

Preliminary Screening for Cocrystallization of Methylxanthine Class of Drugs: **Caffeine and Pentoxifylline**

Aleksandar Cvetkovski, Valerio Bertolasi, Paola Gilli

Dipartimento di Scienze Chimiche e Farmaceutiche e Centro di Strutturistica Diffrattometrica, Università di Ferrara,

Via L. Borsari 46, 44121 Ferrara.

cvtlsn@unife.it

drugs (2).

During the last years, an increased interest for research in pharmaceutical cocrystals has been registered, using different strategies. A promising approach is to make use of the molecular recognition properties of the functional groups and their allocations in entire structures of the molecules which, depending on the polarity and atom's electronegativity, are linked one to another by H-bonds (3). Hence, cocrystals represent multicomponent complexes where the Charge Transfer (CT) or Electron Donor-Acceptor (EDA) Interactions between two different molecules may determine the crystal packing that influences the solidstate properties of the cocrystal itself, and consequently the biopharmaceutical profile of the API included in the pharmaceutical cocrystals (4).

Objective

For the purpose of this initial screening of cocrystallization of the methylxanthine derivatives caffeine and pentoxifylline, and two different types of Cocrystal Formers (or coformers, CF) [alpha-Lipoic acid (ALA) and *p*-Coumaric acid (PCA)] have been selected on the base of their very common use in therapy in association with caffeine and pentoxifylline, respectively, as well as of the matching of proton acceptor/donor groups for each methylxanthine derivative with each of the three selected CFs.

The purpose of this study is for first time explore an opportunities for formulation drug-drug type of Cocrystals for dual pharmacological response in therapy.

(Microdrop Microdroplet deposition technology Technologies GmbH, Germany) was applied in process of cocrystallization for binary system of CAF/ pCA. The solution CAF and pCA was prepared by dissolving pure starting substances in 1 : 1 stoichiometric ration into the 50/50 w/w% water-ethanol mixture and its application on the surface of the solid glass ribbons. Homogeneous deposited crystalline films that coated glass ribbons were noticed after their overnight drying on ambient temperature.

Pentoxyphylline (PEN)

Alpha Lipoic Acid (ALA)

Results and Discussion

Cocrystallized binary systems with caffeine

Experimental Raman wavenumber values

	cm ⁻¹	Bands Assignments		
Caffeine	1185			
(CAF)	1613	Carbonyl C=O stretching band		
	1725			
<i>p</i> -Coumaric Acid (pCA)	1171			
	1208	stretching and bending vibrations of th OH groups, short O—HO hydroge bonds		
	1591	asymmetric stretching of the carboxylate moiety, vas (COO)		
	1605	C=Casym stretching vibrations in the styrene moiety		
	1630	C=C stretching frequency vas(C=C)sty; vas(C=O)		
	1169			
	1189			
	1200	stretching and bending vibrations of the OH groups, short O—HO hydrogen bonds		
Binary Solid	1587			
System CAF/pCA 1/1 mol/mol	1601	asymmetric stretching of the carboxylate moiety, vas(COO)		
	1624	C=Nasym stretching vibrations		
	1638			
	1703	Completely dimerized carboxyl group with two hydrogen bonds to one neighboring molecule		

Caffeine, pure

pCA, pure

Cocrystallized new solid crystalline phase from CAF / pCA (1 : 1) mol/ mol binary solid system recrystallized from solution

Binary solid systems PEN/ ALA were prepared by performing following methods:

-"Slow solvent evaporation" procedure for recrystallization of ethanol solution of dissolved PEN and ASA in1 : 1 stoichiometric ration;

- Grinding the powder of the starting substances was carried out manually in mortar with pistil in duration of 15 min.

- "Liquid Assisted Grinding" was performed by adding the few droplets of ethanol to powder mixture of PEN and ALA, kneading the paste mass during 15 min and its overnight drying on ambient temperature.

For preliminary characterization of the recrystallized binary solid systems CAF/pCA, Raman spectra were recorded on a Renishaw Ramascope (system 1000 with WireTM v1.3 Raman software) equipped with a Leica DMLM microscope and connected to a CCD charge-coupled device camera detector. The spectrometer was always calibrated against a Si-standard (520.0 cm-1) before starting the Raman measurements. A resolution of 4 cmwas used and 1,000 scans were recorded for each spectrum.

Samples of PEN/ASA binary solids were characterized by recording FT-IR spectra on FT-IR Perkin-Elmer System 2000 spectrometer in 4000-400 cm-1 region, at room temperature.

References

Dhaliwal, G.; Mukherjee, D. Int. J. Angiol. 2007, 16(2), 36–44.

Cocrystallized binary systems with pentoxifylline

Experimental FT-IR Spectra wavenumber values

Pentoxifylline (PEN)	cm⁻¹	Bands Assignments		cm⁻¹	Bands Assignments	Binary Solid System PEN/ALA 1/1 mol/mol Recrystallizeds from solution	cm ⁻¹	Bands Assignments
	761, 752	– (CH2)n – skeletal vibration		932	Out of plane O—H bend of the carboxylic acid dimer		1600 1658	Amide –C=O
	1656, 1422	–CH3 deformation mode	Alpha-Lipoic Acid (ALA)	1407	Symmetric carboxylate stretching mode		1000, 1000	stretching mode
	1658	Amide –C=O stretching mode		1463 1600	CH ₂ scissoring band absent		2962, 2947	-CH stretching mode
	1720, 1701	C=O stretching mode		1602	Completely dimerized –COOH			
	2959, 2945	-CH stretching mode		1092	to the neighboring molecule			
				2930	C—H stretching bands			

Conclusions

Recorded Raman spectra and observed new crystalline phase, distinct from starting substances, anticipate that solid crystalline binary system CAF/ pCA is cocrystal of caffeine and *p*-coumaric acid in 1/1 molar ration.

Further Work

Entire structural analyses based single-crystal diffractomery will elucidate the cocrystal composition and H-bonding motifs which link the molecule in cocrystal structure.

Dunitz, J. D. CrystEngComm 2003, 5, 506

Bertolasi, V.; Gilli, P.; Gilli, G., Cryst. Growth Des. 2012, 12, 4758-4770

