Exchange rate volatility and trade: A Meta-Regression Analysis

Dushko Josheski¹

Darko Lazarov²

Page | 1

Abstract

Many empirical studies have been done to investigate whether trade is influenced by exchange rate volatility. Conventional wisdom is that increased exchange rate volatility inhibits the growth of foreign trade. This MRA extends by 10 studies and 100 observations Pugh's and Coric (2008) Meta regression. Now this MRA is updated with studies published to date (2012 year). Around 67 studies have investigated the effect of exchange rate variability and international trade resulting in 923 estimates. On average, exchange rate variability exerts negative effect on international trade. The conlcusion is that in the literature of exchange rate variability and trade there is presence of genuine empirical effect and not a presence for publication bias. The publication bias that appeared in the clustered robust model is perhaps due to the ten papers that were added to Pugh's and Coric MRA. They were not from the Econlit data base. Results are summarized in the following two tables.

Introduction

There are many debates among economists about the exchange rate's volatitly and trade. The main subject of our paper is to identify and present the positive and negative side of exchange rate regime to foreign trade by empirical investigation. Some analyses show that flexible exchange rate increases the level of exchange rate uncertainly and thus reduce incentives to trade. Proponents of fixed exchange rate ragime have long argued that the risks associated with exghange rate variability discounrage economic agents from trading across borders, especially when we thing abount small open countries. Despite this widespread view, the substantial empirical literature examining the link between exchange rate uncertainty and trade has not found a sonsistent relationship. Moreover, the debate on the implications of the choice of the exchange rate regime basically lacks a sound analytical foundation.³

On the other side, some research suggests an opposite direction of causality, where trade flows stabilize real exchange rate fluctuations, thus reducing real exchange rate volatility. These two different point of view among economists imply the existence of a standard

¹ Goce Delev University –Stip Email: <u>dushkojosheski@gmail.com</u>

² Goce Delev University-Stip Email: <u>dushkojosheski@gmail.com</u>

^{*}Received 10 April 2012; accepted 12 June 2012

³ Baccheta, P. and E. vanWincoop (2000) "Does Exchange Rate Stability Increase Trade and Welfare?" American Economic Review, 90(5), pp.1093-1109.

identification problem, whether exchange rate volatility influence international trade or vice verse?¹

In that context, we will summarize the main findings based on empirical research that have been done to investigate the relationship between the exchange rate regime (stability) and trade.² First, exchange rate stability is not necessarily associated with trade. In a simple benchmark model with only monetary shocks, the level of trade is the same under a float as Page | 24 under a fixed exchange rate regime when preferences are separable in consumption and leisure. In general, trade can be higher under either exchange rate regime, depending on preferences and on the monetary policy rules followed under both regimes. Second, there are severel examples where trade is higher under one regime, while welfare is higher under the other. And finaly, we can conlude that the exchange rate regime is important for trade and welfare, but there are many other aspect that we have to take in to account.

Literature survey

Many empirical studies have been done to investigate whether trade is influenced by exchange rate volatility. Conventional wisdom is that increased exchange rate volatility inhibits the growth of foreign trade. A detailed literature survey on the effects of exchange rate volatility on trade has been outlined in this section (see Table 1). This table is taken from Ilhan (2006). Several theoretical studies such as Ethier (1973); Clark (1973); Baron (1976); Cushman (1986); Peree and Steinherr (1989) have shown that an increase in exchange rate volatility will have adverse effects on the volume of international trade. Other theoretical studies have demonstrated that increased volatility can have ambiguous or positive effects on trade volume: for instance, Viaene and de Vries (1992), Franke (1991) and Sercu and Vanhulle (1992).

It is widely believed that increased exchange rate volatility inhibits the growth of foreign trade. Negative effects of exchange rate uncertainty on trade flows are reported by many authors. Studies by Hooper and Kohlhagen (1978), Gotur (1985), Bailey et al. (1986, 1987) McKenzie (1998), Aristotelous (2001), Bailey and Tavlas (1988), Bahmani et al. (1993), and Gagnon (1993), among others, do not find any significant relationship between exchange-rate volatility and trade.

On the other hand, McKenzie and Brooks (1997), Klein (1990), Franke (1991), Giovannini (1988), Brada and Mendez (1988), Asseery and Peel (1991), Kasman and Kasman (2005), Sercu and Vanhulle (1992), Doyle (2001) and Bredin et al. (2003) have found positive effects of exchange rate volatility on trade. Overall, a larger number of studies appear to favour the conventional assumption that exchange rate volatility depresses the level of trade. In the next Table are summarized studies about the exchange rate variability and trade from 1978 onwards.

Broda, C., Romalis, J., 2003. Identifying the relationship between Exchange Rate Volatility and Trade. Mimeo, Federal Reserve Bank of New York, November 2003

² Ibid.

Study	Sample Period	Nominal or real exchange rate used	Countries and Estimation technique used	Main Result
Alduar and Hilton (1984)	1974-S1Q	Nominal	OLS	Negative effect
Gotur (1985)	1974-82Q	Nominal	OLS	Little to no effect
Bailey. Taklas and Ulan (1986)	1973-84Q	Nominal	OLS	Not significant. mixed effects
Bailey. Tavlas and Ulan (1987)	1962-S5Q	Nomiana 1 &Real	OLS	Little to no effect
Bailey and Tavlas (1988)	1975-86Q	Nominal	OLS	Not significant
Belenger et al. (1988)	1976-87Q		INT	Significant and negative in 2 sectors
Brada and Mendez (1988)	1973-77A	Real	Cross section	Positive effect
De Grauwe and Verfaille (1988)	1975-SSA	Real	Cross section	Level of trade significantly

Table 1 Exchange Rate Volatility and Trade: Literature Survey

				stronger within EMS than outside EMS
Koray and	1961-	Real	VAR	Weak

Lastpares (1989)	85M			negative relationship
Mann (1989)	1977- 87Q	Real	OLS	Few significant results
Peree and	1960-	Nominal	OLS	Negative
Steinherr (1989)	85A			effect
Caballero and Corbo (1989)		Real	OLS and IVE	Significant and neg.ative effect
Lasaapes and	1975-	Real	VAR	Weak
Koray (1990)	87Q			relationship
Medhora (1990)	1976- 82A	Nominal	OLS	Not significant and positive effect
Asseery and Peel (1991)	1972- 87Q	Real	OLS - ECM	Significant and positive except for UK
3mi — Smag.hi (1991)	1976- 84Q	Nominal	OLS	Significant and neg.ative effect
Feenstra and	1975-		G.A.RCH	Negative
Kendall (1991)	88Q			effect
Akhtar and Hilton (1991)	1974- S1Q	Nominal	OLS	Not significant. mixed effect
Kumar and	1974-	Nomin11	OLS	Not

Dhawan (1991)	850	& Real		significant and negative effect
Belenger et al.	1975-	Nominal	IVE. GIVE	Significant

(1992)	87Q			and negative effect
Kumar (1992)	1962-	Real	Standard	Mixed
	87A		deviation	results
Sanides (1992 i	1973-	Real	Cross section	Negative
	86.4			effect
Gagnon(1993)	0	Real	Simulation analysis	Not significant
Frankel and Wei	1980-	Nominal	OLS and WE	Small and
(1993)	90A	& Real		negative in
				1980. positive in
				1990
Kroner and	1973-	Nominal	GARCH-M	Significant.
Lastpares(1993)	90M			varied signs and magnitudes
C howdhury(1993)	197\$.	Real	VAR	Significant
	90Q			negative effect
Caporale and	1974-	Real	Joint	Significant
Dorodian (1994)	92M		estimation	negative effect
McKenzie and	1973-	Nominal	OLS	Positive
Brooks (1997)	92M			effect
McKenzie (1998)	1969-		ARCH	Generally
	95Q			positive effect
Daly (1998)	1978-	Real		Mixed
	910			results

		(overall likely have a positive correlation)

Hook and Boon (2000)	1985- 97Q	Both	VAR	Negative effect on export
Aristotelotts (2001)	1989- 99A	Real	Gravitiy model	No effect on export
Doganlar (2002)	1980- 96Q	Real	EG Cointegration	Negative effect on export
Vergil (2002)	1990- 2000Q	Real	Standard deviation	Negative effect on export
Das (2003)	1980- 2001Q	Both	ADF. ECM. Cointegration	Significant negative effect on export
Baal: (2004)	1980- 2002A	Real	OLS	Significant negative effect on export
Tenreyro (2004)	1970- 97A	Nominal	Gravity model	Insignificant and no effect on trade
Clark. Tamilisa. and Wei (2004)	1975- 2000A	Both	Gravity model	Negative and significant effect
Kasman .S.: Kasman (2005)	1982- 200IQ	Real	Cointegration. ECM	Significant positive effect on export
Arize et al. (2005)	19 ⁷ 3-	Real	Cointegration.	Significant

	2004Q	Real	ECM GARCH-M	negative effect on export Positive
Hwang and Lee	1990-			

Dushko Josheski &Darko Lazarov/GRP International Journal of Business and Economics Vol.1 No.1, 2012

(2005)	2000M			effect on import and insignificant effect on export	
Lee and Saucier (2005)	1936- 200\$Q	Nominal	ARCH- GARCH	Negative effect on tradd	Page 29

Source : Ilhan ,(2006)

Overall from this table can be discussed that a large number fo studies appear to favor conventional wisdom that exchange rate volatility exerts negative effect on trade. In the next section we will outline the model specification and explain meta regression techniques as well present the empirical results.

Model Specification

Following, Jarrell and Stanley (1989), and considering Stanley (2001), and recommendations from Pugh and Coric (2008), about the degrees of freedom, the MRA model has the following functional form $^{(3)}$:

$$tstat(erves)_{j} = int + S \sqrt{DF_{j}} + \sum \Gamma_{k} merv_{jk} + u_{j}$$
 $j = 1, 2, ..., L \quad k = 1, 2, ..., M$

- $j = 1, \dots, 346$ Indexes the regressions in the literature;
- Int- intercept term
- **DF** i is the degrees of freedom of *j*-th regression
- S is the coefficient to be estimated and measures the relationship between the square root of degrees of freedom and the effect size;
- *merv*_{*jk*} are moderator variables which reflect the main data and characteristics of j-th regression
- *a_k* are *k* coefficients to be estimated, each of which measures the effect of a moderator variable on the effect size;
- u_i, e_i are the usual residuals in the regression,
- *L*-represents the number of studies
- t_1 -is the usual t-statistics

Variable of interest

The variable of interest in this meta-regression is exchange rate variability. This *exchange rate*

variability effect size (ERVES) is independent of the units in which variables in different studies are measured and, given the large sample, under the null of no genuine effect approximates the standard normal distribution (Stanley, 2005), which makes it suitable for the statistical analysis outlined in the following section.. Studies are compared, and results are combined. Meta-analysis usually is done if the author is not certain about the result from one particular study. And when these studies are heterogeneous, straightforward combination of

³ In the following sections will be presented the final parsimonious model which will be tested by different econometric techniques

the test results may be too simplistic, and more sophisticated techniques should be used (Kulinskaya, Morgenthaler, Staudte, 2008).

Effect Size and controlling for degrees of freedom

After compiling the set of relevant studies a summary statistic of the effect size has to be chosen

Page | 31

• to combine and compare the effects size of the studies to find their mean value and

test their significance

• and as the dependent variable of the MRA

Stanley and Jarrell (1989) recommended that, in economics, the *t-value* of regression is the natural effect size. The effect size approximates the standard normal distribution N~ (0, 1), under the null hypothesis of no effect. The t-statistics has no dimensionality, and it is standardized measure on the parameters of interest. Statistical theory predicts relationship between t-ratio and, the squared root of the degrees of freedom ⁽⁴⁾. The formula for the t-value on the estimated coefficient \hat{S}_{i} is as follows where the denominator, in the square brackets is

the standard error of \hat{s} :

DF gives the difference between the number of observations and number of independent variables in the model. Positive or negative statistically significant association between the squared root of the degrees of freedom and the t-statistics is known as existence of the authentic empirical effect.

Earlier studies that employ different monetary indices, cannot be compared. Therefore the effect size is chosen to be a pure number to avoid that problem, for the variable of interest.

Moderator variables

MRA synthesizes the empirical literature by identifying important study characteristics or model specifications and reflecting those differences in $merv_{jk}$. The types of elements that

make up the $merV_{ik}$ might include:

• Dummy variables which reflect whether potentially relevant independent variables have been omitted from or included in the primary study;

⁴ According to Stanley (2005), to test for an authentic relationship the square root of degrees of freedom should be used instead degrees of freedom.

- Specification variables that account for differences in functional forms, types of regressions, and data definitions and sources;
- Sample size
- Selected characteristics of the authors of the primary literature;

• Measures of research or data quality;

Publication bias

Publication bias or, the "file drawer problem" is the consequence of choosing research papers for the statistical significance of their findings ⁽⁵⁾ (Stanley, 2007). Statistical significance is judged by whether, the t-ratio of the explanatory variable is higher, or exceeds 2 in absolute value (Card, Krueger, 2001). There is natural tendency of reviewers and editors to look more favourably on the studies with statistically significant results. Studies that find relatively small and "insignificant" results tend to remain, in the "file drawer" ⁽⁶⁾.

There are identified three sources of publication selection in economics:

- Researchers or editors maybe are, predisposed to accept papers consistent with the conventional view.
- Researchers may use the presence of conventionally expected results as a model selection test.
- And "statistically significant" results are treated more favourably.

Correcti

ng for publication bias

Correcting this bias is impossible without making untestable assumptions ⁽⁷⁾.Bayesian methods for "correcting" publication bias introduced by Givens et al (1997), assumes prior distribution on the number of unpublished studies. As it is noted, direction, extent, and the impact of publication and related biases, are uncertain and may vary greatly depending on circumstances (Copas, Shi, 2000).The extreme view of the problem is that the journals are filled with, 5% of papers which show type I error, while the file drawers, are filled with the remaining 95% of the studies that show non-significant results (p>0.5) (Rosenthal, 1991). Sterling (1959) also argued that non-significant results are rarely published and therefore the published literature is full of type I errors (Hedges, Olkin, 1985).

Meta-regression analysis of the trade effect of exchange rate variability

Meta-analysis of the ERVES

⁵ Or, publication bias is a tendency to publish studies depending on the magnitude, direction and statistical significance of the results (McDaniel, Rothotein, Whetz, 2006).

⁶ With meta-analyses, statistical methods can be employed to identify or accommodate these biases.

⁷ And all of the methods for correcting the publication bias are based on some assumptions.

Central consideration of meta-analysis is to test the null hypothesis, that the effect sizes are distributed standard normal, N~ (0,1), under the null hypothesis of no effect. The null hypothesis is that the mean effect is zero⁸. The hypothesised, exchage rate variability and trade relationship will be rejected, if the average effect size (average t-statistics), is not significantly different from zero. The data set of this MRA, consists of 923 estimated output elasticises, from the collected 67 empirical studies. This data set it is made of Pugh and Page | 33 Coric(2008) meta regression on exchange rate variability and trade, but we updated it with 10 more studies (100) observations. The mean value of the t-statistic, on the coefficients on the output elasticity -1.27, with standard deviation of 3.79149⁹. Provisionaly here we conclude that there exists negative relationship between exchange rate variability and trade. This conclusion is confirmed, by the simple vote-counting procedure¹⁰ The observed erves ranges from -64.577 to 20.702, which suggests considerable varioation around mean. However, if the differences among observed ERVES are random sampling effects, then under the null the standard deviation of the ERVES distribution should be one ($^{2}_{\text{ERVES}} = 1$); otherwise, in the presence of systematic variation from the mean, the standard deviation exceeds one (2 _{ERVES} >1).

	Negative effect	No effect	Positive effect	Not conclusive
1. Hooper & Kohlhagen	0	1	0	0
2. Abrams (1980)	1	0	0	0
3. Cushman (1983)	1	0	0	0
4. Akhtar & Hilton (1984)	1	0	0	0
5. IMF (1984)	0	0	0	1
6. Gotur (1985)	0	0	0	1
7. Chan & Wong (1985)	0	1	0	0
8. Kenen & Rodrik (1986)	1	0	0	0
9. Bailey, Tavlas & Ulan (1986)	0	1	0	0
10. Cushman (1986)	1	0	0	0
11. Bailey, Tavlas & Ulan (1987)	0	0	0	1
12. De Grauwe & Bellfroid (1987)	1	0	0	0
13. Thursby & Thursby (1987)	1	0	0	0
14. Cushman (1988)	1	0	0	0
15. De Grauwe (1988)	1	0	0	0
16. Pradhan (1988)	0	0	0	1
17. Anderson & Garcia (1989)	1	0	0	0
18. Perée and Steinherr (1989)	1	0	0	0
19. Klein (1990)	0	0	1	0
20. Medhora (1990)	0	1	0	0
21. Bini-Smaghi (1991)	1	0	0	0
22. Smit (1991)	0	1	0	0
23. Assery & Peel (1991)	0	0	1	0
24. Pozo (1992)	1	0	0	0
25. Savvides (1992)	1	0	0	0

Table 2 Vote counting procedure

⁸ Josheski, Dushko, Infrastructure Investment and GDP Growth: A Meta-Regression Analysis (September 1, 2008) ⁹See <u>Appendix 1</u>

¹⁰ Table 2 with studies and effects is given in the following page.

Dushko Josheski &Darko Lazarov/GRP International Journal of Business and Economics Vol.1 No.1, 2012

26. Grobar (1993)	1	0	0	0
27. Bahmani-Oskooee &	1	0	0	0
Payesteh	1	0	0	0
28. Chowdbury (1993)	1	0	0	0
29. Kroner & Lastrapes (1993)	1	0	0	0
30. Qian & Varangis (1994)	0	0	0	1
31. Caporale & Doroodian (1994)	1	0	0	0
32. Arize (1995)	1	0	0	0
33. Holly (1995)	1	0	0	0
34. Stokman (1995)	1	0	0	0
35. Arize (1996a)	1	0	0	0
36. Arize (1996b)	1	0	0	0
37. Daly (1996)	0	0	0	0
38. Kiheung & WooRhee (1996)	0	0	1	0
39 McKenzie & Brooks (1997)	0	0	1	0
$\frac{40}{40} \text{ Arize (1997a)}$	1	0	0	0
41 Arize (1997b)	1	0	0	0
$\frac{11.11120}{19970}$	1	0	0	0
$\frac{42.\text{Alize}(1996)}{43 \text{ Arize} \& \text{Shwiff}(1998)}$	1	0	0	0
$\frac{44}{1000}$	1	0	0	0
45 Mekanzia(1008)	0	0	0	1
45.MCKellZle(1998)	1	0	0	0
40.Defi affecta(1999)	0	0	0	1
47.Lee(1999) 48 Arize Osang & Slottie	0	0	0	1
(2000)	1	0	0	0
49. Rose (2000)	1	0	0	0
50. Chou (2000)	1	0	0	0
51. Abbott, Darnell & Evans	0	1	0	0
(2001)	0	1	0	0
52. Aristotelous (2001)	0	1	0	0
53. Doyle (2001)	0	0	0	0
54. Sauer & Bohara (2001)	0	0	0	1
55. Sekkat (2001)	0	1	0	0
56. Giorgioni & Thompson (2002)	1	0	0	0
57. Fountas & Aristotelous (2003)	0	0	1	0
58.ARIZE(1998)	1	0	0	0
59.Mahmood,	0	0	0	1
Ehsanullah,Habib(2011)	0	0	0	1
60.Wesseh, Jr and Linlin Niu (2012)	1	0	0	0
61.Pickard(2003)	0	0	0	1
62.Vergil(1999)	1	0	0	0
63.Kandilov(2008)	1	0	0	0
64.Bakhromov(2011)	1	0	0	0
65.WangBarret(2007)	0	0	0	1
66.Tenrevro(2007)	0	0	0	1
67.Ngouana(2012)	0	0	1	0
Total	39	8	6	12
- v + + + + + + + + + + + + + + + + + +	1	1	1	1

In the previous table we can see the summary of studies and the effects reported. Most of the studies find negative relationship between exchange rate variability and trade 39, 8 studies

find no effect while 6 studies report positive effect between exchange rate variability and trade 12 studies are not cocnlusive about the relationship either positive or negative.

Independent varibales

We include in the MRA the squared root of the degrees of freedom to test for the existence of an authentic empirical effect (Stanley, 2005). To confirm the existence of an authentic empirical effect we need to confirm that a statistically significant relationship between the effect size (t-stat) and the squared root of the deegrees of freedom exists and that the relationship has the same sign as the estimated average effect size. In the presence of the squared root of the degrees of freedom, the intercept can be interpreted as a measure of the publication bias, and if it is significant it constitutes a rejection of the null of no publication bias. If we want to explain the varioations in the exchange rate variability effect size, we include moderator variables. Moderator variables are either 1 or 0 value. As the Pugh and Coric we include **bilater**(Billateral exchange rates), and **sectalt**(sectoral trade flows), moderator variable for import demand (import) it is being constructed and export is a benchmark variable. Moderator variable (realer) it is being constructed (real exchange rate variability) and noiminal exchange rate is a benachmark. Also moderator variables for dailver.weeklver, monther, annualer for daily, weekly, monthly and annual frequency of exchange rate variability. Studies also differed over the choice of measure to proxy exchange rate uncertainty. The most common measure, the standard deviation of either exchange rate changes or percentage changes, is used as the benchmark. However, we identified 13 alternative measures in the literature (MERV 1-13; see Appendix 2 for definitions). Moderator variables for cross -Cross section data, pooled-Panel data, gravity-Gravity model data, Ircoint-Cointegration, errorcor-error correction model data. This serve to know how the estimates are obtained. moderator variables were included for all studies that control for structural breaks (DOCKSTR - including dock strikes, oil shocks, changes in monetary regime and wars).

Descriptive statistics of the model

First of all most of the studies use data from floathing exchange rate period this variable **floper** (mean = 0.67382), most of the studies are done for developed countries **dc** (mean=0.68). The variable for the effect size , exchange rate variability **erves** (mean=-1.27306) is our main variable of interest.Most studies use quarterly frequency of exchange rate variability **quarter** (mean=0.442037), also most of the studies use **realer real exchange rate variability** this variable mean=0.543991. Continuous variables are included for testing the authentic empirical effect in the MRA analysis following the recommendations of Pugh and Coric (2008), and Stanley (2008): the square root of the degrees of freedom (**sqrtdf**, mean=16.24771; sd=26.44371).Most estimates are obtained with panel methods,**pooled** variable (mean=0.204936)¹¹.

Results

The robustness of the results it is being taken into account by estimating the model with 4 estimation techniques namely: Robust OLS, Clustered Robust OLS, Weighted least squares (WLS), and clustered robust weighted least squares. Type I publication bias is directional and Type II publication bias that favors statistical significance regardless of the direction. Acrossthree estimates , except for the clustered robust OLS , intercept is insignificant which

¹¹ See <u>Appendix 3</u> Descriptive statistics of the model

rejects the null hypothesis of publication bias¹². The coefficient on the squared root of the degrees of freedom is negative and significant and this supports the presence of genuine empirical effect.

Page | 36

dependent verieble is offect size ower		robust OLS		clustered robust OLS		weighted least squares		WLS cluster robust	
depender	iit variable is effect size erves	Coef.	t	Coef.	t	Coef.	t	Coef.	t
sqrtdf	Squared root of the degrees of freedom	-0.0475	- 4.02	-0.0475	- 2.77	-0.03204	-2.75	-0.03204	- 1.47
fixper	Fixed ER period	-1.58868	- 1.12	-1.58868	- 0.97	-4.9558	-5.77	-4.9558	- 1.56
floper	Floathing ER period	0.67710 3	1.6	0.67710 3	1.02	1.30730 7	3.16	1.30730 7	2.02
ldc	Least developed countres	-1.20466	- 2.98	-1.20466	- 2.37	-0.89725	-1.93	-0.89725	- 1.95
us	USA	0.88714 3	2.89	0.88714 3	1.51	0.58900 7	1.4	0.58900 7	1.28
import	Import	-1.13771	- 1.49	-1.13771	- 1.35	-1.39234	-3.24	-1.39234	- 1.79
sectalt	Sector level	-0.51355	- 0.84	-0.51355	- 0.64	0.10202 7	0.19	0.10202 7	0.11
dailyer	Daily ER variability	-2.44723	- 1.03	-2.44723	- 1.17	-4.78492	-2.3	-4.78492	- 1.23
weaklyer	Weakly ER variability	-1.40415	- 0.67	-1.40415	- 0.91	-1.32967	-0.75	-1.32967	- 0.46
monther	Monthly ER variability	-1.90671	- 0.93	-1.90671	- 1.23	-3.02091	-1.81	-3.02091	- 0.95
quarter	Quarterly ER variability	-2.67886	- 1.25	-2.67886	- 1.65	-3.98164	-2.33	-3.98164	- 1.12
annualer	Annualy ER variability	-4.22572	- 2.21	-4.22572	-2.9	-3.7513	-2.07	-3.7513	- 1.22
realer	Real ER variability	0.29986	1.01	0.29986	0.85	-0.1223	-0.3	-0.1223	- 0.24
cross	Cross-section data	-0.1015	- 0.19	-0.1015	0.13	-0.21942	-0.28	-0.21942	0.21
pooled	Panel data	-0.80391	- 0.57	-0.80391	- 0.46	-2.29203	-3.48	-2.29203	- 0.97
sesonadj	Seasonaly adjusted data	-0.69999	- 1.46	-0.69999	- 0.99	0.63044 7	1.07	0.63044 7	1.1
errorcor	Error correction model	-0.5354	- 1.04	-0.5354	- 0.62	0.09299 5	0.2	0.09299 5	0.21
lrcoint	Cointegration analysis	-1.4216	2.05	-1.4216	-1.6	-0.67766	-1.05	-0.67766	- 0.59
dockstr	Structural effects	-0.02461	- 0.04	-0.02461	- 0.04	1.00140 5	2	1.00140 5	0.88
MERV 1= 1 percentage c	if absolute values of ER hange	1.37606 8	2.59	1.37606 8	2.31	0.98840 1	1.23	0.98840 1	1.28
MERV2= 1 percentage c	if average absolute values of ER hanges	-1.94153	- 0.79	-1.94153	-0.8	-3.72734	-3.89	-3.72734	- 0.97
MERV 3= 1 previous forv	if absolute differences between ward and current spot rat	-2.70365	- 2.81	-2.70365	- 1.22	-2.62199	-2.45	-2.62199	- 3.06
MERV 4= 1 of ER change	if the moving standard deviation es or percentage changes	-0.09833	- 0.31	-0.09833	- 0.19	-0.11085	-0.22	-0.11085	0.23
MERV $5=1$ from an ER 1	if the standard deviation of ERs	1.82775 7	1.68	1.82775 7	1.42	4.57365 9	4.97	4.57365 9	2.04
MERV 6= 1 from a first-	if the standard deviation of ERs	-0.13978	- 0.18	-0.13978	- 0.18	0.77914	0.69	0.77914	0.83
MERV 7= 1	if long-run uncertainty; Perée r's (1989) V and U measures	0.76052	0.95	0.76052	0.69	0.67479	0.66	0.67479	0.79
MERV 8= 1	if squared residuals from an	-0.8977	-	-0.8977	-	-1.50554	-1.81	-1.50554	-1.4
$\frac{\text{MERV 9= 1}}{\text{by an ARCH}}$	if conditional variance calculated	1.16403	3.16	1.16403	2.24	0.35116	0.64	0.35116	0.59

Table 3 Model specification

¹² In the Pugh and Coric meta regression there was no evidence of type I publication bias ,here with augmented sample for 10 studies in clustered robust OLS model there is evidence of Type I publication bias at 1% level fo significance. This maybe result from the sample of 10 studies which we add and are not part of Econlit

Dushko Josheski &Darko Lazarov/GRP International Journal of Business and Economics Vol.1 No.1, 2012

MERV 10= 1 if va (linear moment) m	riance calculated by a LM odel	1.35191 7	0.89	1.35191 7	0.64	1.28066 3	1.1	1.28066 3	0.82
MERV 11=1 if the variance of the ER around its trend prediction (ln et = $0 + 1t + 0t2 + t$)		-1.8922	2.07	-1.8922	- 1.83	-1.5627	-1.11	-1.5627	- 1.07
MERV 12= 1 if unanticipated changes in ERs (used by Savvides, 1992)		-0.24288	- 0.19	-0.24288	- 0.21	-1.24283	-0.84	-1.24283	- 0.85
MERV 13= 1 if information contained in forward exchange rate concerning exchange rate expectations (used by Cushman, 1988)		0.94836 4	0.51	0.94836 4	0.38	3.15143 5	2.22	3.15143 5	1.11
_cons	Intercept	2.12541 6	1.07	2.12541 6	1.61	2.26217 4	1.36	2.26217 4	0.78
F-stat(32, 890)=	17.09			None		8.3		8.56	
R-squared	0.2407			0.2407 0.2298		98	0.2298		
Num.of observations				923					

Page | 37

In this MRA the studies that control for least developed countries (**ldc**), fixed exchange rate period(**fixper**), import (**import**), quarterly exchange rate variability (**quarter**), real variability diverges from nominal in longer periods this is supported by the significant and negative estimates on the annua exchange rate variability (**annualer**), and all of the modeling strategies cros-ssection data (**cross**), panel data (**pooled**), error correction model (**errocor**), and cointegraion model (**lrcoint**), exert negative results. Dummy variable for structural breaks in time series (dockstr), in this MRA appear not to be significant. 7 measures of the exchange rate uncertainty used in the literature do not robustly influence the exchange rate variability effect size. Also as in Pugh and Coric MRA the negative coefficient on **annualer**, **ldc**, and **realer**, confirms that the exchange rate variability has an adverse effect on trade. Next are presented results on Type II publication bias.

Table 4	Type	II pub	lication	bias
---------	------	--------	----------	------

ABServes	Absolute value of the effect size	Coef.	t
sqrtdf	Squared root of the degrees of freedom	0.022802	2.09
fixper	Fixed ER period	0.843288	0.63
floper	Floathing ER period	-1.00232	-2.6
ldc	Least developed countres	0.474035	1.31
us	USA	-0.53026	-2.29
import	Import	0.339242	0.48
sectalt	Sector level	-0.80442	-1.46
dailyer	Daily ER variability	2.539618	1.21
weaklyer	Weakly ER variability	0.839861	0.46
monther	Monthly ER variability	1.243429	0.69
quarter	Quarterly ER variability	1.166528	0.6
annualer	Annualy ER variability	0.868214	0.52
realer	Real ER variability	-0.0309	-0.13
cross	Cross-section data	-0.18598	-0.43
pooled	Panel data	1.435453	1.09
sesonadj	Seasonaly adjusted data	0.171385	0.43
errorcor	Error correction model	-0.18751	-0.42
lrcoint	Cointegration analysis	0.670748	1.07
dockstr	Structural effects	-0.51433	-0.81
merv1	1 if absolute values of ER percentage change	-0.7666	-1.68
merv2	1 if average absolute values of ER percentage changes	3.591151	1.53
merv3	1 if absolute differences between previous forward and current spot rat	1.172268	1.35
merv4	1 if the moving standard deviation of ER changes or percentage changes	0.169814	0.7
merv5	1 if the standard deviation of ERs from an ER trend equation	0.485537	0.53
merv6	1 if the standard deviation of ERs from a first-order autoregressive equation	0.793093	1.05
merv7	1 if long-run uncertainty; Perée and Steinherr's (1989) V and U measures	-0.11331	-0.17
merv8	1 if squared residuals from an ARIMA model	3.25965	3.52
merv9	1 if conditional variance calculated by an ARCH or GARCH model	0.049136	0.17
merv10	1 if variance calculated by a LM (linear moment) model	-1.87414	-1.26

Dushko Josheski &Darko Lazarov/GRP International Journal of Business and Economics Vol.1 No.1, 2012

merv11	1 if the variance of the ER around its trend prediction (ln et = $0 + 1t + 0t2 + t$)	0.41302	0.52
merv12	1 if unanticipated changes in ERs (used by Savvides, 1992)	1.565604	1.44
merv13	1 if information contained in forward exchange rate concerning exchange rate expectations (used by Cushman, 1988)	-2.77359	-1.5
_cons	Intercept	1.085821	0.61

Page | 38

Non significant coefficient on the intercept and of a small size means that we can reject the null of indicates non presence of publication bias. The other three models are not reported but are available and exert same result. The simplest and most commonly used method to detect publication bias is an informal examination of a funnel plot.

Figure

Funnel Plot, t-

stat(erves) on squared root of the degrees of freedom

In the absence of publication selection and regardless of the magnitude of the true effect, estimates will be symmetrically around the true effect. Because small sample studies with large standard errors and less precision are at the bottom of the graph , the plot will be more spread out at the bottom than it is at the top (<u>Stanley,2005</u>).

Egger's regression method

The Egger et al. regression asymmetry test and the regression asymmetry plot tend to suggest the presence of publication bias more frequently than the Begg approach. The Egger test detects funnel plot asymmetry by determining whether the intercept deviates significantly from zero in a regression of the standardized effect estimates against their precision (STATA 11 manual).

- The intercept value (A) = estimate of asymmetry of funnel plot
- Positive values (A > 0) indicate higher levels of effect size in studies with smaller sample sizes.
- Regression equation: SND = A + B x SE(d)-1. SND=standard normal deviate (effect, d divided by its standard error SE(d)); A =intercept and B=slope.

Asymmetry on the right of the graph (where studies with high standard error are plotted) may give evidence of publication bias. On the next Table 5 are presented egger's test results.

Table 5 Eggert's test

Egger's test						
Std_Eff	Coef.	t	p-value			
slope	-0.635791	-2.88	0.004			
bias	-0.030748	-0.97	0.333			

The intercept is negative and significant at all conventional levels of significance, which indicates assymetry to the left.the coefficient on the bias is insignificant which rejects the existence of bias. Next it is presented eggert's publication bias plot which indicates that standardized effect is scattered on positive and negative side and the regression line is not very far from the intercept.

Graph Egger's publication bias plot

Egger's publication bias plot shows slight assymetry on the negative side.

Next we present Funnel plot

Funnel plot did not show much heteroigeneity between studies.

On the next funnel effect size is plotted against the investse of the squared root of the of the degrees of freedom

Funnel plot effect size and investse of the squared root of the degrees of freedom

Page | 40

The funnel shows that effect size has a left assymetry when plotted against the squared root of the degrees of freedom.

Conclusion

Across three estimates, the intercept term (_cons) is not significantly different from zero at conventional levels, which rejects the null of publication bias.But in the clustered robust model the intercept is significant at 10% level fo significance Coefficient on the squared root of the degrees of freedom is negative and statistically significant at all levels of statistical significance except in the Cluster robust WLS model. The conlcusion is that in the literature of exchange rate variability and trade there is presence of genuine empirical effect and not a presence fo publoication bias. The publication bias that appeared in the clustered robust model is perhaps due to the ten papers that were added to Pugh's and Coric MRA.They were not from the Econlit data base. Results are summarized in the following two tables.

Findings on Type I publication bias: Dependent variable (effect size): t-statistics on the variable of interest in each study

Type I publication bias (t-stat as dependent variable)		sign on the coeffagent 41 sqrtdf (squared root of the degrees of freedom) and significance				
	t-stat regressed on sqrtdf (model 1)					
squared root of the degrees of freedom (sqrtdf) +control variables	OLS	Cluster robust OLS	WLS	Cluster robust WLS		
Sign on the squared root of the degrees of freedom (sqrtdf) and significance	*** -	*** -	*** -	-		
Sign on the constant and significance	+	+*	+	+		

"- "- negative sign on the variable	*- significant at 10 percent level of significance
"+"-positive sign on the variable	**-significant at 5 percent level of significance
n.a not available	***- significant at 1 percent level of significance (all levels of significance)

Findings on Type I publication bias: Dependent variable (effect size): t-statistics on the variable of interest in each study

publication OLS Cluster robust OLS WLS Cluster	Page 42	2
Dias		
type I Model 2 (publicationauthentic empirical effecttype I publicationNo authentic empirical publicationtype authentic empirical effectNo authentic empirical biastype effectModel 2 (publication t-statpublication effectempirical biaspublication effecttype authentic empirical effecttype authentic empirical effectt-statbiaseffectbiaseffectbiasregressed on the squared root of the degrees of freedom)×××	pe I authentic cation empirical as effect	

Findings on Type II publication bias: Dependent variable (effect size): absolute t-statistics on the variable of interest in each study

Testing type II publication bias	OL	Page 43 S
Model 3 (absolute t-statistics regressed on the squared root fo the degrees fo freedom)	type II publication bias	authentic empirical effect
	×	

- There is evidence of Type II publication bias or authentic empirical effect

 \times - There is no evidence of Type I publication bias or authentic empirical effect

From the available regression on the Type II publication bias and the conclusions in the previous Table we can conlcude that a there iss absence of Type II publication bias but presence of authentic empirical effect in the literature between exchange rate variability and trade in this case negative. Next, **388** of **923** regressions report t-statistics >+2 or <-2. Of which, **79** regressions report t-statistics >+2, and **309** regressions report t-statistic <-2. This shows that in this literature, Type II publication bias is not likely to be present.

Page | 44

The mean effect size is (-1.273063) ⁽¹³⁾, this suggests negative relationship between *exchange rate variability and international trade*.

Furthermore, this MRA suggests that exchange rate variability effects on trade are more intensive in least developed countries (*ldc*) than in US economy ⁽¹⁴⁾, where studies that control for US variable find more positive association between exchange rate variability and trade.

¹³ See Appendix 1

¹⁴ Coefficient on us-studies (us) variable is positive and statistically significant except in the WLS and cluster robust WLS, coefficient on the (Idc) is negative and significant.

Appendix 1

Meta-Analysis

H ₀ :AERVES=0 H ₁ :AERVES 0	Appendix B: Testing • Ho: $^{2}_{ERVES}=1$ • H1: $^{2}_{ERVES}>1$
AERVES: Average exchange rate variability effect size	
$t - stat = \frac{Average Erves}{\dagger_{ERVES}^{2}}$	Chi-sq test statistic $(t^2) = (n-2)\frac{\uparrow_{ACOOEL}}{\uparrow_{ACOOEL}}$
Where	
$\dagger^{2}_{ERVES} = \frac{\dagger^{2}_{ERVES}}{\sqrt{DF}}$	Where n=932; $\dagger^{2}_{ERVES} = 3.79149$;
AERVES= -1.273063	$\dagger_{erves} = 1;$
² _{ERVES} =3.79149; and DF=899	Hence, $t^2 = 3532.28$
$t = \frac{-1.273063}{3.79149} = -10.0674$	Excess Variation
$\sqrt{899}$ Non –zero t-statistic	The two-tailed P value is less than 0.0001 By conventional criteria, this difference is considered to be extremely statistically significant. For practical purposes, there is zero probability of making a type one error by rejecting Ho.

MERV1 = 1 if absolute values of ER percentage changes

MERV2 = 1 if average absolute values of ER percentage changes

MERV3 = 1 if absolute differences between previous forward and current spot rates

MERV4 = 1 if the moving standard deviation of ER changes or percentage changes

MERV5 = 1 if the standard deviation of ERs from an ER trend equation

MERV6 = 1 if the standard deviation of ERs from a first-order autoregressive equation

MERV7 = 1 if long-run uncertainty; Perée and Steinherr's (1989) V and U measures

MERV8 = 1 if squared residuals from an ARIMA model

MERV9 = 1 if conditional variance calculated by an ARCH or GARCH model

MERV10 = 1 if variance calculated by a LM (linear moment) model

MERV11 = 1 if the variance of the ER around its trend prediction (ln et = 0 + 1t + 0t2 + t)

MERV12 = 1 if unanticipated changes in ERs (used by Savvides, 1992)

MERV13 = 1 if information contained in forward exchange rate concerning exchange rate expectations (used by Cushman, 1988)

Appendix 3

Descriptive statistics

Variable		Obs	Mean	Std. Dev.	Min	Max
result		932	466.5	269.1895	1	932
author	authors	932	37.95815	20.22631	1	68
weight	Weights	932	0.083691	0.318745	0.01852	9.25
df	Degrees of freedom	932	962.5075	3873.021	9	35984
fixper	Fixed ER regime	932	0.077253	0.267136	0	1
floper	Floathing ER regime	932	0.67382	0.469066	0	1
fixflo	Fixed float	932	0.277897	0.448203	0	1
ldc	Least developed countries	932	0.236052	0.424882	0	1
dc	Developed countries	932	0.688841	0.463216	0	1
us	US	932	0.219957	0.41444	0	1
import	Imports	932	0.182403	0.386384	0	1
export	Exports	932	0.805794	0.395801	0	1
dailyer	Daily ER variability	932	0.032189	0.176596	0	1
weaklyer	Weakly ER variability	932	0.064378	0.245556	0	1
monther	Monthly ER variability	932	0.299356	0.458222	0	1
quarter	Quarterly ER variability	923	0.442037	0.496898	0	1
annualer	Annualy ER variability	932	0.137339	0.34439	0	1
bilater	Billateral exchange rates	932	0.474249	0.499605	0	1
realer	Real exchaneg rate variability	932	0.543991	0.498328	0	1
nomer	Nominal exchange rate variability	932	0.419528	0.493747	0	1
cross	Crosssection data	932	0.096567	0.295525	0	1
pooled	Panel	932	0.204936	0.403871	0	1
gravity	Gravity model	932	0.122318	0.327828	0	1
lrcoint	Cointegration	932	0.06867	0.253027	0	1
errorcor	Error-correction model	932	0.081545	0.273817	0	1
lagtest	Lag test performed	932	0.560086	0.496643	0	1

Dushko Josheski &Darko Lazarov/GRP International Journal of Business and Economics Vol.1 No.1, 2012

dockstr	Structural effects	932	0.141631	0.348858	0	1
merv1	1 if absolute values of ER percentage changes ER percentage changes	932	0.079399	0.270506	0	1
merv2	l if average absolute values of ER percentage changes	932	0.043991	0.205186	0	1
merv3	1 if absolute differences between previous forward and current spot rates	932	0.025751	0.158477	0	1
merv4	1 if the moving standard deviation of ER changes or percentage changes	932	0.29721	0.457275	0	1
merv5	1 if the standard deviation of ERs from an ER trend equation	932	0.06867	0.253027	0	1
merv6	1 if the standard deviation of ERs from a first-order autoregressive equation	932	0.032189	0.176596	0	1
merv7	1 if long-run uncertainty; Perée and Steinherr's (1989) V and U measures	932	0.052575	0.223304	0	1
merv8	1 if squared residuals from an ARIMA model	932	0.01824	0.133891	0	1
merv9	1 if conditional variance calculated by an ARCH or GARCH model	932	0.138412	0.345517	0	1
merv10	= 1 if variance calculated by a LM (linear moment) model	932	0.022532	0.148486	0	1
merv11	= 1 if the variance of the ER around its trend prediction (ln et = $0 + 1t + 0t2 + t$)	932	0.01824	0.133891	0	1
merv12	= 1 if unanticipated changes in ERs (used by Savvides, 1992)	932	0.008584	0.092299	0	1
merv13	1 if information contained in forward exchange rate concerning exchange rate expectations (used by Cushman, 1988)	932	0.022532	0.148486	0	1
erves	Effects size(t-stats on exchange rate vaiability coefficient)	932	-1.27306	3.79149	-64.577	20.702
sqrtdf	Squared root of the degrees of freedom	932	16.24771	26.44371	31	89.6945
						•

Page | 47

Refferences

Abbott, A., Darnell, A., Evans, L., 2001. The Influence of Exchange Rate Variability on UK Exports. Applied Economic Letters 8, 47--49.

Abrams, R., 1980. International Trade Flows Under Flexible Exchange Rates. Federal Reserve Bank Of Kansas City

Akhtar, M., A., Hilton, R., S., 1984. Exchange Rate Uncertainty and International

Trade: Some Conceptual Issue and New Estimates for Germany and the United States. Federal Reserve Bank of New York, Research Papers 8403.

Anderson, M., Garcia, P., 1989. Exchange Rate Uncertainty and the Demand for US

Ardeni, P., Lubian, D., 1991. Is there trend reversion in Purchasing Power Parity? European Economic Review 35, 1035--1055.

Arize, A., C., 1995. The Effect of Exchange Rate Volatility on US Exports. Southern

Arize, A., C., 1996a., Real Exchange Rate Volatility and Trade Flows: The Experience of Eight European Economies. International Review of Economics and Finance 5, 187--205.

Arize, A., C., 1996b. The Impact of Exchange Rate Uncertainty on Export Growth: Evidence from Korean Data. International Economic Journal 10, 49--60.

Arize, A., C., 1997a. Conditional Exchange Rate Volatility and Trade Flows: The Experience of Eight European Economies. Southern Economic Journal 64, 235-253.

Arize, A., C., 1997b. Foreign Trade and Exchange rate Risk in G-7 Countries. Review of Financial Economics 6, 95--112.

Arize, A., C., Osang, T., Slottje, D., J., 2000. Exchange rate Volatility and Foreign Trade: Evidence from Thirteen LDC's. Journal of Business and Economic Statistics 18, 10--17.

Assery, A., Peel, D., A., 1991. The Effect of Exchange Rate Volatility on Exports: Some new Estimates. Economic Letters 37, 173--177.

Card, David, Krieger, B, Alan,(2001), *Time Series Minimum-Wage Studies :A Meta Analysis*, American Economic Association

Copas J,Henmi Masayuki ,(2007), *Confidence Intervals and P-values for Meta Analysis with Publication Bias*, Biometrics, 63 Economic Journal 62, 34--43.

Iqbal Mahmood, Major Ehsanullah, and Habib Ahmed,(2011) Exchange Rate Volatility Macroeconomic Variables in Pakistan, Business Management Dynamics Vol.1, No.2, August 2011, pp.11-22

A. C. Arize,(1998), The Effects Of Exchange Rate Volatility On U.S. Imports: An Empirical Investigation, International Economic Journal 31 Volume 12, Number

Joseph C. Pickard(2003), Exchange Rate Volatility And Bilateral Trade Flows: An Analysis Of U.S. Demand For Certain Steel Products From Canada And Mexico, Falls Church, Virginia

Hasan Vergil,(1999), Exchange Rate Volatility in Turkey and Its Effect on Trade Flows, Journal of Economic and Social Research 4 (1), 83-99

Ozturk, Ilhan,(2006), Exchange Rate Volatility And Trade: A Literature Survey International Journal of Applied Econometrics and Quantitative Studies Vol.3-1 (2006)

Ivan T. Kandilov, The Effects of Exchange Rate Volatility on Agricultural Trade Sabri, Nidal Rachid; Peeters, Marga and Abulaben, Diama K.(2012), The impact of exchange rate volatility on trade integration among North and South Mediterranean countries, working paper

Nodir Bakhromov(2011), The Exchange Rate Volatility and the Trade Balance: Case of Uzbekistan, Journal of Applied Economics and Business Research JAEBR,

1(3): 149- 161 (2011)

Silvana Tenreyro(2007), On the trade impact of nominal exchange rate volatility, Journal of Development Economics 82 (2007) 485–508

Stanley, T.D., Jarrell, B. Stephen, (1989), *Meta-Regresssion analysis: A Quantitative Method of Literature Surveys*, Blackwell Publishing

Card, David, Krieger, B, Alan,(2001), *Time Series Minimum-Wage Studies* :A Meta Analysis, American Economic Association

Josheski, Dushko, Infrastructure Investment and GDP Growth: A Meta-Regression Analysis (September 1, 2008)

Presley K. Wesseh, Jr. and Linlin Niu(2012), The Impact of Exchange Rate Volatility on Trade Flows: New Evidence from South Africa, *International Review of Business Research Papers Vol. 8. No. 1. January 2012. Pp. 140 – 165*

Pugh, Geoff, Coric, Bruno, (2008), *The effects of exchange rate variability on international trade : A meta-regression analysis*, Applied Economics, 1-14

Rose, K. Andrew, Stanley, T.D., (2005), A Meta-Analysis of the Effect of Common Currencies on International Trade, Journal of Economic Surveys, Vol.19 No.3

Rose, K. Andrew, Stanley, T.D., (2005), A Meta-Analysis of the Effect of Common Currencies on International Trade, Journal of Economic Surveys, Vol.19 No.3

Stanley, T.D. (2005), *Beyond Publication Bias*, Journal of Economic Surveys, Vol.19, No.3

Stanley, T.D., (2008), *Meta-Regression Methods for Detecting and Estimating Empirical Effects in the Presence of Publication Selection*, Oxford Bulletin of Economics and Statistics, 70,1

Stanley, T.D., Jarrell, B. Stephen, (1989), *Meta-Regresssion analysis: A Quantitative Method of Literature Surveys*, Blackwell Publishing

Stata corp. (2011), *STATA base reference manual*, Q-Z, Release 10,A Stata press publication, StataCorp LP,College Station, Texas

Wooldridge, Jeffrey , (2002), Introductory Econometrics A Modern Approach, Thomson