing its name and value. The header field value is represented always literally.
Additionally, literal values can be encoded directly or using static Huffman code.
RFC 7541 describes only how a HPACK decoder is expected to operate. The
HPACK decoder processes a header block sequentially to reconstruct the origi-
nal header list.

String literal representation has three fields: one bit flag H, which indicates
whether or not the Huffman encoding is used, a String Length field, which is the
number of octets used to encode the string literal and a String Data field with
encoded data of the string literal. So, we can create one covert channel using the
following:
• string literal with no encoding (field H = 0) to be binary 0, and
• string literal with encoding (field H = 1) to be binary 1.

If there are k string literals in the header block, one can send k bits per header
block. For each TCP stream, there can be at most two header blocks in the
HTTP request (at the beginning and at the end), and there can be at most two
header blocks in the HTTP response (at the beginning and at the end).

There are three different representations of the literal header field: with in-
cremental indexing (starts with binary sequence 01), without indexing (starts
with binary sequence 0000), and never indexed (starts with binary sequence
0001). A literal header field with incremental indexing representation adds a
new entry into the dynamic table, if the field name is absent from the dynamic
table, and a literal header field without indexing representation does not alter the
dynamic table. A literal header field never indexed representation does not alter
the dynamic table, but also all intermediaries must use the same representation
for encoding this header field. We can create another covert channel using the
following:
• literal header field with incremental indexing or without indexing represen-

B. Dimitrova, A. Mileva

110

tation to be binary 0, and
• literal header field never indexed representation to be binary 1.

If there are k literal header fields in the header block, one can send k bits per
header block.

5. Conclusions

HTTP/2, like many other network protocols, is prone to hiding data in it. Addi-
tionally, it belongs to the group of network protocols that will be used a lot in the
following years, and its traffic will not raise any suspicions. So, it is important to
identify possible ways of hiding data in it, and try to mitigate them. This paper
deals with the first part, leaving others to try to find a solution for mitigating
presented covert channels.

Further, people involved in protocol standardization process can work on the
possibility to eliminate these covert channels. For example, one best practice in
protocol design should be elimination of features with dual nature, i.e. not to
leave anything to be done in more than one way.

Implementation of these covert channels and their testing in lab or real envi-
ronment is leaved as future work.

References
[1] Lubacz, J., Mazurczyk, W. and Szczypiorski, K. (2014) Principles and Overview of

Network Steganography. IEEE Communication Magazine, 52, 225-229.
https://doi.org/10.1109/MCOM.2014.6815916

[2] Department of Defence (1985) Department of Defence Trusted Computer System
Evaluation Criteria. Technical Report DoD 5200.28-STD. Supersedes CSC-STD-
001-83. http://csrc.nist.gov/publications/history/dod85.pdf

[3] Feamster, N., Balazinska, M., Harfst, G., Balakrishnan, H. and Karger, D. (2002)
Infranet: Circumventing Web Censorshipand Surveillance. Proceedings of the 11th
USENIX Security Symposium, San Francisco, 8-12 August 2002, 247-262.

[4] Forte, D.V. (2005) SecSyslog: An Approach to Secure Logging Based on Covert
Channels. Proceedings of the FirstInternational Workshop of Systematic Appro-
aches to Digital Forensic Engineering (SADFE 2005), Taipei, 7-9 November 2005,
248-263. https://doi.org/10.1109/SADFE.2005.21

[5] Mazurczyk, W., Lubacz, J. and Szczypiorski, K. (2008) Hiding Data in VoIP.
Proceedings of the 26th Army Science Conference (ASC 2008), Orlando, 1-4
December 2008.

[6] Kwecka, Z. (2006) Application Layer Covert Channel Analysis and Detection.
Technical Report, Napier University Edinburgh.
https://pdfs.semanticscholar.org/f740/ca7afcb75d9c90c50894396dcfc08f824a91.pdf

[7] Heilman, S., Williams, J. and Johnson, D. (2016) Covert Channel in HTTP User-
Agents. Proceedings of the 11th Annual Symposium on Information Assurance
(ASIA 16), Albany, 8-9 June 2016, 68-73.

[8] Dyatlov, A. and Castro, S. (2003) Exploitation of Data Streams Authorized by a
Network Access Control System for ArbitraryData Transfers: Tunneling and Covert
Channels over the HTTP Protocol. Gray-World, USA.
http://gray-world.net/projects/papers/covert_paper.txt

https://doi.org/10.1109/MCOM.2014.6815916
http://csrc.nist.gov/publications/history/dod85.pdf
https://doi.org/10.1109/SADFE.2005.21
https://pdfs.semanticscholar.org/f740/ca7afcb75d9c90c50894396dcfc08f824a91.pdf
http://gray-world.net/projects/papers/covert_paper.txt

B. Dimitrova, A. Mileva

111

[9] Alman, D. (2003) HTTP Tunnel Though Proxies. SANS Institude.
https://www.sans.org/reading-room/whitepapers/covert/http-tunnels-proxies-1202

[10] Padgett, P. (2001) Corkscrew. https://www.mankier.com/1/corkscrew

[11] Bauer, M. (2003) New Covert Channels in HTTP: Adding Unwitting Web Browsers
to Anonymity Sets. Proceedings of the Workshop on Privacy Electronic Society
(WPES 2003), Washington DC, 30 October 2003, 72-78.
https://doi.org/10.1145/1005140.1005152

[12] Van Horenbeeck, M. (2006) Deception on the Network: Thinking Differently about
Covert Channels. Proceedings of the Australian Information Warfare and Security
Conference, Perth, Western Australia, 4-5 December 2006, 174-184.

[13] Duncan, R. and Martina, J.E. (2010) Steganographic Message Broadcasting Using
Web Protocols. Proceedings of the Simposio Brasilerio de Seguranca (SBSeg 2010),
Fortaleza, Brasil, 11-15 October 2010, 61-70.

[14] Eßer, H.G. and Freiling, F.C. (2005) Kapazitätsmessung eines verdeckten Zeitkanals
ber HTTP. Technical Report TR-2005-10, Universität Mannheim.
https://ub-madoc.bib.uni-mannheim.de/1136/1/tr_2005_10.pdf

[15] Graniszewski, W., Krupski, J. and Szczypiorski, K. (2016) The Covert Channel over
HTTP Protocol. Proceedings of the SPIE 10031, Photonics Applications in Astro-
nomy, Communications, Industry, and High-Energy Physics Experiments 2016,
100314Z, 28 September 2016.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

https://www.sans.org/reading-room/whitepapers/covert/http-tunnels-proxies-1202
https://www.mankier.com/1/corkscrew
https://doi.org/10.1145/1005140.1005152
https://ub-madoc.bib.uni-mannheim.de/1136/1/tr_2005_10.pdf
http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	Steganography of Hypertext Transfer Protocol Version 2 (HTTP/2)
	Abstract
	Keywords
	1. Introduction
	2. How HTTP/2 Works?
	3. Covert Channels in Previous Versions of the HTTP/2
	4. Covert Channels in the HTTP/2
	4.1. Covert Channel Using Padding
	4.2. Covert Channel Using Stream Identifiers
	4.3. Covert Channel Using PING Frame
	4.4. Covert Channels Using Stream Priorities and Dependencies
	4.5. Covert Channels Using Different Number of Specific Kind of Frames
	4.6. Covert Channel Using Cookie Header Field
	4.7. Covert Channel Using SETTINGS Frames
	4.8. Covert Channel Using Flow Control
	4.9. Covert Channels Using HPACK

	5. Conclusions
	References

