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Abstract. Hardy-type inequality with weights is derived in abstract form.
Particular cases are presented to demonstrate the applicability of the method
and to show generalizations of existing results. Sharpness of inequalities is
proved and the results are illustrated with several examples.

Introduction. The aim of this paper is to prove new Hardy–type in-
equalities with weights. Let Ω be a bounded domain, Ω ⊂ Rn, n ≥ 1 with a
boundary ∂Ω ∈ C1. Suppose that f is a vector function defined in Ω, |f | 6= 0
and with components fi ∈ C1(Ω), i = 1, . . . , n. Let p > 1 and assume there exist
in Ω functions v > 0, v1−p ∈ L1(Ω) and w ≥ 0 such that

(1) − div f − (p − 1)v|f |p
′

≥ w, in Ω,

where
1

p
+

1

p′
= 1. Let ∂Ω be divided into two parts ∂Ω = Γ− ∪ Γ+, where

Γ− = {x ∈ ∂Ω : 〈f, ν〉 < 0}, Γ+ = {x ∈ ∂Ω : 〈f, ν〉 ≥ 0}.
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Here ν is the unit outward to Ω normal vector on ∂Ω and 〈., .〉 is the scalar
product in Rn. For functions u ∈ C∞

Γ−
(Ω), where C∞

Γ−
= {u ∈ C∞, u =

0 in a neigbourhood of Γ−} we obtain as a consequence of Theorem 1 below,
the following Hardy–type inequalities

(2)

∫

Ω
v1−p

∣

∣

∣

∣

〈f,∇u〉

|f |

∣

∣

∣

∣

p

dx ≥

∫

Ω
w|u|pdx,

and

(3)

(
∫

Ω
v1−p

∣

∣

∣

∣

〈f,∇u〉

|f |

∣

∣

∣

∣

p

dx

)1/p

≥

(

1

p′

)(
∫

Ω
v|f |p

′

|u|pdx

)1/p

+

(

1

p

)
∫

Γ+

〈f, ν〉|u|pdS

(
∫

Ω
v|f |p

′

|u|pdx

)−1/p′

,

where dS is n − 1 dimensional surface measure. The form of Hardy inequality
(3) is not the usual one, it depends on derivative of u in the direction of the unit

vector
f

|f |
, on two functions v, w satisfying (1) and on additional term including

boundary integral.

Since 〈f, ν〉 ≥ 0 on Γ+ and |∇u|p ≥

∣

∣

∣

∣

〈f,∇u〉

|f |

∣

∣

∣

∣

p

, in (2) and (3) we can

replace their left hand sides correspondingly with

∫

Ω
v1−p|∇u|pdx and

(∫

Ω
v1−p|∇u|pdx

)1/p

.

The classical Hardy inequality in R1
+, see Hardy [1], states

(4)

∫ ∞

0
|u′(x)|pxαdx ≥

(

p− 1− α

p

)p ∫ ∞

0
x−p+α|u(x)|pdx,

where 1 < p < ∞, α < p − 1 and u(x) is absolutely continuous on [0,∞) with

u(0) = 0. Note that with f =

(

p− 1− α

p− 1

)p−1

xα−p+1, v = xα(1−p′) and w = 0

condition (1) is satisfied and on Ω = [0, T ] inequality (3) has the form

(5)

(∫ T

0
|u′(x)|pxαdx

)1/p

≥

(

p− 1− α

p

)(∫ T

0
xα−p|u|pdx

)1/p

+

(

1

p

)

Tα−p+1|u(T )|p
(∫ T

0
xα−p|u|pdx

)−1/p′

.
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Moreover with u(x) = xk, k >
p− 1− α

p
inequality (5) becomes an equality.

There are generalizations of (4) for the n-dimensional case, n ≥ 2, for
bounded domains and for different weights (kernels of the integrals), see for more
details the reviews in Davies [2], Opic and Kufner [3].

One direction of the investigations with respect to the domain concerns
the optimal properties of the domain Ω ⊂ Rn, where the Hardy inequality

(6)

∫

Ω
|∇u(x)|pd(x)αdx ≥ CΩ

∫

Ω
d(x)−p+α|u(x)|pdx, u ∈ C∞

0 (Ω),

holds with d(x) = dist(x, ∂Ω) and α < p− 1.
It is an open question what are the optimal, say necessary and sufficient

conditions on ∂Ω in order to have (6). The inequality (6) was proved by Neĉas
[4] for bounded domains Ω with Lipschitz boundary ∂Ω and u ∈ C∞

0 (Ω). Next
generalizations of (6) are by Kufner [5] for Hölder ∂Ω and by Wannebo [6] for
Ω with generalized Hölder conditions. Detailed description of these results can
be found in Opic and Kufner [3], Maz’ja [7], Hajlasz [8]. Further generalizations
are made in Ancona [9], Lewis [10], Hajlasz [8], Koskela and Lehrback [11]. They
are based on the investigation of the pointwise Hardy inequalities with capacity
methods, see the review in Koskela and Lehrback [11]. Note that in [8] inequality
(6) was proved in the domain Ωt = {x ∈ Ω, d(x) < t} for u ∈ C∞

0 (Ω) and without
zero conditions for u on the set {x ∈ Ω, d(x) = t}. More general result was proved
in Koskela and Lehrback [11].

Another way to describe the properties of Ω is to connect the validity
of inequality (6) with the existence of the solutions of a certain boundary value
problem for second order elliptic equation with a singular weight. In Ancona [9] it
was proved that a necessary and sufficient condition for (6) when p = 2, α = 0 is
the existence of a positive super–harmonic function v in Ω and a positive number

δ such that ∆v +
δ

d(x)2
v ≤ 0. Moreover, it was proved in [9] that max δ = CΩ.

One more direction of generalization of (4) is an inequality with a kernel,
singular in an internal point of Ω

(7)

∫

Ω
|∇u(x)|pdx ≥ CΩ

∫

Ω

|u(x)|p

|x|p
dx,

where u ∈ C∞
0 (Ω), Ω ⊆ Rn, 0 ∈ Ω, n ≥ 3 and p > 1. The best constant

CΩ =

(

n− 2

2

)2

is obtained in Leray [12] for Ω = Rn and p = 2, see also Peral

and Vazquez [13]. Let us mention that in all these papers the constant in Hardy
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inequality is optimal, but the inequality is not sharp. This is due to the fact
that there is no function of the admissible class of functions for which the Hardy
inequality becomes equality. That is why in the work of Brezis and Vazquez [14]
the question about the existence of a remainder term in the right hand side is
posed. In [14] for p = 2 the generalization of (7)

(8)

∫

Ω
|∇u(x)|2dx ≥

(

n− 2

2

)2 ∫

Ω

|u(x)|2

|x|2
dx+ λ(Ω)

∫

Ω
|u(x)|2dx,

is obtained where Ω is a bounded domain with smooth boundary ∂Ω and λ(Ω) =
z20ω

2/n
n |Ω|−2/n, z0 is the first zero of the Bessel’s function J0(z). The question of

Brezis and Vazquez [14] leads to several improvements of (7), see Admurthi et
al. [15], Barbatis et al. [16, 17], Alvino et al. [18]. These improvements concern
also the regularity conditions of ∂Ω.

Let us note that the possibility to use a vector function f and two func-
tions v and w in inequalities (2), (3) serve for many new Hardy–type inequalities.

In Section 2 we prove our main results and in particular inequalities (2),
(3). In Section 3 we study the sharpness of Hardy inequalities. In Section 4 as
an application some particular cases of a vector function f and functions v, w
are given. Here we comment the possibilities to obtain the results in Barbatis et
al. [16, 17] and their generalization.

2. Main results.

2.1. General case. We start with a general Hardy-type inequality. For
this purpose we introduce the notations

(9)

L(u) =

∫

Ω
v1−p

∣

∣

∣

∣

〈f,∇u〉

|f |

∣

∣

∣

∣

p

dx,

K0(u) =

∫

Γ+

〈f, ν〉|u|pdS,

K(u) =

∫

Ω
v|f |p

′

|u|pdx,

N(u) =

∫

Ω
w|u|pdx,

where f, v, w,Γ+ are given in Section 1.
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Theorem 1. Under condition (1), for every u ∈ C∞
Γ−

(Ω), u 6= 0, the

following inequality holds

(10) L(u) ≥

(

1

p

)p (K0(u) + (p − 1)K(u) +N(u))p

Kp−1(u)
.

P r o o f. Since

(11)

∫

Ω
〈f,∇|u|p〉dx = p

∫

Ω
|u|p−2u〈f,∇u〉dx,

applying the Hölder inequality on the right hand side with

v−1/p′ 〈f,∇u〉

|f |
and v1/p

′

|f ||u|p−2u,

as factor of the integrand we get

(12)

∫

Ω
〈f,∇|u|p〉dx ≤ p

(
∫

Ω
v1−p

∣

∣

∣

∣

〈f,∇u〉

|f |

∣

∣

∣

∣

p

dx

)1/p (∫

Ω
v|f |p

′

|u|pdx

)1/p′

.

Rising both sides of (12) to power p it follows that

(13)

∫

Ω
v1−p

∣

∣

∣

∣

〈f,∇u〉

|f |

∣

∣

∣

∣

p

dx ≥

∣

∣

∣

∣

1

p

∫

Ω
〈f,∇|u|p〉dx

∣

∣

∣

∣

p

(
∫

Ω
v|f |p

′

|u|pdx

)p−1 .

Integrating by parts the numerator of the right hand side of (13), from (1) and
u|Γ−

= 0 we get

1

p

∫

Ω
〈f,∇|u|p〉dx =

1

p

∫

∂Ω
〈f, ν〉|u|pdS −

1

p

∫

Ω
div f |u|pdx

=
1

p

∫

∂Ω
〈f, ν〉|u|pdS −

1

p

∫

Ω
(div f + (p − 1)v|f |p

′

)|u|pdx

+

(

p− 1

p

)
∫

Ω
v|f |p

′

|u|pdx ≥
1

p
(K0(u) +N(u) + (p− 1)K(u)).

So from (13) we obtain (10). ✷

Remark 1. The idea of the proof of Theorem 1 comes from Boggio
[19] (for p = 2), Flekinger et al. [20] (Theorem II.1) and Barbatis et al. [17]
(Theorem 4.1). In difference with the mentioned above works in our case we
consider functions not necessary zero on the whole boundary ∂Ω and due to this
there is an additional boundary term K0 in (10). Also in L and K there is a
weight v, which is 1 in the mention above works.



498 Alexander Fabricant, Nikolai Kutev, Tsviatko Rangelov

Remark 2. Applying the Young inequality

(14)
Qp

Hp−1
≥ pkp−1Q− (p− 1)kpH,

with H > 0, Q ≥ 0 and constant k ≥ 0 to the right hand side of (10) we get

(15) L(u) ≥ kp−1(K0(u) +N(u)) + (p − 1)kp−1(1− k)K(u).

In particular, with k = 1 in (15) and ignoring K0(u) since K0(u) ≥ 0 we obtain
(2).

Let us illustrate in the following example the possibility to choose a vector
function f in order to obtain sharp Hardy inequality.

Example 1. Let φ be the first eigenfunction of the p-Laplacian in Ω ⊂
Rn, p > 1, n ≥ 2 with first eigenvalue λ

(16)

∣

∣

∣

∣

−∆pφ = λ|φ|p−2φ, in Ω,
φ|∂Ω = 0.

Let us define the vector function f =
|∇φ|p−2∇φ

|φ|p−2φ
. Then (1) becomes

− div f = −
∆pφ

|φ|p−2φ
+ (p− 1)

|∇φ|p

|φ|p
= λ+ (p− 1)|f |p

′

,

with λ = w > 0 and v ≡ 1. From Theorem 1 we obtain

(17) L(u) ≥

(

1

p

)p [(p − 1)K(u) +N(u)]p

Kp−1(u)
, u ∈ C∞

0 (Ω),

where

L(u) =

∫

Ω

∣

∣

∣

∣

〈∇φ, ∇u〉

|∇φ|

∣

∣

∣

∣

p

dx, K(u) =

∫

Ω

∣

∣

∣

∣

∇φ

φ

∣

∣

∣

∣

p

|u|pdx, N(u) = λ

∫

Ω
|u|pdx.

Simple computation gives that inequality (17) is sharp, i.e. becomes an
equality, for u(x) = φ(x).

2.2. Formulation with level function. Since condition (1) is not easy
checkable we will replace it with sufficient conditions (18), (19) below and in
Theorem 2 we will reformulate the result of Theorem 1. In fact all applications
shown in the Section 4 are consequences of Theorem 2.
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Suppose for a fixed bounded domain Ω that there exist a C0,1(Ω) function
F and a vector-function h with components hi ∈ C0,1(Ω), i = 1, . . . , n, such that
for all intervals (ε, τ) ⊂ (0, T ) the strip Gε,τ = {x ∈ Ω : |F (x)| ∈ (ε, τ)} ⊂ Ω,
Ḡ0,T = Ω̄ and a.e. in Ω

(18) −F div h ≥ 0,

(19) 〈h,∇F 〉 > 0.

Let us illustrate with an example the existence of a function F and vector function
h satisfying (18), (19) when Ω is an annular domain.

Example 2. Let Ω = BR\Br ⊂ Rn, where R > r and BR, Br are balls

centered at 0 with radius R and r respectively. With a numberm =
p− n

p− 1
, p > 1,

p 6= n, let us define a function ψ(x) =
Rm − |x|m

Rm − rm
. Then function F = ψ and

vector function h = |∇ψ|p−2∇ψ satisfy conditions (18), (19) in Ω.

Denote by Γs = {x ∈ Ω̄ : |F (x)| = s}, s ∈ [0, T ] the level surfaces of F .
Then for a.e. s ∈ [0, T ], Γs is smooth (n − 1)-dim manifold. For such ε < τ the
outward with respect to the strip Gε,τ unit normals on Γε and Γτ are

(20) ν|Γε = − sgnF
∇F

|∇F |

∣

∣

∣

∣

Γε

, ν|Γτ = sgnF
∇F

|∇F |

∣

∣

∣

∣

Γτ

.

Note that ∂Ω = Γ0 ∪ ΓT , 0 < T ≤ ∞ where

Γ0 = {x ∈ ∂Ω : ∃xε ∈ Γε, xε → x a.e. for ε→ 0},

ΓT = {x ∈ ∂Ω : ∃xτ ∈ Γτ , xτ → x a.e. for τ → T}.

We will choose f in (1) as f = |F |−pF.h.
By (20) and the choice of f we get

〈f, ν〉|Γε = −|F |1−p 〈h,∇F 〉

|∇F |
|Γε ≤ 0 and 〈f, ν〉|Γτ ≥ 0,

and hence Γ0 = Γ−, ΓT = Γ+.
Define

(21) M∞
Γ0

= {u ∈ C∞ : ε1−p

∫

Γε

〈h,∇F 〉

|∇F |
|u|pdS → 0 for ε→ 0}.
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Obviously C∞
Γ−

⊂M∞
Γ0
. From the equality

− div f = −|F |−pF div h+ (p − 1)|F |−p〈h,∇F 〉,

and (18), (19) we choose the weights v,w as

(22) v =
〈h,∇F 〉

|h|p′
, w = −|F |−pF div h.

Note that v > 0, v1−p ∈ L1(Ω) and w ≥ 0.
With the use of function F and vector function h the notations (9) become

(23)

LT (u) =

∫

G0,T

(〈h,∇F 〉)1−p |〈h,∇u〉|p dx,

K0T (u) = T 1−p

∫

ΓT

〈h,∇F 〉

|∇F |
|u|pdS,

KT (u) =

∫

G0,T

|F |−p〈h,∇F 〉|u|pdx,

NT (u) = −

∫

G0,T

|F |−pF div h|u|pdx.

Following the derivation of Theorem 1 we get:

Theorem 2. Under the conditions (18), (19) and for the weights v and

w satisfying (22) the inequality (10) holds for all u ∈M∞
Γ0
, i.e.

(24) LT (u) ≥

(

1

p

)p (K0T (u) + (p − 1)KT (u) +NT (u))
p

K
p−1
T (u)

.

Particular cases of (24) are

LT (u) ≥ K0T (u) +NT (u),(25)

LT (u) ≥

(

1

p′

)p

KT (u),(26)

LT (u) ≥

(

1

p

)p (K0T (u) + (p− 1)KT (u))
p

K
p−1
T (u)

,(27)

P r o o f. Following the proof of Theorem 1 we obtain (24).
Inequalities (25) and (26) are consequences of the Young inequality (15)

with k = 1 and k =

(

1

p′

)

respectively.
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Since NT (u) ≥ 0 we get (27). ✷

2.3. Cases p = 1 and p = ∞. It is easy to see that we can extrapolate
the inequality (26) in Theorem 2 to the limit cases: p = 1 and p = ∞ and to
obtain the following corollary.

Corollary 1. Under the conditions of Theorem 2 for the limit cases of p

we get the inequalities:

(i) For p = 1:

(28)

∫

G0,T

ln
T

|F |
|〈h,∇u〉|dx ≥

∫

G0,T

〈h,∇F 〉
∣

∣

∣

u

F

∣

∣

∣
dx,

(ii) For p = ∞:

(29)
1

T

∫ T

0
ess sup
G0,t

∣

∣

∣

∣

〈h,∇u〉

〈h,∇F 〉

∣

∣

∣

∣

dt ≥ ess sup
G0,T

∣

∣

∣

u

F

∣

∣

∣
.

P r o o f. When we get v =
〈h,∇F 〉

|h|p′
then

L
1/p
T (u) =

(

∫

G0,T

〈h,∇F 〉

∣

∣

∣

∣

〈h,∇u〉

〈h,∇F 〉

∣

∣

∣

∣

p

dx

)1/p

,

K
1/p
T (u) =

(

∫

G0,T

|F |−p〈h,∇F 〉|u|pdx

)1/p

.

So it holds

L
1/p
T (u) →p→1

∫

G0,T

|〈h,∇u〉|dx; L
1/p
t (u) →p→∞ ess sup

G0,t

∣

∣

∣

∣

〈h,∇u〉

〈h,∇F 〉

∣

∣

∣

∣

,

K
1/p
T (u) →p→1

∫

G0,T

〈h,∇F 〉
∣

∣

∣

u

F

∣

∣

∣ dx; K
1/p
T (u) →p→∞ ess sup

G0,T

∣

∣

∣

u

F

∣

∣

∣ ,

where ess sup is under the measure η(ω) =

∫

ω
〈h,∇F 〉dx. Then

lim
p→1

∫ T

0
t−1/pL

1/p
t (u)dt =

∫ T

0
t−1 lim

p→1
L
1/p
t (u)dt

=

∫ T

0
t−1

∫

G0,t

|〈h,∇u〉|dxdt =

∫

G0,T

ln
T

|F |
|〈h,∇u〉|dx,

and hence we get (i) and (ii). ✷
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3. Sharpness of Hardy inequalities. In the following Theorem we
prove that inequality (26) is ε-sharp.

Theorem 3. Let v =
〈h,∇F 〉

|h|p′
in condition (22) and uε = |F |

1+ε

p′ , ε > 0

then the inequality (26) in Theorem 2 for T <∞ is ε-sharp, i.e.

LT (uε) =

(

1 + ε

p′

)p

KT (uε).

P r o o f. Let ε > 0 and uε = |F |
1+ε

p′ , then we have

KT (uε) =

∫

G0,T

|F |ε(p−1)−1 < h,∇F > dx

=

∫

G0,T

a(|F |) < h,∇F > dx = Ha(0, T ),

where a(s) = sε(p−1)−1.

Since

∫ T

0
a(s)ds < ∞ it follows that Ha(0, T ) < ∞. Then under the

conditions above
∣

∣

∣

∣

〈h,∇uε〉

|h|

∣

∣

∣

∣

=
1 + ε

p′
|F |

ε(p−1)−1
p

〈h,∇F 〉

|h|
,

and

LT (uε) =

(

1 + ε

p′

)p ∫

G0,T

|F |ε(p−1)−1〈h,∇F 〉dx =

(

1 + ε

p′

)p

KT (uε) <∞. ✷

Let us illustrate the strictness results on two examples.

Example 3 (Singularity at 0). Let T > 0, m =
p− n

p− 1
, p > n ≥ 2 and B

be the ball with center 0 and radius (mT )1/m. Define F (x) =
1

m
|x|m and h = ∇φ

with φ =
1

2− n
|x|2−n in B.

We have (18) because F div h = 0 and since m − n =
p(1− n)

p− 1
< 0

then 〈h,∇F 〉 = |x|m−n > 0 in B which is (19). Also |F | ≤ s is equivalent to
|x| ≤ (ms)1/m, so G0,T = B and Γs = {x : |x| = (ms)1/m}, ΓT = ∂B, 0 ≤ s ≤ T .
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Choosing v,w satisfying (22) as v =
〈h,∇F 〉

|h|p′
, w = 0 for LT (u), K0T (u),

KT (u) we obtain

(30)

LT (u) =

∫

B

∣

∣

∣

∣

〈x,∇u〉

|x|

∣

∣

∣

∣

p

dx,

K0T (u) = m
1−n
m T

1−p

m

∫

∂B
|u|pdS,

KT (u) = mp

∫

B
|x|−p|u|pdx.

From Theorem 2, we get

(31) (LT )
1/p(u) ≥

(

1

p

)

[K0T (u)K
−1/p′

T + (p− 1)K
1/p
T ].

Now, inequality (31) becomes

(32)

(∫

B

∣

∣

∣

∣

< x,∇u >

|x|

∣

∣

∣

∣

p)1/p

≥

(

1

p

)(

(mT )−
p−1
m

∫

∂B
|u|pdσ

)(∫

B

|u|p

|x|p
dx

)−1/p′

+

(

p− n

p

)(∫

B

|u|p

|x|p
dx

)1/p

.

Simple computation gives that inequality (32) is equality for the functions

u = |F |k =
1

mk
|x|mk, k >

1

p′
.

Note that u ∈W 1,p(B) because

∫

B
|∇u|pdx =

(

k

mk−1

)p ∫

B
|x|mkp−pdx <∞,

since mkp− p >
p− n

p− 1

p− 1

p
p− p = −n.

Let us check that u ∈M∞
Γ0
, where M∞

Γ0
is defined in (21). Indeed,

ε1−p

∫

Γε

〈h,∇F 〉

|∇F |
|u|pdS = ε1−p

∫

Γε

|x|mkp+1−n

mkp
dS

= ε1−p+kp|S1| → 0,
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for ε→ 0, since 1− p+ kp > 0 when k >
1

p′
.

Recall that the classical Hardy inequality for p > n is, see Opic and
Kufner [3]

(33)

∫

B
|∇u|p ≥

(

p− n

p

)p ∫

B

|u|p

|x|p
dx, u ∈W

1,p
0 (B),

and the constant

(

p− n

p

)p

is optimal. It is well known that equality in (33) is

not possible for a function u ∈ C∞
0 (B). In contrast with (33), inequality (32)

with the additional term

(

1

p

)(

(mT )−
p−1
m

∫

∂B
|u|pdS

)(
∫

B

|u|p

|x|p
dx

)−1/p′

is sharp, see also Fabricant et al. [21].

Example 4 (Singularity on the boundary.). Let Ω, F , h are defined as
in Example 2 then under Theorem 2, Hardy inequality (27) has the form

(34)

(

∫

BR\Br

∣

∣

∣

∣

〈x,∇u〉

|x|

∣

∣

∣

∣

p
)1/p

≥
1

p′









∫

BR\Br

|u|p

|x|(n−1)p′

∣

∣

∣

∣

Rm − |x|m

m

∣

∣

∣

∣

pdx









1/p

+
1

p
r1−n

∣

∣

∣

∣

Rm − rm

m

∣

∣

∣

∣

1−p∫

∂Br

|u|pdS









∫

BR\Br

|u|p

|x|(n−1)p′

∣

∣

∣

∣

Rm − |x|m

m

∣

∣

∣

∣

pdx









−1/p′

for all functions u ∈ C∞(BR\Br) such that

(

Rm − δm

Rm − rm

)1−p

δ1−n

∫

Sδ

|u|pdσ → 0,

when δ → R.

It is easy to see that inequality (34) is an equality on functions uk(x) =
(

Rm − |x|m

m

)k

, k >
1

p′
.

Note that inequality (34) has meaning also for p → n i.e., for m → 0 in
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the form

(35)

(

∫

BR\Br

∣

∣

∣

∣

〈x,∇u〉

|x|

∣

∣

∣

∣

n
)1/n

≥
1

n′









∫

BR\Br

|u|p

|x|n
∣

∣

∣

∣

ln
R

|x|

∣

∣

∣

∣

n dx









1/n

+
1

n

∣

∣

∣

∣

ln
R

r

∣

∣

∣

∣

r1−n

∫

∂Br

|u|ndS









∫

BR\Br

|u|n

|x|n
∣

∣

∣

∣

ln
R

|x|

∣

∣

∣

∣

n dx









−1/n′

and this inequality is sharp for functions u(x) =

∣

∣

∣

∣

ln
R

|x|

∣

∣

∣

∣

k

, k >
1

p′
.

4. Applications. Below we will study two particular cases.
The first one in Section 4.1 is inequality (15) with k = 1. This situation

arrives when, for a suitable choice of f or F and h we can efficiently estimate w.
Such scheme gives remainder terms, as it was done in Barbatis et al. [16, 17].
Based on these results we generalize them when v 6= 1 and in the case when Ω is
a strip near the boundary.

The second application in Section 4.2 is when the only hypothesis is w ≥ 0.
Then it is possible to ignore the quantity N in (10) or (24). Nevertheless we get
an optimal Hardy inequality in the second case under some additional conditions.

4.1. Inequality with singularities on the boundary. It is well
known, see for example [16], that there exists a smooth positive function z(s), s ∈
[−∞, lnT ] which is a solution of the inequality

(36) Pz ≡ −z′ + (p− 1)z − (p − 1)zp
′

≥ H(s)

with some positive H(s). Note that in [16]

z(s) =

(

1

p′

)p−1(

1 +O

(

1

|s|

))

and

H(s) =

(

1

p′

)p(

1 +O

(

1

|s|2

))

, s→ ∞.
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For instance, when p = 2

z(s) =
1

2

(

lnT − s

1 + lnT − s

)

and H(s) =
1

4

(

1 +
1

(1 + lnT − s)2

)

.

In Barbatis et al. [16, 17] it was proved, in notations used above, the inequality

(37)

∫

Ω
|∇u|pdx ≥

∫

Ω
H(ln t)

|∇t|p

tp
|u|pdx

under the conditions: t > 0,−∆pt ≥ 0 when t = dλ, d is the distance to some
manifold.

Our first aim is to generalize the results in [16, 17]. We will use the
inequality (25), proved in Theorem 2, i.e.

(38) LT ≥ R0T +NT .

For this purpose, suppose that there exists a function t = t(x) defined in
Ω, sufficiently smooth, satisfying the following assumptions:

(39)

(i) Γ0 = {x ∈ ∂Ω : t(x) = 0} and G0,τ = {x : 0 < |t(x)| < τ} ⊂ Ω,
Sτ = {x : |t(x)| = τ};
(ii) − t∆pt ≥ 0;

(iii) v = v(t) > 0 is defined in (0, τ) and T =

∫ τ

0
v(s)ds <∞.

Proposition 1. Under the conditions (39) and (36) for all u ∈ C∞ such

that ε1−p

∫

|t(x)|=ε
|∇t|p−1|u|pdx→ 0 for ε→ 0, we have the inequality

(40)

∫

0<|t(x)|<τ
v1−p(t(x))

∣

∣

∣

∣

〈∇t,∇u〉

|∇t|

∣

∣

∣

∣

p

≥ T 1−pz(lnT )

∫

Sτ

|∇t|p−1|u|pdS

+

∫

0<|t(x)|<τ

(

1

t

∫ t

0
v(s)ds

)−p

v(t)H

(

ln

∣

∣

∣

∣

∫ t

0
v(s)ds

∣

∣

∣

∣

) ∣

∣

∣

∣

∇t

t

∣

∣

∣

∣

p

|u|pdx.

P r o o f. We need only to determine F and h satisfying (18) and (19).
Let

F =

[

z

(

ln

∣

∣

∣

∣

∫ t

0
v(s)ds

∣

∣

∣

∣

)]1−p′ ∫ t

0
v(s)ds,

where z is a positive solution of (36) and h = |∇t|p−2∇t. Then F (x) = 0 iff

x ∈ S0 = {x : |t(x)| = 0} and |F | = T iff x ∈ Sτ . Now from (39) (ii) we have

−F div h = −

(

1

t

∫ t

0
v(s)ds

)[

z

(

ln

∣

∣

∣

∣

∫ t

0
v(s)ds

∣

∣

∣

∣

)]1−p′

t∆pt ≥ 0.
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Also

∇F = v(t)

[

z

(

ln

∣

∣

∣

∣

∫ t

0
v(s)ds

∣

∣

∣

∣

)]1−p′

+ (1− p′)

[

z

(

ln

∣

∣

∣

∣

∫ t

0
v(s)ds

∣

∣

∣

∣

)]−p′

z′
(

ln

∣

∣

∣

∣

∫ t

0
v(s)ds

∣

∣

∣

∣

)

∇t,

and using (36) we get

〈∇F, h〉 =

(

−1−
H

p− 1
z−p′

)

v|∇t|p > 0.

So, from the definition of w in (22) we obtain

w = (p− 1)(h∇F − v|h|p
′

)|F |−p

= (p− 1)v

∣

∣

∣

∣

∫ t

0
v(s)ds

∣

∣

∣

∣

−p

zp
′

[z1−p′ + (1− p′)z−p′z′ − 1]|∇t|p

= v

∣

∣

∣

∣

1

t

∫ t

0
v(s)ds

∣

∣

∣

∣

−p

Pz|∇t|p

= v

∣

∣

∣

∣

1

t

∫ t

0
v(s)ds

∣

∣

∣

∣

−p

H

(

ln

∣

∣

∣

∣

∫ t

0
v(s)ds

∣

∣

∣

∣

)

|∇t|p ≥ 0.

Finally applying (25) in Theorem 2 we get (40). ✷

The result in Proposition 1 is a generalization of that in Neĉas[4], Kufner[5],
Wannebo [6], see inequality (5).

Example 5. If v(t) = tβ−1, β > 0, the weight in the left hand side of
(40) becomes v1−p(t) = tα and α = (β − 1)(1 − p) < p − 1. Let z in (36) is a

constant, z =

(

1

p′

)p−1

, then Pz = H =

(

1

p′

)p

and since

|t|−p

(

1

t

∫ t

0
v(s)ds

)−p

v(t)|∇t|p = βptα−p|∇t|p,

inequality (40) becomes

(41)

∫

0<|t(x)|<τ
tα
∣

∣

∣

∣

〈∇t,∇u〉

|∇t|

∣

∣

∣

∣

p

≥ τ1−p

(

1

p′

)p−1 ∫

Sτ

|∇t|p−1|u|pdS

+

(

β

p′

)p ∫

0<|t(x)|<τ
|∇t|ptα−p|u|pdx.
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Note that

(

β

p′

)p

=

(

p− 1− α

p

)p

. For the special case t(x) = d(x) = dist(x, ∂Ω),

so |∇d| = 1 in the strip Ωτ = {x : 0 < d(x) < τ}, the inequality (41) is

(42)

∫

Ωτ

dα(x)|〈∇d(x),∇u〉|pdx ≥

(

1

τp′

)p−1 ∫

Sτ

|u|pdS

+

(

p− 1− α

p

)p ∫

Ωτ

dα−p(x)|u|pdx.

and is a generalization of inequality (5).

Here the following question arises: are the conditions on ∂Ω = Γ0 in the
studies above enough to conclude that from assumptions (39) (i), (ii) it follows

that

∣

∣

∣

∣

∇t

t

∣

∣

∣

∣

≥
C

dΓ0

, where dΓ0 is the distance to Γ0?

4.2. Inequalities with double singularities. We will show how to
choose functions h and F satisfying (18), (19), in order to apply inequality (26)
in Theorem 2. Let us use the following notation: α is a subset of numbers
{1, 2, . . . , n}; [α] is the number of elements in α; Xα is an element of R[α]; |Xα|
is the length of vector Xα.

Let ϕ(s) be a nondecreasing C1(R+) function, such that the function
s−δϕ(s) for 1 > δ > 0, is increasing in a neighborhood of s = 1 and

(43) s−δϕ(s) = 0 iff s = 1.

Fix α, β such that α∩β 6= ∅ and let function µ = µ(x) ∈ C1(Ω), µ(x) > 0 is such
that 〈Xα,∇µ(x)〉 ≤ 0. Define

(44) h = |Xα|
−[α]Xα, F = |Xβ |

−δϕ

(

|Xβ |

µ(x)

)

, Γ0 = {|Xβ | = µ(x)}.

Conditions (18), (19) for h and F are satisfied, indeed:

div h = −[α]|Xα|
−[α]−2 〈Xα,Xα〉

|Xα|
+ [α]|Xα|

−[α] = 0,

∇βF = |Xβ |
−δϕ′(s)

[

Xβ

|Xβ |µ(x)
−

Xβ

µ2(x)
∇µ(x)

]

− δϕ(s)|Xβ |
−δ−2Xβ ,

∇β′F = −|Xβ′ |1−δϕ′(s)
∇β′µ

µ2
, s =

|Xβ |

µ(x)
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where ∇β and ∇β′ are gradients with respect to β and β′ variables, β ∩ β′ = ∅,
β ∪ β′ = (1, . . . , n). Then

(45) 〈h,∇F 〉 ≥ (sϕ′ − δϕ)|Xα|
−[α]|Xβ |

−δ−2|Xα∩β |
2 > 0

since ϕ′(s) ≥ 0, 〈Xα,∇βµ〉+ 〈Xα,∇β′µ〉 = 〈Xα,∇µ〉 ≤ 0.

Denote by V and W the weights in LT , KT in Theorem 2

V = (sϕ′ − δϕ)1−p|Xα|
p−[α]|Xβ |

(δ+2)(p−1)|Xα∩β |
2(1−p),

W = (sϕ′ − δϕ)|ϕ|−p|Xα|
−[α]|Xβ |

δ(p−1)−2|Xα∩β |
2.

Then we have:

(i) If α ⊂ β:

V = (sϕ′ − δϕ)1−p|Xα|
2−p−[α]|Xβ |

(δ+2)(p−1),

W = (sϕ′ − δϕ)|ϕ|−p|Xα|
2−[α]|Xβ|

δ(p−1)−2.

(ii) If α ⊃ β:

V = (sϕ′ − δϕ)1−p|Xα|
p−[α]|Xβ|

δ(p−1),

W = (sϕ′ − δϕ)|ϕ|−p|Xα|
−[α]|Xβ|

δ(p−1).

(iii) If α = β:

V = (sϕ′ − δϕ)1−p|Xα|
p−[α]+δ(p−1),

W = (sϕ′ − δϕ)|ϕ|−p|Xα|
−[α]+δ(p−1).

So for u ∈ C∞
Γ0

applying inequality (26) in Theorem 2 we have:

Proposition 2. The inequality holds:

(46)

∫

G0,T

V

∣

∣

∣

∣

〈h,∇u〉

|h|

∣

∣

∣

∣

p

dx ≥

(

1

p′

)p ∫

G0,T

W |u|pdx.

A particular case of (46), considered in Fabricant et al. [22] is with
α = β = (1, . . . , n), i.e. Xα = Xβ = x, [α] = n, |Xα| = |x| and

〈x,∇µ〉 ≤ 0, g(s) =















1− sk

k
, k 6= 0

ln
1

s
, k = 0

,
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Ω = {x : s =
|x|

µ(x)
∈ (σ1, σ2), 0 ≤ σ1 ≤ 1 ≤ σ2 ≤ ∞}.

Then for b > 0

(47)

∫

Ω

∣

∣

∣

∣

g

(

|x|

µ(x)

)∣

∣

∣

∣

(b−1)(1−p)

|x|p−n+kb(p−1)|∇u|pdx

≥

(

b

p′

)p ∫

Ω

∣

∣

∣

∣

g

(

|x|

µ(x)

)∣

∣

∣

∣

b(1−p)−1

|x|−n+kb(p−1)|u|pdx, u ∈ C∞
Γ0
.

If 〈x,∇µ(x)〉 = 0 then the ε-sharpness of (46) is a consequence of Theorem 3

when ϕ = −
1

b
|g|b−1g and δ = kb. Indeed, we have to check (43) and (45). Since

sg′ = kg−1 < 0 we get sϕ′−δϕ = |g|b−1(1−kg)+k|g|b−1g = |g|b−1 > 0 and (45)

is satisfied. From the equality s−δ|ϕ(s)| =
1

b
s−kb|g(s)|b = 0 and the definition of

g(s) it follows that s−δ|ϕ(s)| = 0 iff s = 1, i.e. (43) holds. Thus with the above
choice of ϕ and δ, (46) and correspondingly (47) is ε-sharp.

Example 6. With b = 1, k =
n− p

p− 1
6= 0, µ(x) = 1, Ω = {|x| < 1} = B1,

the inequality (47) becomes

(48)

∫

B1

|∇u|pdx ≥

(

n− p

p

)p ∫

B1

|u|p

|x|p(1− |x|k)p
dx, u ∈ C∞

0 (B1).

Let us note that in (48) there are no relations between n and p > 1 and since
1− |x|k ≤ 1, inequality (48) improves inequality (7), see [22].
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