

SOME INEQUALITY RELATIONS INVOLVING MULTIVALENT FUNCTIONS

ELENA KARAMAZOVA AND NIKOLA TUNESKI

Presented at the 11th International Symposium GEOMETRIC FUNCTION THEORY AND APPLICATIONS 24-27 August 2015, Ohrid, Republic of Macedonia.

ABSTRACT. Let f(z) be a multivalent function, i.e., analytic on the unit disk and of the form $f(z) = z^p + a_{p+1}z^{p+1} + \cdots, p = 2, 3 \dots$ In this work we give sufficient conditions (unfortunately not sharp) when the following implications hold:

$$\left| rg\left[1 + rac{zf^{(p+1)}(z)}{f^{(p)}(z)}
ight]
ight| < rac{lpha \pi}{2} \ (z \in \mathbb{D}) \quad \Rightarrow \quad \left| rgrac{zf^{(p)}(z)}{f^{(p-1)}(z)}
ight| < rac{eta_1 \pi}{2} \ (z \in \mathbb{D})$$

and
 $\left| rgrac{zf^{(p)}(z)}{f^{(p-1)}(z)}
ight| < rac{eta_1 \pi}{2} \ (z \in \mathbb{D}) \quad \Rightarrow \quad \left| rgrac{zf^{(p-1)}(z)}{f^{(p-2)}(z)}
ight| < rac{eta_2 \pi}{2} \ (z \in \mathbb{D}).$

1. Introduction

Let $\mathcal{H}(\mathbb{D})$ denote the class of all functions that are analytic in the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. For $n \in \mathbb{N}$ and $a \in \mathbb{C}$, let

$$\mathcal{H}[a,n]=ig\{f\in\mathcal{H}(\mathbb{D}):f(z)=a+a_nz^n+a_{n+1}z^{n+1}+\cdotsig\}$$

Especially, let for a positive integer p, \mathcal{A}_p be the subclass of $H(\mathbb{D})$ consisting of functions of the form $f(z) = z^p + a_{p+1}z^{p+1} + \cdots$ and $\mathcal{A} \equiv \mathcal{A}_1$. The functions in \mathcal{A} that are one-to-one are called normalized univalent functions. For more details see [1, 3, 6].

A function f is said to be *multivalent* or *p*-valent in \mathbb{D} if it is assumes no value more than p times in \mathbb{D} and there is some ω_0 such that $f(z) = \omega_0$ has exactly p solutions in \mathbb{D} , when roots are counted in accordance with their multiplicities.

In this paper we will study the following two implications:

$$(1.1) \quad \left| \arg \left[1 + \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} \right] \right| < \frac{\alpha \pi}{2} \quad (z \in \mathbb{D}) \quad \Rightarrow \quad \left| \arg \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right| < \frac{\beta_1 \pi}{2} \quad (z \in \mathbb{D})$$

2010 Mathematics Subject Classification. 30C45.

Key words and phrases. analytic function, multivalent function, inequalities.

 and

$$(1.2) \qquad \left|\arg \frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right| < \frac{\beta_1 \pi}{2} \quad (z \in \mathbb{D}) \quad \Rightarrow \quad \left|\arg \frac{zf^{(p-1)}(z)}{f^{(p-2)}(z)}\right| < \frac{\beta_2 \pi}{2} \quad (z \in \mathbb{D}),$$

and give sufficient conditions when they hold. They are part of a larger study (not yet completed) aiming to give sufficient conditions when

$$\left| \arg \left[1 + rac{z f^{(p+1)}(z)}{f^{(p)}(z)}
ight]
ight| < rac{lpha \pi}{2} \quad (z \in \mathbb{D})$$

implies

$$\left|rgrac{zf'(z)}{f(z)}
ight|<rac{eta\pi}{2}\quad(z\in\mathbb{D}).$$

For obtaining our main result we will use a method from the theory of differential subordinations. Valuable references on this topic are [2] and [3].

First we introduce the concept of subordination. Let $f, g \in \mathcal{A}$. Then we say that f(z) is subordinate to g(z), and write $f(z) \prec g(z)$, if there exists a function $\omega(z)$, analytic in the unit disc \mathbb{D} , such that $\omega(0) = 0$, $|\omega(z)| < 1$ and $f(z) = g(\omega(z))$ for all $z \in \mathbb{D}$. In particular, if g(z) is univalent in \mathbb{D} then $f(z) \prec g(z)$ if and only if f(0) = g(0) and $f(\mathbb{D}) \subseteq g(\mathbb{D})$.

The general theory of differential subordinations, as well as the theory of first-order differential subordinations, was introduced by Miller and Mocanu in [4] and [5]. Before we introduce term differential subordinations we will give this lemma:

Lemma 1.1 ([7]). If $F : \mathbb{C}^n \to \mathbb{C}$ is analytic for each of the variables $z_i, 1 \leq i \leq n$, while other variables are considered as constants, than F is continuous and analytical (in sense of multiple variables).

Further, if $\phi : \mathbb{C}^2 \to \mathbb{C}$ (where \mathbb{C} is the complex plane) is analytic in a domain D, if h(z) is univalent in \mathbb{D} , and if p(z) is analytic in \mathbb{D} with $(p(z), zp'(z)) \in D$ when $z \in \mathbb{D}$, then p(z) is said to satisfy a first-order differential subordination if

(1.3)
$$\phi(p(z), zp'(z)) \prec h(z).$$

A univalent function q(z) is said to be a *dominant* of the differential subordination (1.3) if $p(z) \prec q(z)$ for all p(z) satisfying (1.3). If $\tilde{q}(z)$ is a dominant of (1.3) and $\tilde{q}(z) \prec q(z)$ for all dominants of (1.3), then we say that $\tilde{q}(z)$ is the *best dominant* of the differential subordination (1.3).

For the proof of implications (1.1) and (1.2) we will use a lemma from the theory of differential subordinations. It gives efficient tool for obtaining sufficient conditions (very often sharp, i.e., best possible) when certain differential inequality holds.

Lemma 1.2 (Theorem 2.3i(i), p.35, [3]). Let $\Omega \subset \mathbb{C}$ and suppose that the function $\psi : \mathbb{C}^2 \times \mathbb{D} \to \mathbb{C}$ satisfies $\psi(ix, y; z) \notin \Omega$ for all $x \in \mathbb{R}$, $y \leq -(1 + x^2)/2$, and $z \in \mathbb{D}$. If $q \in H[1, 1]$ and $\psi(q(z), zq'(z); z) \in \Omega$ for all $z \in \mathbb{D}$, then $\operatorname{Re} q(z) > 0$, $z \in \mathbb{D}$.

2. Implication (1.1)

In this section we will study implication (1.1).

Theorem 2.1. Let $f \in A_p$, $p \geq 2$, $0 < \beta_1 \leq 1$ and suppose that $f^{(k)}(z) \neq 0$ for all $z \in \mathbb{D} \setminus \{0\}$ and for all positive integer k. If

$$lpha \equiv lpha(eta_1) = rctg\left[rac{eta_1}{1-eta_1}\cdot\left(rac{1-eta_1}{1+eta_1}
ight)^{(1+eta_1)/2} + ext{tg}\,rac{eta_1\pi}{2}
ight],$$

then the following implication holds:

$$\left|\arg\left[1+\frac{zf^{(p+1)}(z)}{f^{(p)}(z)}\right]\right| < \frac{\alpha\pi}{2} \quad (z \in \mathbb{D}) \quad \Rightarrow \quad \left|\arg\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right| < \frac{\beta_1\pi}{2} \quad (z \in \mathbb{D}).$$

Proof. Let choose $q^{\beta_1}(z) = rac{z \, f^{(p)}(z)}{f^{(p-1)}(z)}.$ Then we have

$$\frac{z\left[q^{\beta_1}(z)\right]'}{q^{\beta_1}(z)} = \frac{z\beta_1q^{\beta_1-1}(z)q'(z)}{q^{\beta_1}(z)} = 1 + \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} - q^{\beta_1}(z)$$

and

$$1+rac{zf^{(p+1)}(z)}{f^{(p)}(z)}=rac{zeta_1q'(z)}{q(z)}+q^{eta_1}(z).$$

Further, for the function

$$\psi(r,s;z)=eta_1\cdotrac{s}{r}+r^{eta_1},$$

we have

$$\psi(q(z),zq'(z);z)=eta_1\cdot rac{zq'(z)}{q(z)}+q^{eta_1}(z)\in\Omega\equiv\left\{\omega:|rg \omega|<rac{lpha\pi}{2}
ight\},$$

i.e.,

$$|rg\psi(q(z),zq'(z);z)|<rac{lpha\pi}{2}\quad(z\in\mathbb{D}).$$

From Lemma 1.2 we realize that for proving

$$\left|\arg \frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right| < \frac{\beta_1 \pi}{2} \quad (z \in \mathbb{D})$$

it is enough to show that

$$\psi(ix,y;z)=eta_1\cdot rac{y}{ix}+(ix)^{eta_1}=-eta_1\cdot rac{y}{x}\cdot i+(ix)^{eta_1}
otin\Omega$$

for all real $x, y \leq -\frac{1+x^2}{2}$ (n = 1 in the Lemma 1.2) and for all $z \in \mathbb{D}$. In the case when x > 0 we have

$$\begin{aligned} 0 < \arg \psi(ix, y; z) &= \operatorname{arctg} \left[\frac{-\beta_1 \frac{y}{x} + x^{\beta_1} \sin \frac{\beta_1 \pi}{2}}{x^{\beta_1} \cos \frac{\beta_1 \pi}{2}} \right] &= \operatorname{arctg} \left[\frac{-\beta_1 \frac{y}{x}}{x^{\beta_1} \cos \frac{\beta_1 \pi}{2}} + \operatorname{tg} \frac{\beta_1 \pi}{2} \right] \\ &\leq \operatorname{arctg} \left[\frac{\beta_1 \cdot \frac{1 + x^2}{2x}}{x^{\beta_1} \cos \frac{\beta_1 \pi}{2}} + \operatorname{tg} \frac{\beta_1 \pi}{2} \right] \\ &= \operatorname{arctg} \left[\frac{\beta_1 \cdot (1 + x^2)}{2x^{\beta_1 + 1} \cos \frac{\beta_1 \pi}{2}} + \operatorname{tg} \frac{\beta_1 \pi}{2} \right] \equiv \varphi(x). \end{aligned}$$

Similarly, for the case x < 0,

$$|rg \psi(ix,y;z)| = rg \left(-eta_1 \cdot rac{y}{|x|} \cdot i + (i|x|)^{eta_1}
ight) = arphi(|x|).$$

It is easy to check that the function $\varphi(x)$, on the interval $(0, +\infty)$, attains its minimal value for $x_* = \sqrt{\frac{1+\beta_1}{1-\beta_1}}$, i.e.,

$$\inf\left\{|rg\psi(ix,y;z)|:x,y\in\mathbb{R},x
eq0,y\leq-rac{1+x^2}{2}
ight\}=arphi(x_*)=lpha(eta_1).$$

For x = 0 we have

$$\lim_{|x| o 0} |{
m arg}\,\psi(ix,y;z)| = \lim_{x o 0^+} arphi(x) = rac{\pi}{2} \geq lpha(eta_1)$$

This completes the proof of $\psi(ix,y;z)\notin \Omega$ for all real $x,y\leq -rac{1+x^2}{2}$.

3. IMPLICATION (1.2)

In this section we will study the implication (1.2) in a similar way as the implication (1.1).

Theorem 3.1. Let $f \in A_p$, $p \ge 2$, $0 < \beta_2 \le 1$ and suppose that $f^{(k)}(z) \ne 0$ for all $z \in \mathbb{D} \setminus \{0\}$ and for all positive integer k. Also let x_* be the bigger, of the only two positive solutions of the equation

$$2x^{eta_2+1}\sin(eta_2\pi/2)+\left(eta_2x^2+eta_2-x^2+1
ight)x^{eta_2}\cos(eta_2\pi/2)+x^2-1=0,$$

and $\beta_1 = \beta_1(\beta_2) \equiv \operatorname{arcctg}[h(x_*)]$ where

$$h(x)\equiv rac{-1+x^{eta_2}\cosrac{eta_2\pi}{2}}{eta_2rac{1+x^2}{2x}+x^{eta_2}\sinrac{eta_2\pi}{2}}\,.$$

Then the following implication holds:

$$\left|\argrac{zf^{(p)}(z)}{f^{(p-1)}(z)}
ight|<rac{eta_1\pi}{2}\ \ (z\in\mathbb{D})\quad\Rightarrow\quad \left|rgrac{zf^{(p-1)}}{f^{(p-2)}}
ight|<rac{eta_2\pi}{2}\ \ (z\in\mathbb{D}).$$

Proof. Let choose $q^{\beta_2}(z) = rac{z \, f^{(p-1)}(z)}{f^{(p-2)}(z)}.$ Then we have

$$rac{z\left[q^{eta_2}(z)
ight]'}{q^{eta_2}(z)} = rac{zeta_2 q^{eta_2-1}(z)q'(z)}{q^{eta_2}(z)} = 1 + rac{zf^{(p)}(z)}{f^{(p-1)}(z)} - q^{eta_2}(z),$$

i.e.,

$$\frac{zf^{(p)}(z)}{f^{(p-1)}(z)} = \frac{z\beta_2q'(z)}{q(z)} + q^{\beta_2}(z) - 1.$$

Further, for the function

$$\psi(r,s;z)=eta_2\cdotrac{s}{r}+r^{eta_2}-1,$$

we have

$$\psi(q(z),zq'(z);z)=eta_2\cdot rac{zq'(z)}{q(z)}+q^{eta_2}(z)-1\in\Omega\equiv\left\{\omega:|rg \omega|<rac{eta_1\pi}{2}
ight\},$$

48

i.e.,

$$|rg\psi(q(z),zq'(z);z)|<rac{eta_1\pi}{2}\quad(z\in\mathbb{D}).$$

From Lemma 1.2 we realize that for proving

$$\left|\argrac{zf^{(p-1)}(z)}{f^{(p-2)}(z)}
ight|<rac{eta_2\pi}{2}\quad(z\in\mathbb{D})$$

it is enough to show that

$$\psi(ix,y;z)=eta_2\cdot rac{y}{ix}+(ix)^{eta_2}-1=-eta_2\cdot rac{y}{x}\cdot i+(ix)^{eta_2}-1
otin\Omega$$

for all real $x, y \leq -\frac{1+x^2}{2}$ (n = 1 in the Lemma 1.2) and for all $z \in \mathbb{D}$. In the case when x > 0 we have

$$\operatorname{ctg}\left[\operatorname{arg}\psi(ix,y;z)
ight]=rac{-1+x^{eta_2}\cosrac{eta_2\pi}{2}}{-eta_2rac{y}{x}+x^{eta_2}\sinrac{eta_2\pi}{2}}\leq h(x)$$

Similarly, for the case x < 0,

$$\left|\operatorname{ctg}\left[\operatorname{arg}\psi(ix,y;z)
ight]
ight|=\left|\operatorname{ctg}\left[\operatorname{arg}\left(-eta_{2}\cdotrac{y}{|x|}\cdot i+(i|x|)^{eta_{2}}-1
ight)
ight]
ight|\leq h(|x|).$$

Further, h(x) is continuous on $(0,+\infty),\ h(0)=0,\ \lim_{x
ightarrow+\infty}h(x)>0$ and from

$$h'(x) = rac{2eta_2\left[2x^{eta_2+1}\sin(eta_2\pi/2)+ig(eta_2x^2+eta_2-x^2+1ig)x_2^eta\cos(eta_2\pi/2)+x^2-1
ight]}{\left(2x^{eta_2+1}\sin(eta_2\pi/2)+eta_2x^2+eta_2ig)^2},$$

we receive h'(0) < 0 and $\lim_{x \to +\infty} h'(x) > 0$. Therefore, h(x) has at least one local minimum and at least one local maximum on $(0, +\infty)$. On the other hand, the nominator of h(x)is an increasing function on $(0, +\infty)$ and its denominator is convex function on $(0, +\infty)$. Therefore, h(x) has exactly one local minimum (at point x_{**}) and exactly one local maximum (at point $x_* > x_{**}$) on $(0, +\infty)$. So,

$$\sup\left\{|rg\psi(ix,y;z)|:x>0,y\leq-rac{1+x^2}{2}
ight\}=rcctg[h(x_*)]=eta_1(eta_2).$$

In a similar way we can show that the same is true also for x < 0. For x = 0 we have

$$\lim_{|x| o 0} |\mathrm{arg}\,\psi(ix,y;z)| = \lim_{x o 0^+} \mathrm{arcctg}[h(x)] = rac{\pi}{2} \geq eta_1(eta_2).$$

This completes the proof of the theorem.

References

- [1] P.L. DUREN: Univalent functions, Springer-Verlag, 1983.
- [2] T. BULBOACA: Differential subordinations and superordinations. New results, House of Science Book Publ., Cluj-Napoca, 2005.
- [3] S.S. MILLER, P.T. MOCANU: Differential subordinations, Theory and Applications, Marcel Dekker, New York-Basel, 2000.
- [4] S.S. MILLER, P.T. MOCANU: Differential subordinations and univalent functions, Michigan Math. J. 28 (1981) 157-171.

E. KARAMAZOVA AND N. TUNESKI

- S.S. MILLER, P.T. MOCANU: On some classes of first-order differential subordinations, Michigan Math. J., 32 (1985) 185-195.
- [6] S. OWA, H.M. SRIVASTAVA: Current topics in analytic function theory, World Sci. Publ., River Edge, NJ, 1992.
- [7] F. HARTOGS: Einige Folgerungen aus der Cauchyschen Integralformel bei Funktionen mehrerer VerÄdnderlichen, Sitzungsberichte der KÄüniglich Bayerischen Akademie der Wissenschaften zu MÄijnchen, Mathematisch-Physikalische Klasse, German, (1906) 223-242.

DEPARTMENT OF MATHEMATICS AND STATISTICS GOCE DELCEV UNIVERSITY STIP, REPUBLIC OF MACEDONIA *E-mail address*: elena.gelova@ugd.edu.mk

Faculty of Mechanical Engineering Ss. Cyril and Methodius University in Skopje Karpoš II b.b., 1000 Skopje Republic of Macedonia *E-mail address*: nikola.tuneski@mf.edu.mk