100.C (Muhammed Osman Corbali)

Triangle $A B C$ has side-lengths $a=B C, b=A C, c=A B$ and ex-radii r_{a}, r_{b}, r_{c} where r_{a} refers to the escribed circle opposite to vertex A.

Prove that $\frac{b^{2} c^{2}}{r_{a}^{2}}+\frac{a^{2} c^{2}}{r_{b}^{2}}+\frac{a^{2} b^{2}}{r_{c}^{2}} \geqslant \frac{4}{3}\left(a^{2}+b^{2}+c^{2}\right)$.

Several solvers noted that a slightly stronger result holds, namely

$$
\begin{equation*}
\frac{b^{2} c^{2}}{r_{a}^{2}}+\frac{c^{2} a^{2}}{r_{b}^{2}}+\frac{a^{2} b^{2}}{r_{c}^{2}} \geqslant 12 R^{2} \tag{*}
\end{equation*}
$$

This implies the inequality in 100.C because of the fact that

$$
O H^{2}=9 R^{2}-\left(a^{2}+b^{2}+c^{2}\right) \geqslant 0
$$

where O is the circumcentre and H is the orthocentre.
Standard formulae give $r_{a}=\frac{\Delta}{s-a}$ and $\Delta=\frac{a b c}{4 R}$ where Δ is the area of triangle $A B C$. Thus

$$
\begin{aligned}
\frac{b c}{r_{a}} & =\frac{4 R(s-a)}{a}=2 R\left(\frac{b}{c}+\frac{c}{a}-1\right) \\
\text { and } \quad \sum \frac{b c}{r_{a}} & =2 R\left(\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{a}-3\right) \geqslant 6 R
\end{aligned}
$$

by the AM-GM inequality.
Then, by the Cauchy-Schwarz inequality,

$$
3 \sum \frac{b^{2} c^{2}}{r_{a}^{2}} \geqslant\left(\sum \frac{b c}{r_{a}}\right)^{2} \geqslant 36 R^{2}
$$

which establishes $(*)$. There is equality in both $(*)$ and 100.C if, and only if, triangle $A B C$ is equilateral.
Correct solutions were received from: M. Bataille, M. V. Channakeshava, S. Dolan, M. G. Elliott, GCHQ Problem Solving Group, G. Howlett, M. Lukarevski (2 solutions), J. A. Mundie, P. Nüesch, Z. Retkes (2 solutions), V. Schindler, E. Swylan and the proposer Muhammed Osman Corbali.

