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1. Introduction. Strong ground motion, in particular earthquakes,
has been always subject of human fear, interest and in the last two centuries –
analytic study. The main obstacle in exploring seismic mechanism is, generally
speaking, the scale of the object in study. Our planet is too large to be examined
by probes – as a matter of fact, our best technology provides samples of Earth
structure in just few kilometers deep, apart from the cost of drilling. There are
very few places as San Andreas fault in California, which is close to the surface
and in fact geologist can examine the fault directly, providing best data for the
features of the seismic source and the ground structure. For the rest of the planet
we use methods as tomography – several well – posed receivers record the data
from a specific source. Then the data are processed with different methods like
inverse tomography, for instance, and approximation of the ground structure is
obtained. For shallow and relatively small areas explosives are used as a source.
For larger areas the data records of actual earthquakes are employed. Accurate
records of the exact time and shape of the wave, provided by different seismic
stations, allow determination of the depth and other features of the source with
methods as time-frequency analysis and others. Then tomography could be used
to determine the ground structure.

Unfortunately the tomography is not exact method even when the source
of the signal is known and under control. In seismology and geophysics it
is even more umprecise for neither the source of the wave, nor the media is
known, and we have only the seismogram as a data. In fact it is one set
of data to determine two unknown quantities. That is why a kind of itera-
tive process is employed – some assumption over the source features is used
to model the media, then the media model is used to approximate the source
features.

For the purposes of geophysics it is sufficient if Earth is considered as
an elastic body that is a continuum, in other words the matter is continuously
distributed in space. Furthermore, since seismicity has relatively local effect, the
planet can be approximated with no loss of generality by a half-space Ω with free
surface z = 0 (in Cartesian coordinates) and axis z positive downword. If the
elastic parameters depend only on vertical coordinate z then the wave propagating
in solid media satisfy
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where (ux, uy, uz) is the displacement function. λ, µ and ρ are piecewise contin-
uous functions of z. The boundary conditions at the free surface z = 0 are as
follows:
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and in addition the continuity of the functions ux, uy, uz, σzz, σzx and σzy in Ω is
required.

Coefficients ρ, λ and µ depend on the geological properties of the rock.
Though little information we have about exact ground structure, geological sur-
veys near the surface show that the Earth crust is heterogeneous and consists of
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areas with homogeneous rock. That is why in any realistic model of the Earth
crust and upper mantle the coefficients ρ, λ and µ are piecewise continuous func-
tions and the results for the wave front set [2, Theorem 8.3.1, p. 271] are not
applicable. On the other hand a reasonable approximation of the real Earth is
3-dimensional structure of homogeneous blocks in welded contact {Bi,j,k}, where
i and j are integers, and k is a natural number. Blocks Bi,j,k and Bi+1,j,k are
neighbours along x axis, Bi,j,k and Bi,j+1,k along y, and Bi,j,k and Bi,j,k+1 – along
z axis. Without loss of generality we suppose the source S of the seismic signal
is in block B0,0,0.

Numerical methods as finite differences, finite elements and hybrid one
are applicable if the domain of system (1), (2) is relatively small. Otherwise
the grid is too large and computational time is too costly or the approximation
error – too high. There are also different analytical approaches to system (1),
(2). One is based on the fundamental solution of (1) in integral form and the
presumption that so called Rayleigh and Love modes give good approximation of
the solution when the distance from the source is large enough compared to the
wavelength (see [1] or [6]). Some other methods are briefly mentioned in section
“Brief review of some 2D methods”. All of them and others are well described
in [5] and are based on one standart approach in geophysics, namely in case the
body forces are neglected, the solutions of (1) are considered as a plane harmonic
waves propagating along the positive x axis

(3) u(x, t) = F (z).ei(ωt−kx),

where ω is the angular frequency and k is the wavenumber corresponding to the
phase velocity c, i.e. k = ω/c.

The main disadvantage of this approach is that the plane wave (3) is
two-dimensional one, living in the plane y = 0 only. This way all information on
y coordinate is lost and it is impossible to build reasonable 3D model on plane
wave (3).

On the other hand, if we build realistic 3-D model of the ground structure,
plane wave in the form (3) is a significant restriction. The information lost in
splitting the system (1) is a serious obstacle to the true to life modeling. This
is the reason a new approach is suggested in this paper, approach build on the
information from system (1) itself.

Three major components of the ground motion modeling can be distin-
guished – the source of the motion, the media, or the ground structure, and the
equation of motion. The last component is given by system (1). Let us focus on
the first two.
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There are different models corresponding to very different sources of seis-
mic waves. In this paper we consider point sources that produce an impulse in a
certain direction, namely alongside vector ξ0 = (ξ01 , ξ

0
2 , ξ

0
3). If the source is more

complicated it can be represented as a vector field on given curve, that is the
fault. In this case the procedure that is described below for a point source can
be easily adapted.

The ground structure of the Earth is really complicated. That is why the
standard approximation is used – the real ground is approximated by parallele-
piped-like grid, mostly rectangular, i.e. a set of parallelepipeds with common
sides what we call “blocks”. In each block the elasticity coefficients, i.e. the
coefficients of system (1), are supposed constant. The method proposed in this
paper works as well some of the sides of the blocks are not plane ones, but any
smooth and convex surface which is not paralell to the bicharacteristics of system
(1), i.e. if there are no gliding rays.

Considering the ground model above, the system (1) is just as a strongly
coupled system of three linear PDEs with piece-wise constant coefficients. Since
the system (1) has constant coefficients within every block, the wavefront of the
solution is a subset of the characteristic set of system (1). Furthermore, as the
principal part is real with constant coefficients, the wavefront set is invariant un-
der the bicharacteristic flow. Having in mind the source model described above,
a point source with seismic impulse in some direction, actually the singulari-
ties of the solution carry all the information about the wave. Briefly speaking,
the solution propagates over bicharacteristic curves within every homogeneous
block. Then we can use so called train solutions – the solution in the first block,
the one containing the source, determine the boundary conditions for its neigh-
bouring blocks, etc. According to geometrical optics and microlocal analysis, if
bicharacteristic curve reflects off the sides of every block the angle of incidence
to the surface is equal to the angle of reflection. As for refraction at a surface,
it is computed in the usual way, more details and exact coputations are given
in Section 3 below. Therefore, if we know the position of the source, the direc-
tion of the seismic impulse and media structure we can compute the point s0
where bicharacteristic curve has contact with the surface z = 0. The point s0
is in fact the centre of the surface waves in the plane z = 0 generated by the
section of the wave front and the plane z = 0. When actual measurement of the
seismic waves is done, the coordinates of the point s0 can be triangulated using
the data of several stations. This way verification of the media model could be
done. Exact coordinates of the epicenter of an eqrthquake and the centre of the
surface waves r0 can be computed using different and quite reliable techniques,
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like time-frequency analysis, based on the data from seismic stations. Given a
certain 3-D media model, we can compute the point s0. If the points s0 and r0
coincide within the error of the computations, then the media model is plausible.

For practical purposes 3-D models to be tested with the procedure men-
tioned above can be generated using Monte Carlo or other well known methods.
Of course, like any other inverse problem, this algorithm has multiple solutions
in the sense that many models can cover the requirement s0 ∼ p0. Unfortunately,
this is the best result we can hope to, given the complexity of the object to study
and the information we have from the seismograms.

Another application of the bicharacteristics is in all 3-D models. Strictly
speaking, approximating the Earth structure by a grid of rectangular paral-
lelepipeds introduce artificial singularities at the vertices of the parallelepipeds
as the boundary data there are not harmonised. These singularities “propagate”
over the bicharacteristic curves and therefore the model should be chosen such
that the bicharacteristics do not contain a vertex of the parallelepiped. In cou-
pling coefficient models the “coupling” of the coefficients should be done at one
side of the bicharacteristic cone only since the solution is not smooth at the cone.

2. Characteristic set and bicharacteristic strip in homoge-

neous block Bi,j,k. As it is well known, the characteristic set of a linear scalar

operator L(x,D) =
∑

|α|≤2

aα(x)D
α is given by the zeroes of its principal symbol

pL(x, ξ) =
∑

|α|=2

aα(x)ξ
α. In the case of linear strongly coupled system the char-

acteristic set contains the zeroes of the determinant of the characteristic matrix
of the system.

Each element of the characteristic matrix is the principal symbol of the
corresponding equation with respect to the corresponding argument. For in-
stance, if the system is Li(u1, u2, . . . , un) = 0, i = 1, . . . , n, then the element
(k,m) of the characteristic matrix is the principal part of Lk with respect to um.
Then the characteristic set of system (1) in every the block Bi,j,k is given by the
equation
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These simple calculations show that the characteristic set of system (1)
consists of two subsets

(4)
p1(x, ξ) = ρτ2 − µ
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since (λ+ µ) > 0.

Therefore the wave propagating in homogeneous block Bi,j,k is actually
a composition of two waves. This result corresponds to the theory of P (pri-
mary) and S (secondary) body waves. P wave corresponds to the set defined by
p2(x, ξ) = 0, ans S wave – to the one defined by p1(x, ξ) = 0.

Another important object in our study is the bicharacteristic strip of the
linear strongly coupled system (1), since the characteristic set of a operatop with
real principal part p(x, ξ) and constant coefficients is invariant under the bicharac-
teristic flow [2, Chapter 8]. By definition if p(x0, ξ0) = 0 then the bicharacteristic
strip at point (x0, ξ0) is defined by the Hamilton equations
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ds
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with initial data (x, ξ) = (x0, ξ0) for t = 0. The bicharacteristic strip l1 generated
by p1(x, ξ) through point (x0, ξ0) is

(5)
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and c =
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(λ+ 2µ)/ρ for ones generated by p2(x, ξ).
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0
2 and ξ03 are determined by the features of the seismic

source. Without loss of generalization we can assume source of the seismic wave
to be a point one with direction of the impulse ξ01 , ξ

0
2 , ξ

0
3 .

The restriction of the bicharacteristic strip into R4 is named bicharacter-
istic curve. It is applicable to 3D modeling of the Earth, for, generally speaking,
the singularities propagate over the bicharacteristic curves. In other words, sin-
gularity that is generated by an Earthquake in block B0,0,0 propagate over the
bicharacteristic curve in B0,0,0 until it intersects at point (x1, y1, z1) the boundary
to the neighbouring block, B1,0,0 for instance. Continuous boundary conditions
mean that at point (x1, y1, z1) system (1) in the block B1,0,0 has singularity,
that propagates over the bicharacteristic curves in B1,0,0, etc. For computational
purpose it is convenient to write (5) in the form

(6)
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we may assume |ξ0| = 1.

3. Reflection and refraction. All calculations above are made for
system (1) with constant coefficients, i.e. for homogeneous block or half space.
Geologically the Earth crust and upper mantle consist of sub-domains Bi,j,k con-
taining the same material. In terms of our model Ω = ∪Bi,j,k and the coefficients
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of (1) are constants in each Bi,j,k, or in other words realistic system (1) is the
one with piecewise constant coefficients. Without loss of generality we assume
the boundary of Bi,j,k to be piecewise smooth:

∂Bi,j,k = ∪{Fi,j,k,l(x, y, z) = 0, l = 1, . . . , Nm},

where Fi,j,k,l(x, y, z) = 0 is smooth surface in R3 and Nm is a finite number.

Equation (5) describes the bicharacteristic curves of (1) in each Bi,j,k and
their behavior on the boundary ∂Bi,j,k is studied by geometrical optics and mi-
crolocal analysis. Meeting a surface Fi,j,k,l(x, y, z) = 0 at point pb where the
coefficients of (1) are not smooth, the bicharacteristic curve b can be reflected or
refracted. In both cases there is singularity at boundary point pb. It propagates
over the bicharacteristics as well and this way the well-known formula for reflec-
tion and refraction from geometrical optics are obtained. When bicharacteristic
curve is reflected the angle θin of incidence to the surface Fi,j,k,l(x, y, z) = 0 is
equal to the angle of reflection θrl, since in the same block the equation (6) has
the same coefficients. As for refraction at a surface, the match of the boundary
conditions of the neighbouring blocks at the two sides of the boundary lead to
the well-known formula from geometric opticsths v1 sin θrr = v2 sin θin, where θrr
is the angle of refraction, v1 is the speed of the wave in the “incidence” block and
v2 is the one in “refraction” block.

Let
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be the normal unit vector to surface Fi,j,k,l = 0 at the point of incidence pb,
ξin =

(

ξin1 , ξin2 , ξin3
)

be the unit vector along the incidental bicharacteristic curve,

ξrr = (ξrr1 , ξrr2 , ξrr3 ) be the unit vector along refracted one, and ξrl =
(

ξrl1 , ξ
rl
2 , ξ

rl
3

)

be the unit vector along reflected one.

The speed of the wave is a physical feature of every material and it is
preliminary known. For instance, the velocity of the P-wave in homogeneous
isotropic medium is vP =

√

(λ+ 2µ)/ρ, for S-wave it is vS =
√

µ/ρ.

Quantities sin θin = sin θrl and sin θrr are easy to compute using scalar,
or dot product cos θ = ξ · ~n of unit vectors ξ and the normal unit vector ~n, for
instance

sin2 θin = 1−
(

ξin1 n1 + ξin2 n2 + ξin3 n3

)2
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Then equations of refraction and reflection from geometrical optics yield

(7)

ξrr1 n1 + ξrr2 n2 + ξrr3 n3 =

[

1−

(

v2
v1

)2
(

1− [ξin1 n1 + ξin2 n2 + ξin3 n3]
2
)

]1/2

ξrl1 n1 + ξrl2 n2 + ξrl3 n3 =
[

1−
(

1− [ξin1 n1 + ξin2 n2 + ξin3 n3]
2
)]1/2

.

In addition, the incidental bicharacteristic curve, the refracted one and
the normal to the surface vector lie on the same plane and give us the relation

(8)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1 n2 n3

ξin1 ξin2 ξin3

ξrr1 ξrr2 ξrr3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

The same relation is valid for vector ξrl.
Finally, since we consider vectors ξin, ξrr and ξrl be unit ones, we obtain

(9)

(ξrr1 )2 + (ξrr2 )2 + (ξrr3 )2 = 1

(ξrl1 )
2 + (ξrl2 )

2 + (ξrl3 )
2 = 1

Equations (7), (8) and (9) define uniquely vectors of refraction ξrr and
reflection ξrl up to the sigh.

4. 3-D modeling of Earth crust and upper mantle. A key point
in every approximation is the error, or in terms of mathematical modeling how
accurate is the model compared to the real object. Using bicharacterstic curves,
described in the previous section, it is possible to define the following criterion
for 3D model of the Earth crust and upper mantle.

Definition. Let {Bi,j,k} be a set of blocks and the source of seismic wave

be a point one at the point S with direction alongside vector ξ0. Let P is the point

of the Earth surface belonging to the bicharacteristic curves generates by system

(1), set of blocks {Bi,j,k} and source S. Given set of blocks Bi,j,k is plausible if

the point P coincides with the epicenter E of the surface waves generated by the

earthquake.

Since seismic stations record both surface and body waves, point E is a
subject of triangulation if there are enough sensors in the region.
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Computing the bi-characteristic curves in all set {Bi,j,k} arises an impor-
tant question. At the boudaries between two blocks – surfaces Fi,j,k,l(x, y, z) = 0
– is the bicharacteristic curve reflected, refracted, or both? The answer comes
from so-called reflection and refraction index. It is a physical feature of the mate-
rial that build the block. How to compute refraction and reflection index is well
descrinbed in [1], [3] or in [4].

Furthermore, the body waves records are useful to determine the block
structure of the closest to the seismic stations blocks. Wave front in a homoge-
neous block is a subset of the characteristic set of system (1), therefore it has
constant speed by (4).

Using bi-characteristic curves and the characteristic set we can compute
arrival time for P- and S-waves. In combination with the criteria from the Def-
inition, we can generate and test plausible 3-D models of the Earth crust and
upper mantle.

5. Brief review of some 2D methods. All the following methods
are well described in [5].

In case the body forces are neglected, one standart approach in geophysics
is to considere solutions of (1) in the form of a plane harmonic waves propagating
along the positive x axis

u(x, t) = F (z).ei(ωt−kx),

where ω is the angular frequency and k is the wavenumber corresponding to the
phase velocity c, i.e. k = ω/c.

Then system (1), (2) reduces to a system

(10)

∂

∂z

[

µ
∂Fx

∂z
− ikµFz

]

− ikλ
∂Fz

∂z
+ Fx[ω
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∂

∂z

[

(λ+ 2µ)
∂Fz

∂z
− ikλFx

]

− ikµ
∂Fx

∂z
+ Fz(ω

2ρ− k2µ) = 0

with boundary conditions at surface z = 0

σzz = (λ+ 2µ)
∂Fz

∂z
− ikλFx = 0,

σzx = µ

(

∂Fx

∂z
− ikFz

)

= 0,



524 Georgi Boyadzhiev

which solutions are so called P-SV waves, and a single equation

∂

∂z

(

µ
∂Fy

∂z

)

+ Fy(ω
2ρ− k2µ) = 0 (11)

with boundary conditions at z = 0

µ
∂Fy

∂z
= 0,

which solutions are called SH waves.

If the ground structure is approximated by paralel to the surface z = 0
homogeneous layers, in other words, if parameter functions λ and µ are step-
wise ones – constants in each layer, then one widely used and efficient method of
solving system (10) and equation (11) is so called Multimodal method, or modal
summation teqnique. The idea is to compute the solution of (10) or (11) in each
layer, that is to solve the equation (or system) with constant coefficients, and
then use the welded contact on the boundary, i.e. the boundary conditions on
the common boundary are the same. For instance, if we consider Love modes in
model with N layers, and (uy)m is the solution of (11) in the m-th layer, then

[

km(uy)m
(σzy)m

]

= am

[

km−1(uy)m−1

(σzy)m−1

]

where constant 2x2 matrix am depends only on ρm, αm, µm and density of the
layer dm. Denoting A = aN−1.aN−2 . . . a1 we have

[

km(uy)N
(σzy)N

]

= A

[

km−1(uy)0
(σzy)0

]

.

Then the eigenfunctions, which are basis of the space of solutions of equation
(11), can be easily computed. Similar procedure can be applied to system (10).

For ground model with lateral heterogeneous media another approaches
are employed as so called Ray theory and various variants of mode coupling,
like WKBJ method, etc. In Ray theory for instance the basic assumption is
that the solution of the elastic equations of motion has the form u(x, ω) =
A(x, x0, ω).e

iωθ(x,x0)/
√

J(x, x0), where θ(x, x0) is the phase function, represent-
ing the time that wave takes to travel from point x0 to point x, and J is the
geometric decay of the wavefront (see [7]). Further assuming that A has the form

A(x, x0, ω) = S(ω).
∑

Ai(x, x+0)ω−i, where S(ω) is the wavefront of the source

time function. Then function A(x, x0, ω) is approximated by S(ω).A0(x, x0), and



Bi-characteristic curves of body and surface waves 525

respectively, u(x, ω) ≈ S(ω).A0(x, x0).e
iωθ(x,x0)/

√

J(x, x0), which the wavefront
can be easily computed. As the wavefront propagates on the bicharacteristics
so-called ray tracking and techniques from the geometrical optics allow the com-
putation of rays and the following wavefronts. Unfortunately this method is quite
sensitive to small local perturbations of the velocity filed and it works well if the
dimensions of the heterogeneities is much larger than the dominated wavelenght
of the considered waves.

Mode coupling uses idea similar to the one Multimodal method, described
above. It is focused on the study of the surface waves, giving the fact that they,
mostly fundamental, first and few higher modes (eigenfunctions), represent the
longest and strongest part of a seismic signal generated by an earthquake. Differ-
ent methods as WKBJ, Invariant Imbedding Technique and Coupling Coefficients
Method implement this idea in practice.

The main disadvantage of all mentioned above methods is the limitation
of the plane wave described in (3). It is in fact two-dimensional one, living in the
plane y = 0 only. That is why the system (1) decomposes to system (10) and
equation (11). Roughly speaking, the plane wave (3) is like restriction operator
on plane z = 0. The residue is equation (11), which is independent on x and
z coordinates but some information is lost. This assumption is not a problem
at all if we suppose the source and the receiver of the signal to be situated in
this plane, and assume that everything meaningful happens within this plane. In
other words, if we consider in fact 2-dimensional model then a plane wave in the
form (3) is acceptable.

On the other hand, if we build realistic 3-D model of the ground structure,
plane wave in the form (3) is a significant restriction. The information lost in
splitting the system (1) is a serious obstacle to the true to life modeling. This is
the reason a new approach to be suggested in this paper, approach build on the
information from system (1) itself.
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