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PROBLEMS

11943. Proposed by Keith Kearnes, University of Colorado, Boulder, CO, and Greg
Oman, University of Colorado, Colorado Springs, CO. Let X be a set, and let F be
a collection of functions f from X into X . A subset Y of X is closed under F if
f (y) ∈ Y for all y ∈ Y and f in F . With the axiom of choice given, prove or disprove:
There exists an uncountable collection F of functions mapping Z

+ into Z
+ such that

(a) every proper subset of Z+ that is closed under F is finite, and
(b) for every f ∈ F , there is a proper infinite subset Y of Z

+ that is closed under
F\{ f }.
11944. Proposed by Yury Ionin, Central Michigan University, Mount Pleasant, MI. Let
n be a positive integer, and let [n] = {1, . . . , n}. For i ∈ [n], let Ai , Bi , Ci be disjoint
sets such that Ai ∪ Bi ∪ Ci = [n] − {i} and |Ai | = |Bi |. Suppose also that

|Ai ∩ Bj | + |Bi ∩ C j | + |Ci ∩ A j | = |Bi ∩ A j | + |Ci ∩ Bj | + |Ai ∩ C j |
for i, j ∈ [n]. Prove that i ∈ A j if and only if j ∈ Ai and, likewise, for the Bs and Cs.

11945. Proposed by Martin Lukarevski, University “Goce Delcev,” Stip, Macedonia.
Let a, b, and c be the lengths of the sides of triangle ABC opposite A, B, and C ,
respectively, and let wa , wb, wc be the lengths of the corresponding angle bisectors.
Prove

a

wa
+ b

wb
+ c

wc
≥ 2

√
3.

11946. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let f be
a twice differentiable function from [0, 1] to R with f ′′ continuous on [0, 1] and∫ 2/3

1/3 f (x) dx = 0. Prove
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