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1. Introduction. Many practical situations lead to inverse problems in
mathematical physics, in which one would like to determine causes for a desired
or observed effect. One of the characterizing properties of many of the inverse
problems is that they are usually ill-posed in the sense of Hadamard. This means
that there is no solution that depend continuously on the data. The backward
heat problem is known to be ill-posed [7]. In order to obtain stable approximate
solutions, one has to regularize the problem. Many regularization procedures are
available in the literature [6]. In the method of quasi-reversibility (QR) [7, 9, 1, 2],
the equation or the final value condition is perturbed to form an approximate
well-posed problem (regularizing problem), depending on a small parameter ε.
An important step in a quasi-reversibility method is choosing of an optimal value
of the regularizing parameter ε. Therefore, the solution of such problems requires
both basic theory and experimentation and adaptation.

Let us note that many applications in engineering and medicine (e.g. in
computer tomography, ultrasound, MRI, CAT, PET imaging in medicine) can be
formulated as backward heat problems.

In [4], applying the convolutional calculus approach proposed by Di-
movski, closed-form representations of the solutions of some problems arising
in QR regularization of ill-posed problems are obtained. Such representations
are convenient for fast numerical computation of the regularizing solutions at
each point independently and for the establishing of the optimal value of the
regularizing parameter.

Inspired by [4], in this paper the convolutional calculus approach is applied
to find Duhamel-type representations of the solutions of four different regularizing
problems for the backward heat problem. The obtained representations are used
for calculating the numerical solution of some test problems. Several numerical
experiments are performed in order to find the optimal value of the regularizing
parameter ε. The four regularizing techniques are compared.

2. Forward and backward problems for the heat equation.

Recall the forward problem (FP) for the one-dimensional heat equation:

ut = uxx, (x, t) ∈ (0, 1) × (0, T ),

u(0, t) = u(1, t) = 0, 0 < t ≤ T,(2.1)

u(x, 0) = f(x), x ∈ [0, 1].

The forward problem (2.1) is a well-posed problem in L2(0, 1), which means that
a unique solution u(x, t) exists and it depends continuously on the initial data
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(the function f(x)). Denote the solution of (2.1) by u(x, t; f). Its eigenfunction
expansion is given by:

(2.2) u(x, t; f) =
∞∑

n=1

fn sin(nπx) exp(−n2π2t),

where fn are the Fourier coefficients in the eigenfunction expansion of the initial
function f(x)

(2.3) f(x) =

∞∑

n=1

fn sin(nπx)

and they can be computed by

fn = 2

∫ 1

0
f(x) sin(nπx) dx, n ∈ N.

Consider now the backward problem (BP):

ut = uxx, (x, t) ∈ (0, 1) × (0, T ),

u(0, t) = u(1, t) = 0, 0 < t ≤ T,(2.4)

u(x, T ) = g(x), x ∈ [0, 1].

Given a final value u(x, T ) = g(x), we would like to determine a solution u(x, t)
(or approximation of it) for t ∈ [0, T ]. In particular, we are looking for a func-
tion f(x), such that the solution u(x, t) of the forward problem (2.1) yields
u(x, T ; f) = g(x).

It is known that, in general, the process is irreversible, see e.g. [6, 7] and
the BP is an ill-posed problem in the sense of Hadamard: solution does not exist
for all g(x) ∈ L2(0, 1) and even if g(x) is smooth enough that a solution exists,
there is no continuous dependence of u(x, t) on g(x).

Let us look at the eigenfunction expansion of the solution of BP. From
(2.2) it follows:

g(x) = u(x, T ; f) =
∞∑

n=1

fn sin(nπx) exp(−n2π2T ),

and thus

gn = fn exp(−n2π2T )
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implying

f(x) =

∞∑

n=1

gn sin(nπx) exp(n
2π2T ),(2.5)

u(x, t) =

∞∑

n=1

gn sin(nπx) exp(n
2π2(T − t)).(2.6)

Convergence of the series (2.5) and the series (2.6) for all t ∈ [0, T ] is achieved only
if |gn| exp(n

2π2T ) < ∞, which is a very restrictive condition on the function g(x).
Even if it is satisfied, small perturbations of g(x) would lead to large deviations
in the function f(x), defined by (2.5). This illustrates the ill-posedness of the
backward problem.

On the other hand, it is known [7] that for small ε, we can always find a
function fε(x) (there are an infinite number of such functions), such that

‖u(x, T ; fε)− g(x)‖L2(0,1) ≤ ε.

To solve the backward problem (2.4) means to find one fε(x) yielding such ap-
proximation.

3. Quasi-reversibility methods. A key technique in the study of ill-
posed problems is regularization of the problem. Instead of the original ill-posed
problem, an approximate regularizing problem is considered, which is well-posed,
and which depends on a small regularization parameter ε > 0.

Various regularization techniques for solving the backward heat problem
are proposed so far. The quasi-reversibility method is introduced by Lattès and
Lions [7]. In this section, four different regularizing techniques from this type are
considered.

In the first two cases the backward problem is rewritten first as a forward
problem (which is also ill-posed) for the function v(x, t) defined by

v(x, t) = u(x, T − t)

and then a small perturbation is introduced in the equation. The first regularizing
problem, which we consider, is proposed by Lattès and Lions [7], where the ill-
posed problem is replaced by the following well-posed problem of twice higher
order:

∂vε
∂t

+
∂2vε
∂x2

+ ε
∂4vε
∂x4

= 0, (ε > 0)
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vε(0, t) = vε(1, t) = (vε)xx(0, t) = (vε)xx(1, t) = 0,(3.1)

vε(x, 0) = g(x).

The second regularizing problem is proposed by Schowalter [9]. The considered
perturbation in the equation is suggested by some fluid flow models.

∂vε
∂t

+
∂2vε
∂x2

− ε
∂3vε
∂t∂x2

= 0, (ε > 0)

vε(0, t) = vε(1, t) = 0,(3.2)

vε(x, 0) = g(x).

Making again change of variables, the corresponding to (3.1) and (3.2) approxi-
mate solutions for the backward problem will be

uε(x, t) = vε(x, T − t).

The second two methods belong to the group of the so-called quasi-
boundary-value methods, where a small perturbation is introduced in the final
condition, leading to a nonlocal condition.

The third regularizing problem is proposed by Clark and Oppenheimer [1]:

∂uε
∂t

=
∂2uε
∂x2

,

uε(0, t) = uε(1, t) = 0,(3.3)

εuε(x, 0) + uε(x, T ) = g(x), ε > 0.

As fourth regularizing problem we consider a modification of (3.3), proposed by
Denche and Bessila [2]:

∂uε
∂t

=
∂2uε
∂x2

,

uε(0, t) = uε(1, t) = 0,(3.4)

uε(x, T )− ε(uε)t(x, 0) = g(x), ε > 0.

All regularizing problems are defined in such a way that for ε → 0 the
original ill-posed problem is recovered. Hence, the degree of approximation should
be better for small ε. On the other hand, for ε → 0 the solution of the regularizing
problem becomes very unstable. Therefore, an important issue in a regularization
method is to find an optimal value for ε. For this, some numerical experimentation
and adaptation is needed. Next we obtain closed-form solutions of the regularizing
problems (3.1-3.4) which are convenient for this purpose.
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4. Convolutional calculi for the regularizing problems. In this
section, we develop bivariate convolutional calculus for the regularizing problems
(3.1)–(3.4). The notion of convolution of a linear operator is basic in a convolu-
tional calculus.

Definition 4.1. Let X be a linear space, and let L : X → X be a linear

operator. A bilinear, commutative and associative operation ∗ : X × X → X,

such that

(4.1) L(f∗g) = (Lf)∗g for any f, g ∈ X,

is said to be a convolution of the operator L.
Further, any linear operator M : X → X, satisfying the relation

M(f∗g) = (Mf)∗g for any f, g ∈ X,

is said to be a multiplier of the convolution algebra (X, ∗).

4.1. Space variable. With respect to the space variable, any of the four
regularizing problems contains the square of differentiation, subjected to Dirichlet
boundary conditions. Let Cx = C([0, 1]) be the space of continuous functions on
[0, 1]. Let L be the right inverse operator of the operator D = d2/dx2, defined
by (Lf)(0) = (Lf)(1) = 0. It has the explicit representation:

Lf(x) =

∫ x

0
(x− ξ)f(ξ) dξ − x

∫ 1

0
(1− ξ)f(ξ) dξ.

In the following theorem, which is proven in more general form in [3], a convo-
lution of the operator L is given. Moreover, the operator L is represented as a
convolution operator with respect to this convolution.

Theorem 4.2. The operation

(f
x
∗ g)(x) = −

1

2

∫ 1

0

[∫ ξ

x

f(ξ + x− η)g(η) dη −

∫ ξ

−x

f1(ξ − x− η)g1(η) dη

]
dξ,

where f1(x) = f(|x|)sgn(x), g1(x) = g(|x|)sgn(x), is a convolution of the operator

L in Cx. Moreover, the representation holds

(4.2) Lf = {x}
x
∗ f.

Following [3], consider also the defining projector F , which is “respon-
sible” for the boundary conditions. It is defined by F := I − LD. Note that
identity DL = I implies

(4.3) FL = 0, F 2 = F,
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i.e. F is indeed a projection operator. From its definition we find the explicit
representation of F :

(4.4) Ff(x) = f(0)(1− x) + f(1)x.

The following useful properties are proven in [3].

(4.5) D(f
x
∗ g) = (Df)

x
∗ g +D((Ff)

x
∗ g), F (f

x
∗ g) = F ((Ff)

x
∗ g).

Denote by Mx the multiplicative set of all multipliers of (Cx,
x
∗). It is

a commutative ring. Clearly, the operator L is a multiplier of the convolution

algebra (Cx,
x
∗), L ∈ Mx. Moreover, L is a non-divisor of 0. Indeed, Lf = 0

implies DLf = 0 i.e. f = 0. Hence, the multiplicative subset of Mx consisting
of all non-zero non-divisors of 0 is nonempty. Let us denote it by Nx. Then we
consider the multiplier fractions

M

N
, M ∈ Mx, N ∈ Nx

with the usual convention

M

N
=

M1

N1
iff MN1 = M1N.

We consider numbers, functions, multipliers and multiplier fractions as elements
of a single algebraic system: the ring of multiplier fractions. For more detailed
description of this procedure we refer to the recent work [10] and the references
cited there.

In this ring the operator L can be identified by the function {x}, since

L = {x}
x
∗, see (4.2). The algebraic inverse of L:

S :=
1

L

plays a basic role in the corresponding convolutional calculus. It can be considered
as ”algebraic differentiation operator”. More precisely, for f ∈ C2([0, 1])

(4.6) f ′′ = Sf − S{(1 − x)f(0)} − f(1),

where f(1) is to be considered as a numerical operator. Indeed, (4.4) implies

Lf ′′(x) = f(x)− Ff(x) = f(x)− f(0)(1 − x)− f(1)x.

Since {x} ≡ L, multiplying by S = 1/L we get (4.6).

4.2. Time variable. Let Ct = C([0, T ]) be the space of continuous
functions on [0, T ] and let Φ : Ct → R be a linear continuous functional, such that
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Φ{1} = 1. Let l be the right inverse operator of d/dt, defined by Φτ{lf(τ)} = 0.
Therefore it has explicit representation

lf(t) =

∫ t

0
f(τ) dτ − Φτ

{∫ τ

0
f(σ) dσ

}
.

The following theorem is proven in [3].

Theorem 4.3. The operation

(f
t
∗ g)(t) = Φτ

{∫ t

τ

f(t+ τ − σ)g(σ) dσ

}

is a convolution of the operator l in Ct. Moreover,

(4.7) lf = {1}
t
∗ f.

Hence, l is a multiplier of the convolution algebra (Ct,
t
∗). According to

(4.7), it is a convolution operator which can be identified with the function {1}.
We repeat the procedure from subsection 4.1 and define the ring of multiplier

fractions, corresponding to convolution
t
∗. In this ring of multiplier fractions

consider the algebraic inverse of l:

s :=
1

l
.

It is an ”algebraic differential operator”, satisfying:

(4.8) f ′ = sf − Φ{f}, f ∈ C1
t ,

where Φ{f} is not a constant function, but a numerical operator.

4.3. Bivariate operational calculus. Let ∆ = [0, 1] × [0, T ], and let
C(∆) be the space of continuous functions on ∆. Following [5] we construct a
bivariate operational calculus, based on the calculi, developed in subsections 4.1
and 4.2. Define a bivariate convolution of f(x, t) and g(x, t) from C(∆):

(f
x,t
∗ g)(x, t) = Φτ

{∫ t

τ

f(x, t+ τ − σ)
x
∗ g(x, σ) dσ

}
.

Then the following separability property holds true: if

f(x, t) = f1(x)f2(t), g(x, t) = g1(x)g2(t),

then
(
f

x,t
∗ g

)
(x, t) =

(
f1

x
∗ g1

)
(x)

(
f2

t
∗ g2

)
(t).
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The operators L and l are multipliers of
x,t
∗ , such that

(4.9) Llf = {x}
x,t
∗ f.

We repeat the construction from subsection 4.1. Let M be the set of

all multipliers of (C,
x,t
∗ ). It is a commutative ring. The multipliers L and l are

non-zero non-divisors of 0. Let N ⊂ M be the set of all non-zero non-divisors of
0 in M. Let N−1M be the ring of multiplier fractions. Then

S =
1

L
, s =

1

l
∈ N−1M.

Consider numbers, functions, multipliers and multiplier fractions as elements of
a single algebraic system: the ring of multiplier fractions.

From (4.6) and (4.8) we obtain the following properties necessary for
problem algebraization:

{
∂2u

∂x2

}
= Su− S{(1− x)u(0, t)} − [u(1, t)]x,(4.10)

{
∂u

∂t

}
= su− [Φτ{u(x, τ)}]t ,(4.11)

where [.]x and [.]t denote numerical operators with respect to x and t, i.e.

[f(t)]xu(x, t) = f(t)
t
∗ u(x, t), [g(x)]tu(x, t) = g(x)

x
∗ u(x, t).

The following identities, implied by (4.2), (4.7) and (4.9) are also useful:

(4.12) L ≡ [x]t, L2 = L[x]t ≡

[
x3 − x

6

]

t

, Ll ≡ {x}.

5. Duhamel-type representations. Based on the developed con-
volutional calculi, in this section we find Duhamel-type representations of the
solutions of the forward problem and the regularizing problems. In order to
exhibit the full scope of the convolutional method, we consider the extended
inhomogeneous variants of the equations. Note that nonhomogeneous bound-
ary conditions can also be considered. Usually they can be incorporated in an
appropriate “forcing” function. Therefore, without loss of generality, we take
homogeneous boundary conditions and arbitrary forcing function.

First, consider the forward problem

ut = uxx + h(x, t), (x, t) ∈ (0, 1) × (0, T ),
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u(0, t) = u(1, t) = 0, 0 < t ≤ T,(5.1)

u(x, 0) = f(x), x ∈ [0, 1].

In case of nonhomogeneous boundary conditions we set

u(x, t) = u− Fu = u(x, t)− u(0, t)(1 − x)− u(1, t)x.

Then u satisfies the same problem with homogeneous boundary conditions and
new functions f and h. So, without loss of generality, we consider problem (5.1).
Applying identities (4.10) and (4.11) with Φ{f} = f(0) we rewrite the problem
in algebraic form in the ring of multiplier fractions as follows:

su− [f(x)]t = Su+ h.

The algebraic solution is

u =
[f(x)]t
s− S

+
h

s− S
= S

L

s− S
[f(x)]t + Ss

Ll

s− S
h.

Now, using identities (4.12) and properties (4.10) and (4.11), it follows that the
solution u has the following representation:

(5.2) u =
∂2

∂x2

(
U

x
∗ f

)
+

∂3

∂x2∂t

(
V

x,t
∗ h

)
,

where U(x, t) is a solution of (5.1) with h ≡ 0 and f(x) = x, and V (x, t) is a
solution of (5.1) with f ≡ 0 and h(x, t) = x. Further, depending on the smooth-
ness of the given functions f(x) and h(x, t) we can differentiate the convolution
products in (5.2) applying (4.5).

Next we find similar Duhamel-type representations of the solutions of the
regularizing problems. Consider the first regularizing problem

∂v

∂t
+

∂2v

∂x2
+ ε

∂4v

∂x4
= h(x, t), (ε > 0)

v(0, t) = v(1, t) = vxx(0, t) = vxx(1, t) = 0,(5.3)

v(x, 0) = g(x).

If the problem is with nonhomogeneous boundary conditions, then set

v = v − Fv − LFDv,

where operators D,L and F are defined in subsection 4.1. From the properties
(4.3) of the defining projector F it follows that Fv = 0 and FDv = 0, which
means that v satisfies homogeneous boundary conditions and equation with a
new forcing function h(x, t).
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To rewrite problem (5.3) in algebraic form in the ring of multiplier frac-
tions we use identities (4.10) and 4.11) with Φ{f} = f(0), which imply:

∂v

∂t
= sv − [v(x, 0)]t = sv − [g(x)]t,

∂2v

∂x2
= Sv − S{(1− x)v(0, t)} − [v(1, t)]x = Sv,(5.4)

∂4v

∂x4
= S

(
∂2v

∂x2

)
− S

{
(1− x)

∂2v

∂x2
(0, t)

}
−

[
∂2v

∂x2
(1, t)

]

x

= S2v.

Inserting these identities in the equation and using the initial/boundary condi-
tions we get the algebraic problem

sv − [g(x)]t + Sv + εS2v = h.

The algebraic solution is then

(5.5) v = v1 + v2, where v1 =
[g(x)]t

s+ S + εS2
, v2 =

h

s+ S + εS2
.

Rewrite v1 and v2 as follows

v1 = S2 L2

s+ S + εS2
[g(x)]t, v2 = Ss

Ll

s+ S + εS2
h.

These representations together with the identities (4.12), (5.4), and (5.5) give

(5.6) v1 =
∂4

∂x4

(
Ω

x
∗ g

)
, v2 =

∂3

∂x2∂t

(
V

x,t
∗ h

)
,

where Ω(x, t) is a solution of (5.3) with h ≡ 0 and g(x) =
x3 − x

6
, and V (x, t) is

a solution of (5.3) with g ≡ 0 and h(x, t) = x.

Depending on the smoothness of the functions g(x) and h(x, t) we can
further differentiate the convolution products applying (4.5). In particular, if
g ∈ C2

x and g(0) = g(1) = 0 then applying (4.5), we get

(5.7) v1 =
∂2

∂x2

(
Ω

x
∗ g′′

)
.

It remains to simplify the obtained representation, noting that it contains
differentiation of the convolution (which is integration operation). Denote

(5.8) f
x

∗̃ g :=
d2

dx2
(f

x
∗ g).
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Then, after some calculations, we obtain that the new operation
x

∗̃ has the fol-
lowing form
(5.9)

(f
x

∗̃ g)(x) = −
1

2

d

dx

[∫ 1

x

f(1 + x− η)g(η) dη +

∫ 1

−x

f1(1− x− η)g1(η) dη

]
,

where f1(x) = f(|x|)sgn(x), g1(x) = g(|x|)sgn(x).

Denote also

(u
x,t

∗̃ v)(x, t) :=

∫ t

0
u(x, t− τ)

x

∗̃ v(x, τ) dτ.

Then (5.6), (5.7), and (5.8) imply

(5.10) v = v1 + v2, where v1 = Ω
x

∗̃ g′′, v2 =
∂

∂t

(
V

x,t

∗̃ h

)
.

The second regularizing problem (3.2) is solved analogously. Note that
till now in this section, for the forward problem and the first two regularizing
problems we take Φ{f} = f(0).

Consider now the third regularizing problem (3.3). Now we take func-
tional

Φ{f} =
εf(0) + f(T )

ε+ 1
,

which corresponds to the nonlocal initial condition and satisfies the normalization
assumption Φ{1} = 1. After algebraization of the nonhomogeneous problem

∂u

∂t
=

∂2u

∂x2
+ h(x, t),

u(0, t) = u(1, t) = 0,(5.11)

εu(x, 0) + u(x, T ) = g(x), ε > 0,

by the use of (4.10) and (4.11) we obtain

su−
[g(x)]t
ε+ 1

= Su+ h.

The algebraic solution is

u =
[g(x)]t

(ε+ 1)(s − S)
+

h

s− S
= S2 L2

(ε+ 1)(s − S)
[g(x)]t + Ss

Ll

s− S
h.
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Now, using identities (4.12) and properties (4.10) and (4.11), it follows that the
solution u has the following representation:

u =
∂4

∂x4

(
Ω

x
∗ g

)
+

∂3

∂x2∂t

(
V

x,t
∗ h

)
,

where Ω(x, t) is a solution of (5.11) with h(x, t) ≡ 0 and g(x) = (x3 − x)/6, and
V (x, t) is a solution of (5.11) with g(x) ≡ 0 and h(x, t) = x. It only remains to
differentiate the convolution products and represent them in terms of the new

operations
x

∗̃ and
x,t

∗̃ .
The fourth regularizing problem (3.4) is treated in a similar way, taking

Φ{f} = f(T )− εf ′(0).

Particular solutions U, V and Ω can be found using eigenfunction expan-
sion.

The main results of this section, concerning the forward problem and the
four regularizing problems, are summarized in the following two theorems.

Theorem 5.1. The solution of the forward problem (2.1) with initial

function f(x) ∈ C1([0, 1]) has the representation

u(x, t) = −
1

2

∂

∂x

[∫ 1

x

U(1 + x− η, t)f(η) dη

+

∫ 1

−x

U(|1 − x− η|, t)f(|η|)sgn((1− x− η)η) dη

]
,

where U(x, t) is a particular solution of (2.1) with f(x) = x and is given by the

series

U(x, t) =
2

π

∞∑

n=1

(−1)n−1

n
sin(nπx) exp(−n2π2t).

Theorem 5.2. If g(x) ∈ C2([0, 1]) and g(0) = g(1) = 0 then the reg-

ularizing solutions, corresponding to regularizing problems (3.1)–(3.4) have the

representation:

uε(x, t) = −
1

2

∂

∂x

[∫ 1

x

Ωε(1 + x− η, t)g′′(η) dη

+

∫ 1

−x

Ωε(|1− x− η|, t)g′′(|η|)sgn((1− x− η)η) dη

]
,
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with

Ωε(x, t) =
2

π3

∞∑

n=1

(−1)n

n3
sin(nπx)Gn,ε(t),

where in the four different cases of regularization (3.1)–(3.4) we have respectively

GI
n,ε(t) = exp

(
n2π2(1− εn2π2)(T − t)

)
, GII

n,ε(t) = exp

(
n2π2(T − t)

1 + εn2π2

)
,

GIII
n,ε (t) =

exp(−n2π2t)

ε+ exp(−n2π2T )
, GIV

n,ε(t) =
exp(−n2π2t)

εn2π2 + exp(−n2π2T )
.

6. Numerical experiments. To get an impression of any of the four
regularizing techniques, we work in the following way:
– Fix a final time T and choose a regularizing problem from (3.1-3.4);
– Given g(x), apply Theorem 5.2. to solve the regularizing problem and to find
approximation of the initial function fε(x) = uε(x, 0) for several values of ε → 0;
– Applying Theorem 5.1, solve the forward problem with initial function fε(x),
and find

gε(x) = u(x, T ; fε)

– For any ε study the behavior of fε and the error ‖g − gε‖ and find the optimal
value of ε.

We performed numerical computations for T = 0.1 and g(x) = x(1 −
x) and compared the four methods. We found out that quasi-boundary-value
methods (3.3) and (3.4) give better approximations of the desired final function
g(x) than methods (3.1) and (3.2), which is consistent with the error estimates
given in [1, 2].

The presented plots on Figures 1 and 2 are obtained by the quasi-boundary-
value method (3.3). On Fig. 1 initial functions fε(x) and final functions gε(x)
are plotted for different values of ε and T = 0.1. The instability of the functions
fε for ε → 0 is clearly seen. Note that for the first two regularizing techniques
this instability was more severe. On Fig. 2 approximate initial functions fε(x)
are plotted for different values of T and corresponding optimal values of ε. As
expected, when T grows it becomes more difficult to inverse the problem. More
precisely, to get a good approximation of g(x) we have to take smaller value of ε,
which in turn leads to more unstable behavior of fε.
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Fig. 1. Results for regularizing problem (3.3) with T = 0.1, g(x) = x(1 − x). Initial
function fε(x) (left) and final function gε(x) (right) are plotted for different values of ε
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Fig. 2. Results for regularizing problem (3.3) with g(x) = x(1− x). Initial function
fε(x) is plotted for different values of T and corresponding optimal values of ε

7. Conclusion and generalizations. The obtained Duhamel-type
representations of the solutions are compact and have the same form for different
regularizing problems. They are very convenient for fast and efficient numerical
computation of the solutions of the regularizing problems in each point indepen-
dently. This allows us to make easily many numerical experiments with different
ε, T and g(x) in order to get insight in the behavior of fε and gε, to compare
different regularizing methods and to find the optimal parameter ε for each of
them.

Feasible generalizations include adding noise to the final data g(x), con-
sidering time-fractional backward heat equation and problems in two spatial di-
mensions [8, 11].
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