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Abstract. We prove a sharper Evard-Jafari Theorem, various mean value
theorems, and an improved version of the Davitt-Powers-Riedel-Sahoo The-
orem.

Introduction. The distribution of zeros and critical points of polyno-
mials, or more generally analytic functions, is of paramount interest in analysis.
Famous results to that effect are the classical Rolle’s Theorem, Lagrange’s Mean
Value Theorem, and in the case of polynomials – the Budan-Fourier Theorem
and Descartes’ Rule of Signs. Problems become especially interesting when com-
plex functions are considered. For instance, a direct analogue of Rolle’s theorem
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does not hold for functions of a complex variable, as the example f(z) = ez − 1
shows: f(0) = f(2πi) = 0 but f ′(z) 6= 0. That branch of complex analysis has
long been a favorite among Bulgarian mathematicians, many of whom have made
significant contributions. For example, in 1921, Nikola Obrechkoff (at the age of
25 and while still a student) proved the following remarkable results (see [4]):

Suppose f(x) = a0 + a1x + · · · + anx
n ∈ R[x] is a polynomial, let Vx be

the number of variations of sign of the Fourier sequence, namely

Vx
def
= V

(

f(x), f ′(x), · · · , f (n)(x)
)

,

and let (a, b) be an interval.

Obrechkoff’s Generalization of the Budan-Fourier Theorem. Cor-
responding to the interval (a, b) consider the quadrangle ACBD in C, symmetric

about the real line, and such that vertex A ≡ a, vertex B ≡ b, ∠BAC =
π

n− Va
,

∠ABC =
π

Vb
. Then

#
{

zeros of f(x) in ABCD
}

= Va − Vb,

or is less than that quantity by an even number.

An immediate corollary is

Obrechkoff’s Generalization of Descartes’ Rule of Signs. Let
V = V (a0, a1, . . . , an). Then

#

{

zeros of f(x) in
{

z ∈ C :
∣

∣ arg(z)
∣

∣ <
π

n− V

}

}

= V,

or is less than it by an even number.

An important result, considered a version of Rolle’s Theorem for complex
polynomials, is the celebrated

Grace-Heawood Theorem. Let p(z) ∈ C[z] have degree n and sup-
pose p(A) = p(B) for A,B ∈ C. Then there is a critical point in the disk

D

(

A+B

2
,
|A−B|

2
cot

π

n

)

.

Blagovest Sendov and Hristo Sendov have just announced [8, Theorem 3]
(see also [7]) the following very interesting improvement:
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Theorem (Bl. Sendov, Hr. Sendov). Let p(z) be a complex polynomial
of degree n ≥ 3 and suppose (taking without loss of generality A = −i, B = i)
that p(i) = p(−i) = 0. Then the double disk

D

(

− cot
2π

n
, csc

2π

n

)

∪ D

(

cot
2π

n
, csc

2π

n

)

contains at least one critical point of p(z).

Finally, we mention what we consider the premier unsolved problem in
the analytic theory of polynomials, stated by academician Blagovest Sendov circa
1958 (see [6]):

Sendov’s Conjecture. Let f(z) = (z − z1)(z − z2) · · · (z − zn) be a
polynomial of degree n ≥ 2 and zj ∈ D1 = D(0, 1) for all j = 1, . . . , n. Then each
of the closed disks D(z1, 1), D(z2, 1), . . . ,D(zn, 1) contains a critical point of f .

The interested reader may get acquainted with the depth and beauty of
the subject by consulting the monographs [4], [5] and [6].

For the remainder of the paper we shall be considering analytic functions.
Throughout, all zeros and critical points are to be counted with their exact mul-
tiplicities. The following result (see [4], [5]) will be needed in the sequel:

Proposition 1 (Stronger Rolle’s Theorem for real analytic functions).
Between two consecutive zeros of a real analytic function there is an odd number
of critical points.

2. A sharper Evard-Jafari theorem and applications. In 1992,
Evard and Jafari published a complex Rolle’s Theorem [2, Theorem 2.1], which
has not yet been fully appreciated by subsequent authors (for instance, it does
not appear in the comprehensive work [6]). The theorem asserts that the zeros of
the real and imaginary parts of f ′ separate the zeros of a holomorphic function
f along the line segments connecting pairs of zeros:

The Evard-Jafari Theorem. Let f(z) = u(z) + iv(z) be holomorphic
on the open convex set Df ⊆ C and let A,B ∈ Df be such that f(A) = 0 = f(B).
Then ∃ z1, z2 ∈ (A,B) such that ℜ

[

f ′(z1)
]

= 0 and ℑ
[

f ′(z2)
]

= 0.

The main result in this paper is to establish a sharper theorem which
gives a more detailed understanding of how the zeros of ℜ[f ′] and ℑ[f ′] separate
the zeros of f :
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Theorem 1 (Sharper Evard-Jafari Theorem). Let f(z) = u(z) + iv(z)
be holomorphic on the open convex set Df ⊆ C and let A,B ∈ Df be such that
f(A) = 0 = f(B). Suppose A = a1 + ia2, B = b1 + ib2 and define the real
functions

φ(t) = (b1 − a1)u(A+ t(B −A)) + (b2 − a2)v(A+ t(B −A)),

ψ(t) = (b1 − a1)v(A+ t(B −A))− (b2 − a2)u(A+ t(B −A)), t ∈ [0, 1].

Suppose 0 = τ0 < τ1 < · · · < τm = 1 (m ≥ 1) are zeros of φ(t), with corresponding
points Pj = A + τj(B − A), j = 0, . . . ,m − 1 on the segment [A,B]. Consider
each interval (τj, τj+1) and each subsegment (Pj , Pj+1).

(i) If φ(t) 6= 0, t ∈ (τj, τj+1), then there will be an odd number of points
z1,j , . . . , zq,j ∈ (Pj , Pj+1) such that ℜ

[

f ′(z1,j)
]

= 0, . . . ,ℜ
[

f ′(zq,j)
]

= 0.
(ii) If it is not known that φ(t) 6= 0, t ∈ (τj , τj+1), then ∃ zj ∈ (Pj , Pj+1)

such that ℜ
[

f ′(zj)
]

= 0.
Similarly, let 0 = σ0 < σ1 < · · · < σn = 1 (n ≥ 1) be zeros of ψ(t), with

corresponding points Qk = A+σk(B−A), k = 0, . . . , n−1 on the segment [A,B].
(iii) If ψ(t) 6= 0, t ∈ (σk, σk+1), then there will be an odd number of points

ζ1,k, . . . , ζr,k ∈ (Qk, Qk+1) such that ℑ
[

f ′(ζ1,k)
]

= 0, . . . ,ℑ
[

f ′(ζr,k)
]

= 0.
(iv) If it is not known that ψ(t) 6= 0, t ∈ (σk, σk+1), then ∃ ζk ∈

(Qk, Qk+1) such that ℑ
[

f ′(ζk)
]

= 0.

P r o o f. The function φ(t) was introduced in [2, Th. 2.1], and the function
ψ(t) is implied by the proof of the theorem. As in [2], upon differentiation one
obtains

φ′(t) = (b1 − a1)

[

∂u

∂x

dx

dt
+
∂u

∂y

dy

dt

]

+ (b2 − a2)

[

∂v

∂x

dx

dt
+
∂v

∂y

dy

dt

]

= (b1 − a1)
2 ∂u

∂x
+(b1 − a1)(b2 − a2)

∂u

∂y
+(b2 − a2)(b1 − a1)

∂v

∂x
+(b2 − a2)

2 ∂v

∂y

=
[

(b1 − a1)
2 + (b2 − a2)

2
]∂u

∂x
,

the last step being a consequence of the Cauchy-Riemann equations.

Similarly, ψ′(t) =
[

(b1 − a1)
2 + (b2 − a2)

2
]∂v

∂x
. Thus,

φ′(t) = 0 =⇒
∂u

∂x
= 0, ψ′(t) = 0 =⇒

∂v

∂x
= 0.

Now suppose that τj and τj+1 are two consecutive zeros of φ(t). Since u and
v are harmonic functions, φ(t) is real analytic, and by Proposition 1 ∃ an odd
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number of critical points t1,j , . . . , tq,j such that φ′(ts,j) = 0, s = 1, . . . , q. Putting
zs,j = A + ts,j(B − A) establishes (i). If it is not known that τj and τj+1 are
consecutive zeros, then the usual Rolle’s theorem yields (ii). The proofs of cases
(iii) and (iv) are similar. The original Evard-Jafari Theorem is a special case of
Theorem 1, with m = n = 1 and no additional information on the zeros of φ(t)
and ψ(t), t ∈ (0, 1). �

We illustrate the theorem with two examples.

Example 1. Consider the function f(z) = (z2−1)(z−i) = z3−iz2−z+i.
Then f(x, y) = x3 − 3xy2 + 2xy − x+ i(3x2y − y3 − x2 + y2 − y + 1),

ℜ(f ′) =
∂u

∂x
= 3x2 − 3y2 + 2y − 1,

ℑ(f ′) =
∂v

∂x
= 6xy − 2x.

One easily calculates:

on [−1, i] : φ(t) = t(1− t), ψ(t) = 4t(t− 1)2;

on [1, i] : φ(t) = 4t(1− t), ψ(t) = 4t(t− 1)2;

on [−1, 1] : φ(t) = 8t(t− 1)(2t − 1), ψ(t) = 8t(t− 1)2.

Thus, on the segment [−1, 1] the function φ(t) has an additional zero t = 1/2,
corresponding to z = 0, and so the curve ℜ(f ′) = 0 must separate the zeros −1
and 1 in such a way that there will be an odd number of intersection points along
the subsegments [−1, 0] and [0, 1]. Indeed, the hyperbola 3x2 − 3y2 + 2y − 1 = 0
intersects the segment [−1, 1] = [−1, 0] ∪ [0, 1] twice. (The function ψ(t) has no
extra zeros on any segment, and ℑ(f ′) = 0 reduces to the lines x = 0 and y = 1/3
which of course also separate the zeros of f .)

Example 2 (cf. [2, Example (i)]). Let f(z) = ez − 1. The zeros are
2kπi, k ∈ Z, and u(x, y) = ex cos y − 1, v(x, y) = ex sin y. Take for instance

A = 2πi, B = 4πi. Then φ(t) = 2π sin(2πt), ψ(t) = 2π
(

cos(2πt)− 1
)

. The only

zeros of ψ(t) are 0 and 1, while φ(t) has an additional zero for t = 1/2, which

corresponds to z = 3πi. Solving ℜ(f ′) = 0 gives the lines y = (2k+1)
π

2
, and two

of them separate 2πi and 4πi; solving ℑ(f ′) = 0 gives the lines y = kπ and one
of them separates 2πi and 4πi.

Applying Theorem 1 to the functions

λ(z) = f(z)− f(A)−
f(B)− f(A)

B −A
(z −A)
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and
µ(z) =

[

f(B)− f(A)
]

z − (B −A)f(z)−Af(B) +Bf(A),

respectively, we obtain two mean value theorems in the spirit of Lagrange:

Corollary 1 (Two Complex Mean Value Theorems). Let f(z) be holo-
morphic on the open convex set Df ⊆ C and let A,B ∈ Df . Then ∃ z1,j ∈
(A,B), j = 1, · · · ,m1 and ∃ z2,k ∈ (A,B), k = 1, · · · ,m2 (where m1,m2 are
determined as in Theorem 1) such that

ℜ
[

f ′(z1,j)
]

= ℜ

[

f(B)− f(A)

B −A

]

,

ℑ
[

f ′(z2,k)
]

= ℑ

[

f(B)− f(A)

B −A

]

,

and
∃w1,j ∈ (A,B), j = 1, · · · , n1 and ∃w2,k ∈ (A,B), k = 1, · · · , n2 (where n1, n2
are determined as in Theorem 1) such that

ℜ
[

(B −A)f ′(w1,j)
]

= ℜ
[

f(B)− f(A)
]

,

ℑ
[

(B −A)f ′(w2,k)
]

= ℑ
[

f(B)− f(A)
]

.

Corollary 1 generalizes [2, Theorem 2.2]. In general, {z1,j} 6= {w1,j} and
{z2,k} 6= {w2,k}, but the two will coincide if ℑ(B −A) = 0.

Similarly, by considering

Λ(z) = f(z)− f(A)−
f(B)− f(A)

g(B)− g(A)

[

g(z) − g(A)
]

and

M(z) =
[

f(B)− f(A)
]

g(z) −
[

g(B)− g(A)
]

f(z)− g(A)f(B) + g(B)f(A),

respectively, we obtain two more general results:

Corollary 2 (Two Complex Generalized (Cauchy-type) Mean Value The-
orems). Let f(z), g(z) be holomorphic on the open convex set Df,g ⊆ C and let
A,B ∈ Df,g (in the first case g(A) 6= g(B) must be required). Then

∃ z1,j ∈ (A,B), j = 1, . . . ,m1 and ∃ z2,k ∈ (A,B), k = 1, . . . ,m2 (where
m1,m2 are determined as in Theorem 1) such that

ℜ
[

f ′(z1,j)
]

= ℜ

[

f(B)− f(A)

g(B)− g(A)
g′(z1,j)

]

,
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ℑ
[

f ′(z2,k)
]

= ℑ

[

f(B)− f(A)

g(B)− g(A)
g′(z2,k)

]

,

and

∃w1,j ∈ (A,B), j = 1, . . . , n1 and ∃w2,k ∈ (A,B), k = 1, . . . , n2 (where
n1, n2 are determined as in Theorem 1) such that

ℜ
[(

g(B)− g(A)
)

f ′(w1,j)
]

= ℜ
[(

f(B)− f(A)
)

g′(w1,j)
]

,

ℑ
[(

g(B)− g(A)
)

f ′(w2,k)
]

= ℑ
[(

f(B)− f(A)
)

g′(w2,k)
]

.

3. Flett’s Mean Value Theorem and its extensions in R and

C. We now turn our attention to a theorem discovered by Flett in 1958 [3],
which unfortunately has not received much attention in textbooks, even though
its proof is a good exercise and its geometric interpretation is illustrative.

Flett’s Mean Value Theorem. Suppose that I is an open interval,
f : I ⊆ R → R is differentiable, [a, b] ⊂ I, and f ′(a) = f ′(b). Then ∃ ξ ∈ (a, b)
such that

f ′(ξ) =
f(ξ)− f(a)

ξ − a
.

The example f(z) = ez − z shows that Flett’s theorem fails in C. Moti-
vated by Evard and Jafari’s paper, Davitt, Powers, Riedel, and Sahoo have proved
[1] extensions of this theorem for both real and complex functions. First they
generalize Flett’s Theorem [1, Th. 1] by removing the condition f ′(a) = f ′(b):

Proposition 2 (Extension of Flett’s Mean Value Theorem). Suppose
that I is an open interval, f : I ⊆ R → R is differentiable and [a, b] ⊂ I. Then
∃ ξ ∈ (a, b) such that

f ′(ξ) =
f(ξ)− f(a)

ξ − a
+

1

2

f ′(b)− f ′(a)

b− a

(

ξ − a
)

.

For α, β ∈ C, define
〈

α, β
〉

= ℜ
(

αβ̄
)

. Theorem 2 in [1] generalizes Propo-
sition 2 to holomorphic functions as follows:
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The Davitt-Powers-Riedel-Sahoo Mean Value Theorem. Let
Df ⊂ C be open and convex, f : Df → C – holomorphic, A,B ∈ Df . Then
∃ z1, z2 ∈ (A,B) such that

ℜ
[

f ′(z1)
]

=

〈

B −A, f(z1)− f(A)
〉

〈

B −A, z1 −A
〉 +

1

2

ℜ
[

f ′(B)− f ′(A)
]

B −A
(z1 −A),

ℑ
[

f ′(z2)
]

=

〈

B −A,−i
[

f(z2)− f(A)
]

〉

〈

B −A, z2 −A
〉 +

1

2

ℑ
[

f ′(B)− f ′(A)
]

B −A
(z2 −A).

The expressions on the right-hand sides are unnecessarily complicated.
We state a better version of the theorem and provide a detailed proof (cf. [1,
Proof of Th. 2]).

Theorem 2. Let f(z) = u(z) + iv(z) be holomorphic on the open convex
set Df ⊆ C and let A = a1+ia2 ∈ Df , B = b1+ib2 ∈ Df . Then ∃ z1, z2 ∈ (A,B)
such that

ℜ
[

f ′(z1)
]

= ℜ

[

f(z1)− f(A)

z1 −A
+

1

2

f ′(B)− f ′(A)

B −A
(z1 −A)

]

,

ℑ
[

f ′(z2)
]

= ℑ

[

f(z2)− f(A)

z2 −A
+

1

2

f ′(B)− f ′(A)

B −A
(z2 −A)

]

.

P r o o f. Define φ(t) and ψ(t), t ∈ [0, 1] as in Theorem 1; recall that

φ′(t) =
∣

∣B −A
∣

∣

2
ℜ
[

f ′(z)
]

, ψ′(t) =
∣

∣B −A
∣

∣

2
ℑ
[

f ′(z)
]

.

Proposition 2, applied to φ(t) on [0, 1], gives ∃ t1 ∈ (0, 1) such that

φ′(t1) =
φ(t1)− φ(0)

t1
+

1

2

[

φ′(1) − φ′(0)
]

t1.

Upon setting z1 = A+ t1(B −A) this reduces to

ℜ
[

f ′(z1)
]

=
φ(t1)− φ(0)

t1
∣

∣B −A
∣

∣

2 +
1

2

φ′(1)− φ′(0)
∣

∣B −A
∣

∣

2 t1.

But

φ(t1)− φ(0)

t1
∣

∣B −A
∣

∣

2 =
(b1 − a1)

[

u(z1)− u(A)
]

+ (b2 − a2)
[

v(z1)− v(A)
]

t1
∣

∣B −A
∣

∣

2
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and

f(z1)− f(A)

z1 −A
=
u(z1)− u(A) + i

[

v(z1)− v(A)
]

t1
[

b1 − a1 + i(b2 − a2)
]

=

[

u(z1)− u(A) + i
[

v(z1)− v(A)
]

]

[

b1 − a1 − i(b2 − a2)
]

t1
∣

∣B −A
∣

∣

2 ,

hence
φ(t1)− φ(0)

t1
∣

∣B −A
∣

∣

2 = ℜ

[

f(z1)− f(A)

z1 −A

]

.

Also

φ′(1)− φ′(0)
∣

∣B −A
∣

∣

2 t1 =

(

ℜ
[

f ′(B)
]

−ℜ
[

f ′(A)
]

)

t1 = ℜ

[(

f ′(B)− f ′(A)

)

t1

]

= ℜ

[(

f ′(B)− f ′(A)

)

z1 −A

B −A

]

,

and the first part of Theorem 2 follows. The proof of the second part is similar
and we omit it. �

With the additional assumption f ′(A) = f ′(B), one obtains as a corollary

Theorem 3 (A Complex Flett’s Mean Value Theorem). Let f(z) be
holomorphic on the open convex set Df ⊆ C. Suppose f ′(A) = f ′(B) for two
points A,B ∈ Df . Then ∃ z1, z2 ∈ (A,B) such that

ℜ
[

f ′(z1)
]

= ℜ

[

f(z1)− f(A)

z1 −A

]

,

ℑ
[

f ′(z2)
]

= ℑ

[

f(z2)− f(A)

z2 −A

]

.

In closing, we mention that Theorem 3 may be applied for instance to the
function

ν(z) = (B −A)f(z)−
1

2

[

f ′(B)− f ′(A)
]

(z −A)2

to obtain one more mean value theorem:

Corollary 3. Let f(z) be holomorphic on the open convex set Df ⊆ C

and let A,B ∈ Df . Then ∃w1, w2 ∈ (A,B) such that

ℜ
[

(B −A)f ′(w1)
]

= ℜ
[

(B −A)
f(w1)− f(A)

w1 −A
+

1

2

[

f ′(B)− f ′(A)
]

(w1 −A)
]

,
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ℑ
[

(B −A)f ′(w2)
]

= ℑ
[

(B −A)
f(w2)− f(A)

w2 −A
+

1

2

[

f ′(B)− f ′(A)
]

(w2 −A)
]

.
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