SEQUENTIALLY CONVERGENT MAPPINGS AND COMMON FIXED POINTS OF MAPPINGS IN 2-BANACH SPACES

Martin Lukarevski, Samoil Malčeski

1. Introduction

In 1968 White ([3]) introduces 2-Banach spaces. 2-Banach spaces are being studied by several authors, and certain results can be seen in [8]. Further, analogously as in normed space P. K. Hatikrishnan and K. T. Ravindran in [6] are introducing the term contractive mapping to 2-normed space as follows.

Definition 1 ([6]). Let $(L, \|\cdot, \cdot\|)$ be a real vector 2-normed space. The mapping $S: L \to L$ is contraction if there is $\lambda \in [0,1)$ such that $\|Sx - Sy, z\| \le \lambda \|x - y, z\|$, for all $x, y, z \in L$.

Regarding contractive mapping Hatikrishnan and Ravindran in [6] proved that contractive mapping has a unique fixed point in closed and restricted subset of 2-Banach space. Further, in [1], [4], [5] and [7] are proven more results related to fixed points on contractive mapping of 2-Banach spaces, and in [7] are proven several results for common fixed points of contractive mapping defined on the same 2-Banach space. In our further considerations, we will give some generalizations of the above results for common fixed points of mapping defined on the same 2-Banach space. Thus, the mentioned generalizations we will do it with the help of so-called sequentially convergent mappings which are defined as follows.

Definition 2. Let $(L, \|\cdot, \cdot\|)$ be a 2-normed space. A mapping $T: L \to L$ is said to be sequentially convergent if, for every sequence $\{y_n\}$, if $\{Ty_n\}$ is convergent then $\{y_n\}$ also is convergent.

2. COMMON FIXED POINTS ON MAPPING BY THE KANNAN TYPE

Theorem 1. Let $(L, \|\cdot, \cdot\|)$ be a 2- Banach space, $S_1, S_2 : L \to L$ and mapping $T : L \to L$ is continuous, injection and sequentially convergent. If $\alpha > 0$, $\gamma \ge 0$ are such that $2\alpha + \gamma < 1$ and

$$||TS_1x - TS_2y, z|| \le \alpha(||Tx - TS_1x, z|| + ||Ty - TS_2y, z||) + \gamma ||Tx - Ty, z||,$$
 (1)

for each $x, y, z \in L$, then S_1 and S_2 have a unique common fixed point $z \in L$.

Corollary 1. Let $(L, \|\cdot, \cdot\|)$ be a 2- Banach space, $S_1, S_2 : L \to L$ and mapping $T : L \to L$ is continuous, injection and sequentially convergent. If $\alpha > 0$, $\gamma \ge 0$ are such that $2\alpha + \gamma < 1$ and

$$||TS_1x - TS_2y, z|| \le \alpha \frac{||Tx - TS_1x, z||^2 + ||Ty - TS_2y, z||^2}{||Tx - TS_1x, z|| + ||Ty - TS_2y, z||} + \gamma ||Tx - Ty, z||,$$

for each $x, y, z \in L$, $z \neq 0$, then S_1 and S_2 have a unique common fixed point $z \in L$.

Proof. From inequality of condition following inequality (1). Now the assertion follows from Theorem 1. \blacksquare

Corollary 2. Let $(L, \|\cdot, \cdot\|)$ be a 2- Banach space, $S_1, S_2 : L \to L$ and mapping $T : L \to L$ is continuous, injection and sequentially convergent. If $0 < \lambda < 1$ and $\|TS_1x - TS_2y, z\| \le \lambda \cdot \sqrt[3]{\|Tx - TS_1x, z\| \cdot \|Ty - TS_2y, z\| \cdot \|Tx - Ty, z\|}$,

for each $x, y, z \in L$, then S_1 and S_2 have a unique common fixed point $z \in L$.

Proof. From the inequality between the arithmetic and geometric mean follows that

$$d(TS_1x, TS_2y) \leq \frac{\lambda}{3} (d(Tx, TS_1x) + d(Ty, TS_2y) + \beta d(Tx, Ty)) .$$

Now the assertion follows from Theorem 1 for $\alpha = \gamma = \frac{\lambda}{3}$.

Corollary 3. Let $(L, \|\cdot, \cdot\|)$ be a 2- Banach space, $S_1^p, S_2^q : L \to L$, $p, q \in \mathbb{N}$ and mapping $T : L \to L$ is continuous, injection and sequentially convergent. If $\alpha > 0, \gamma \ge 0$ are such that $2\alpha + \gamma < 1$ and

$$||TS_1^p x - TS_2^q y, z|| \le \alpha(||Tx - TS_1^p x, z|| + ||Ty - TS_2^q y, z||) + \gamma ||Tx - Ty, z||,$$

for each $x, y, z \in L$. Then S_1 and S_2 have a unique common fixed point $u \in L$.

Remark 1. Mapping $T: L \to L$ determined by $Tx = x, x \in L$ is sequentially convergent. Therefore, if in theorem 1 and the corollaries 1, 2 and 3 we take that Tx = x appropriate following the accuracy of Theorem 4 and corollaries 6, 7 and 8, [7].

3. COMMON FIXED POINTS OF MAPPINGS OF CHATTERJEA TYPE

Theorem 2. Let $(L, \|\cdot, \cdot\|)$ be a 2- Banach space, $S_1, S_2 : L \to L$ and mapping $T : L \to L$ is continuous, injection and sequentially convergent. If $\alpha > 0$, $\gamma \ge 0$, are such that $2\alpha + \gamma < 1$ and

$$||TS_1x - TS_2y, z|| \le \alpha(||Tx - TS_2y, z|| + ||Ty - TS_1x, z||) + \gamma ||Tx - Ty, z||,$$
 (4)

for each $x, y, z \in L$, then S_1 and S_2 have a unique common fixed point $u \in L$.

Corollary 4. Let $(L, \|\cdot, \cdot\|)$ be a 2-Banach space, $S_1, S_2 : L \to L$ and the mapping $T : L \to L$ is continuous, injection and sequentially convergent. If $\alpha > 0$, $\gamma \ge 0$ are such that $2\alpha + \gamma < 1$ and

$$||TS_1x - TS_2y, z|| \le \alpha \frac{||Tx - TS_2y, z||^2 + ||Ty - TS_1x, z||^2}{||Tx - TS_2y, z|| + ||Ty - TS_1x, z||} + \gamma ||Tx - Ty, z||,$$

for each $x, y, z \in L$, $z \neq 0$, then S_1 and S_2 have a unique common fixed point $u \in L$.

Proof. From inequality of condition follows inequality (4). Now the assertion follows from Theorem 2. ■

Corollary 5. Let $(L, \|\cdot, \cdot\|)$ be a 2-Banach space, $S_1, S_2 : L \to L$ and mapping $T : L \to L$ is continuous, injection and sequentially convergent. If $0 < \lambda < 1$ and $\|TS_1x - TS_2y, z\| \le \lambda \cdot \sqrt[3]{\|Tx - TS_2y, z\| \cdot \|Ty - TS_1x, z\| \cdot \|Tx - Ty, z\|}$,

for each $x, y, z \in L$, then S_1 and S_2 have a unique common fixed point $z \in L$.

Proof. From the inequality between the arithmetic and geometric mean follows that

$$d(TS_1x, TS_2y) \leq \frac{\lambda}{3}(d(Tx, TS_2y) + d(Ty, TS_1x) + d(Tx, Ty)).$$

Now the assertion follows from Theorem 2 for $\alpha = \gamma = \frac{\lambda}{3}$.

Corollary 6. Let $(L, \|\cdot, \cdot\|)$ be a 2-Banach space, $S_1^p, S_2^q : L \to L$, $p, q \in \mathbb{N}$ and mapping $T : L \to L$ is continuous, injection and sequentially convergent. If $\alpha > 0, \gamma \ge 0$ are such that $2\alpha + \gamma < 1$ and

$$||TS_1^p x - TS_2^q y, z|| \le \alpha (||Tx - TS_2^q y, z|| + ||Ty - TS_1^p x, z||) + \gamma ||Tx - Ty, z||,$$

for each $x, y, z \in L$. Then S_1 and S_2 have a unique common fixed point $u \in L$.

Proof. The proof is identical to the proof of the corollary 5.

Remark 2. The mapping $T: L \to L$ determined by $Tx = x, x \in L$ is sequentially convergent. Therefore, if in Theorem 2 and corollaries 4, 5 and 6 we take Tx = x, follows the correctness of Theorem 5 and corollaries 9, 10 μ 11, [7].

4. COMMON FIXED POINTS OF MAPPINGS OF KOPARDE-WAGHMODE TYPE

Theorem 3. Let $(L, ||\cdot, \cdot||)$ be a 2-Banach space, $S_1, S_2 : L \to L$ and mapping $T : L \to L$ is continuous, injection and sequentially convergent. If $\alpha > 0$, $\gamma \ge 0$, $2\alpha + \gamma < 1$ and

$$||TS_1x - TS_2y, z||^2 \le \alpha (||Tx - TS_1x, z||^2 + ||Ty - TS_2y, z||^2) + \gamma ||Tx - Ty, z||^2,$$
 (6)

for each $x, y, z \in L$, then S_1 and S_2 have a unique common fixed point $u \in L$.

Corollary 7. Let $(L, \|\cdot, \cdot\|)$ be a 2-Banach space, $S_1^p, S_2^q : L \to L$, $p, q \in \mathbb{N}$ and mapping $T: L \to L$ is continuous, injection and sequentially convergent. If $\alpha > 0, \gamma \geq 0$ are such that $2\alpha + \gamma < 1$ and

$$||TS_1^p x - TS_2^q y, z||^2 \le \alpha (||Tx - TS_1^p x, z||^2 + ||Ty - TS_2^q y, z||^2) + \gamma ||Tx - Ty, z||^2,$$

for each $x, y, z \in L$. Then S_1 and S_2 have a unique common fixed point $u \in L$.

Proof. The proof is identical to the proof of the corollary 6.

Remark 3. The mapping $T: L \to L$ determined by $Tx = x, x \in L$ is sequentially convergent. Therefore, if in Theorem 3 and corollary 7 we take Tx = x, it follows the correctness of Theorem 6 and corollary 12, [7].

References

- A. Malčeski, R. Malčeski, A. Ibrahimi, Проширување на теоремите на Каппап и Chatterjea во 2-Banach Space со Sequentialy Convergent Mappings (приватна комуникација)
- A. Malčeski, S. Malčeski, K. Anevska, R. Malčeski, *New Extension of Kannan and Chatterjea Fixed Point Theorems on Complete Metric Spaces*, British Journal of Mathematics & Computer Science, Vol. 17, No. 2, (2016), 1-10
- A. White, 2-Banach Spaces, Math. Nachr. Vol. 42 (1969), 43-60
- M. Kir, H. Kiziltunc, *Some New Fixed Point Theorems in 2-Normed Spaces*, Int. Journal of Math. Analysis, Vol. 7 No. 58 (2013), 2885-2890
- P. Chouhan, N. Malviya, *Fixed Points of Expansive Type Mappings in 2-Banach Spaces*, International Juornal of Analysis and Applications, Vol. 3 No. 1 (2013), 60-67
- P. K. Hatikrishnan, K. T. Ravindran, *Some Properties of Accretive Operators in Linear 2-Normed Spaces*, International Mathematical Forum, Vol. 6 No. 59 (2011), 2941-2847
- R. Malčeski, A. Ibrahimi, On Contraction Mappings and Fixed Point in 2-Banach Spaces, (во печат)
- R. Malčeski, K. Anevska, *About the 2-Banach spaces*, International Journal of Modern Engineering Research (IJMER), Vol. 4 Iss. 5 (2014), 28-32