
Immunomodulation of probiotics and their role in allergy

Spase Stojanov, Katarina Smilkov

WHO:

Live microorganisms which when administered in adequate amounts confer a health benefit on the host

Lactobacillus and Bifidobacterium are most important probiotic genera Yogurt, kefir, milk, pickles are the main sources of probiotics

Prebiotics

- ✓ Selectively fermented
- ✓ Induce the growth or activity of microorganisms
- ✓ Fermentation
- ✓ Increase the production of IgG and IgA
- ✓ Mineral absorption (lowering pH, increase gene expression of protein trasporters)

Common prebiotics in use:

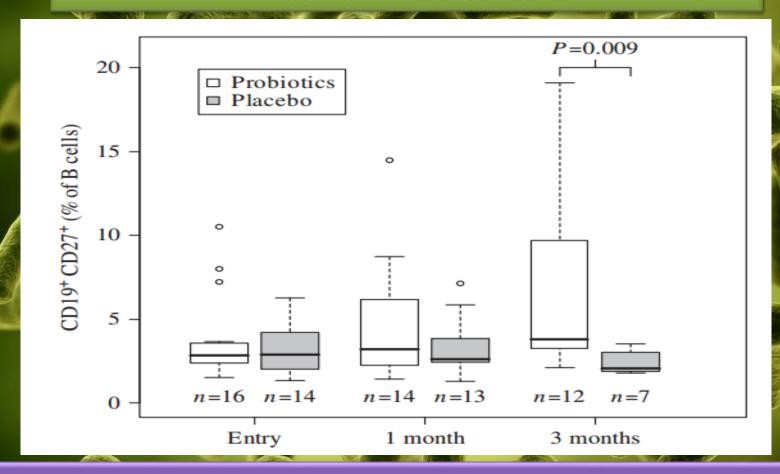
- Inulin
- Fructo-oligosaccharides
- Galacto-oligosaccharides

Allergies are a number of conditions caused by hypersensitivity of the immune system to something in the environment that usually causes little problem in most people

References	Probiotic strain	Effect of probiotic	Outco
		Maturing gut barrier	
Sudo et al.[16]	Bfdbm	Oral tolerance	1
Isolauri et al.[18]	LGG	Faecal IgA levels	1
Isolauri et al.[18]	Letbs rhamnosus GG (LGG)	Gut-stabilizing effect	1
Malin et al.[20]	LGG	Gut defence	1
Kaila et al.[22]	Lctbs	Intestinal permeability	1
		Ovalbumin-induced food allergy	
Kim et al.[27]	Bfdbm lactis/bifidum; Letbs acidophilus	Th1/Th2 balance	1
Torii et al.[42]	Bfdbm bifidum; Lctbs acidophilus	TGF-β production	1
		Th1 cytokines	
Maassen et al.[26]	Lctbs reuteri	Th1/Th2 balance	1
		Th2 cytokines	
Niers et al.[25]	Bfdbm bifidum/infantis; Lctbs lactis	Th1/Th2 balance	1
Takahashi [28]	Bfdbm longum	Th1/Th2 balance	1
		IL-10 production	
Niers et al.[25]	Bfdbm bifidum/infantis; Letbs lactis	Th1/Th2 balance	1
Maassen et al.[26]	Lctbs casei	Th1/Th2 balance	1
Kim et al.[27]	Bfdbm lactis/bifidum; Letbs acidophilus	Th1/Th2 balance	1
Sistek et al.[31]	Letbs rhamnosus GG (LGG)	Th1/Th2 balance	1
Kruisselbrink et al.[33]	Lactobacillus plantarum	Th1/Th2 balance	1
Hart et al.[36]	Bfdbm bifidum	Th1/Th2 balance	1
Smits et al.[38]	Lctbs reuteri/casei	Prime monocyte-derived dendritic cell	1
		IL-4 production	750
Maassen et al.[26]	Lctbs casei	Th1/Th2 balance	1
Kim et al.[27]	Bfdbm lactis/bifidum; Letbs acidophilus	Th1/Th2 balance	1

Ozdemir O. Various effects of different probiotic strains in allergic disorders: an update from laboratory and clinical data, Clin Exp Immunol, 2010 160(3): 295-304.

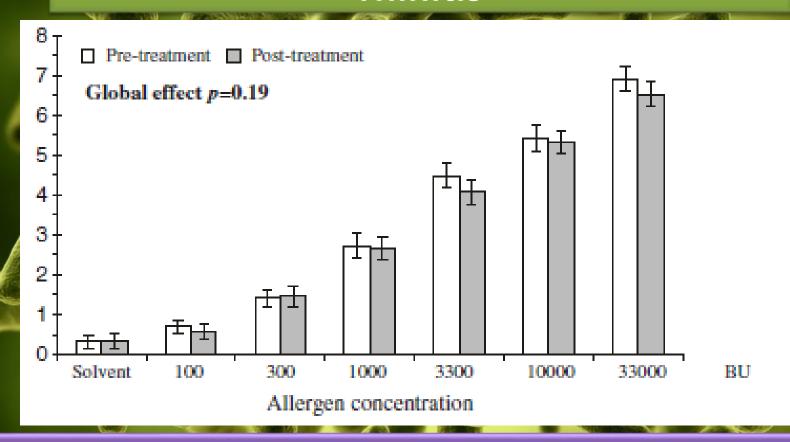
		IFN-γ	
Kim et al.[27]	Bfdbm lactis/bifidum; Lctbs acidophilus	Th1/Th2 balance	1
Mohamadzadeh et al.[35]	Bfdbm bifidum	Most potent polarizer of dendritic cells	1
		IgE production	
Kim et al.[27]	Bfdbm lactis/bifidum; Lctbs acidophilus	Immunomodulation	1
Takahashi et al.[28]	Bfdbm longum	Immunomodulation	1
Gill et al.[29]	Bfdbm lactis Bb-12	Immunomodulation	1
Borchers et al.[30]	LGG	Immunomodulation	1
Torii et al.[42]	Bfdbm bifidum; Letbs acidophilus	Immunomodulation	Ţ
		Serum inflammatory parameters	
Maassen et al.[26]	Lctbs reuteri	Immunomodulation	1
Sistek et al.[31]	Lctbs rhamnosus GG (LGG)	Immunomodulation	1
		Development of tolerogenic dendritic cells	
Niers et al.[34]	Bfdbm	Prime neonatal dendritic cells	1
Mohamadzadeh et al.[35]	Bfdbm bifidum	Most potent polarizer	1
Braat et al.[37]	Letbs rhamnosus	Modulates dendritic cell function	1
Smits et al.[38]	Lctbs reuteri/casei	Prime monocyte-derived dendritic cells	1
		Toll-like receptor (TLR) stimulation	
Hoarau <i>et al</i> .[39]	Bfdbm bifidum/infantis; Lctbs salivarius	Activate TLR-2	1
Forsythe et al.[40]	Lctbs reuteri	Activate TLR-9	1
		Regulatory T cell production	
Smits et al.[38]	Lctbs reuteri/casei	Prime monocyte-derived dendritic cells	1
Torii <i>et al</i> .[<u>42</u>]	Bfdbm bifidum; Letbs acidophilus	TGF-β production	1
		T cell hyporesponsiveness	
Kruisselbrink et al.[33]	Lactobacillus plantarum	Inhibits specific T cell responses	1


Ozdemir O. Various effects of different probiotic strains in allergic disorders: an update from laboratory and clinical data, Clin Exp Immunol, 2010 160(3): 295-304.

Modulates dendritic cell function

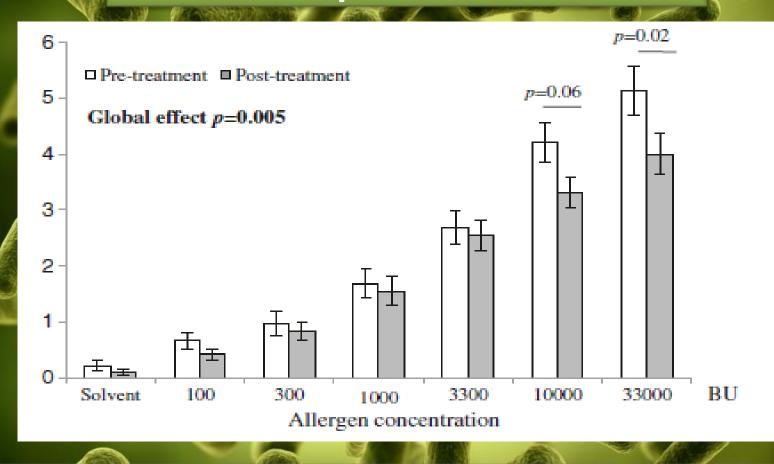
Lctbs rhamnosus

Braat et al.[37]


Proportions of CD19+ and CD27+ B cells in infants

L. rhamnosus was given to 39 infants for a period of 3 months

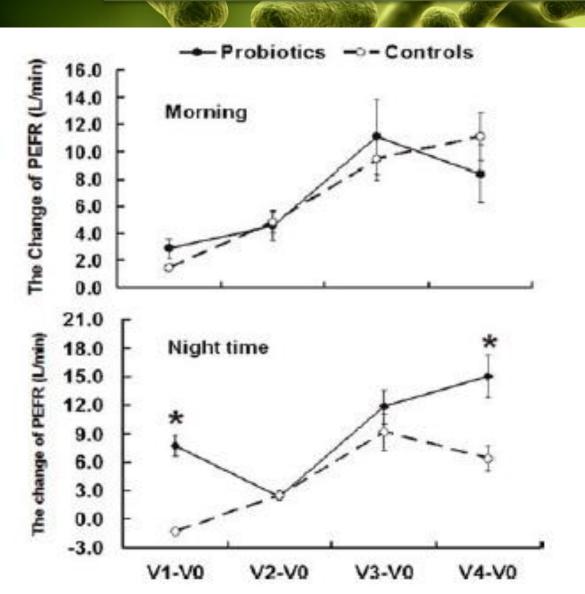
Nermes M, et al. Interaction of orally administered L. rhamnosus GG with skin and gut microbiota and humoral immunity in infants with atopic dermatitis, Clinical & Experimental Allergy, 2010. 41: 370-377.


Effect of probiotics in grass pollen rhinitis

L. acidophilus and B. lactis were given to 31 adults with allergic rhinitis to grass pollen

Perrin Y, et al. Comparison of two oral probiotic preparations in a randomized crossover trial highlights a potentially beneficial effect of L. paracasei NCC2461 in patients with allergic rhinitis, Clinical and Translational Allergy, 2014. 4:1.

Effect of probiotics in nasal pruritus



L.paracasei was given to 31 adults with nasal pruritus

Perrin Y, et al. Comparison of two oral probiotic preparations in a randomized crossover trial highlights a potentially beneficial effect of L. paracasei NCC2461 in patients with allergic rhinitis, Clinical and Translational Allergy, 2014. 4:1.

Effect of probiotics in children with asthma

PEFR –peak.... Patients:

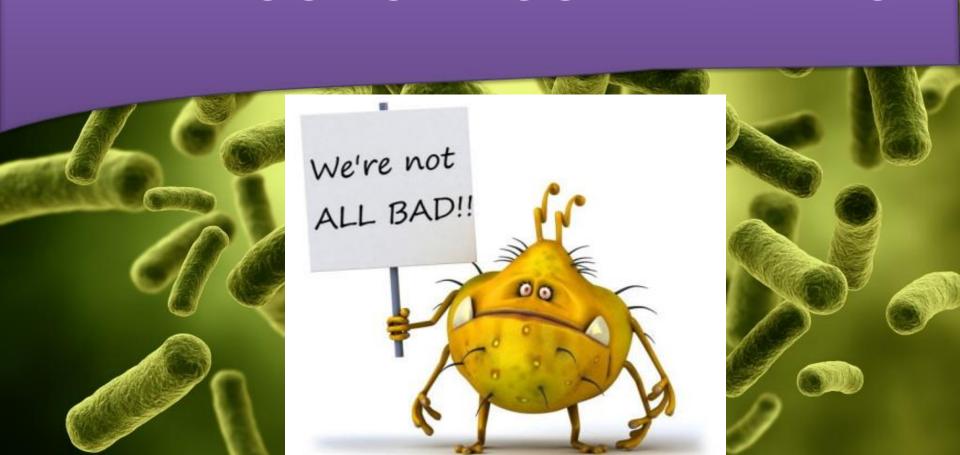
105(49 probiotic/56 placebo) asthmatic children (age 6–12 years)

Therapy:

Corticosteroids β2-agonists

Probiotic: L.gasseri

V1-V3 = 2 week


V4 = 8 week

Chen Yet al. Randomized placebo-controlled trial of lactobavillus on asthamtic children with allergic rhinitis, Pediatric Pulmonology 2010. 45:1111-1120.

- * Probiotics are beneficial for human health
- * They can lower the allergy symptoms
- * Despite the effect to the immune system, probiotics confer positive effects to other systems (especially the gastro intestinal tract)
- •Mild side effects
- They are easily available in fermented milk products
- * They are not magical!

