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Abstract. We prove that the Hilbert square S[2] of a very general prim-
itively polarized K3 surface S of degree d(n) = 2(4n2 + 8n + 5), n ≥ 1 is
birational to a double Eisenbud–Popescu–Walter sextic. Our result implies
a positive answer, in the case when r is even, to a conjecture of O’Grady: On
the Hilbert square of a very general K3 surface of genus r2 + 2, r ≥ 1 there
is an antisymplectic birational involution. We explicitly give this involution
on S[2] in terms of the corresponding EPW polarization on it.

1. Introduction and motivations. O’Grady conjectured in [13] that
on the Hilbert square of a K3 surface of genus g = r2 + 2, r ≥ 0 there exists an
antisymplectic involution (see (4.3.3) in [13]).
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We show here the following theorem, that in particular implies that
O’Grady conjecture is true in the case when r is even.

Main Theorem. The Hilbert square of a very general K3 surface of

degree d(n) = 2(4n2 + 8n+ 5), n ≥ 1 is birational to a double EPW sextic.

Indeed, for d(n) = 8n2 + 16n + 10 = 2(4(n + 1)2 + 1), the genus of S is
g(n) = d(n)/2 + 1 = 4n2 + 8n + 6 = (2n + 2)2 + 2, and for n ≥ 1, r = 2n + 2
covers all even numbers r ≥ 4, and the antisymplectic birational involution is
determined in terms of the EPW polarization (see Section 3).

Notice that while the case r = 0 is well known, and the case r = 2 is
studied in detail by O’Grady (see e.g. §4.3 in [13]), in the cases of odd r very
little is known: only the case r = 1 is studied in [5] and [8].

To show our main result we will follow O’Grady’s study of the case r = 2,
considering a double EPW sextic associated to a special K3 surface of degree 10,
together with the methods used by Hassett in [10].

The proof of our main theorem is given in Section 3 while notations and
basic facts and properties of double EPW sextics are recalled in Section 2.

2. Fano fourfolds X10, EPW sextics and K3 surfaces.

2.1. Fano fourfolds X10. By X10 we denote a prime Fano fourfold of
index two and degree 10. By [12] and [9], any smooth X10 is either a complete
intersection of the Grassmannian G(2, 5) = G(2,C5) ⊂ P

9 = P(∧2C5) with a
hyperplane and a quadric (the 1-st, or the Mukai’s type), or a double covering of
the smooth Fano fourfold W5 = G(2, 5) ∩ P

7 branched along a quadratic section
of W5 (the 2-nd, or the Gushel’s type). Both Mukai’s and Gushel’s types appear
as complete intersections

CG(2, 5) ∩ P
8 ∩Q ⊂ P

10 = P(C⊕ ∧2C5)

of the cone CG(2, 5) ⊂ P
10 over the grassmannian G(2, 5) with a subspace P

8

and a quadric Q in P
10, and the two types differ by whether the vertex of the

cone CG(2, 5) belongs to P
8 (the Gushel’s type) or not (the Mukai’s type).

The moduli stack X10 of smooth X10 is of dimension 24, and the general
X10 in X10 is from the first type. The condition for X10 to be of the second
type is of codimension 2, and the general X10 of the second type is a smooth
deformation from X10 of the first type.

Let X be a fourfold of type X10. By the Hodge–Riemann bilinear rela-
tions, the Hodge structure on H4(X,Z) has weight 2, and the intersection form
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on X endows the 4-th integral cohomology of X with a structure of the lattice
Λ = H4(X,Z) = I22,2, where I22,2 denotes the lattice 22〈1〉 ⊕ 2〈−1〉.

By [6], the lattice H4(X,Z) contains the fixed rank two polarization sub-
lattice Λ2 := H4(G,Z)|X spanned on the restrictions to X of the two Schubert
cycles σ1,1 and σ2 on G = G(2, 5). In the basis (u, v) = (σ1,1|X , σ2|X − σ1,1|X),
the intersection form of the lattice

Λ2 = H4(G,Z)|X = Zu+ Zv

is given by

u2 = v2 = 2, uv = 0.

For X = X10, the primitive cohomology lattice with respect to the lattice
polarization Λ2, or the vanishing cohomology lattice is

Λ0 = H4(X,Z)van = Λ⊥
2 = 2E8 ⊕ 2U ⊕ 2〈2〉,

ibid. Λ0 is even of signature (20, 2).

2.2. EPW sextics. Eisenbud–Popescu–Walter sextics, or in short EPW
sextics, are special hypersurfaces of degree six in P

5, first introduced in [7] as
examples of Lagrangian degeneracy loci. These hypersurfaces are singular in
codimension two, but O’Grady realized in [13] [14] that they admit smooth double
covers which are irreducible holomorphic symplectic fourfolds. We will refer to
this double covering as double EPW sextic. In fact, the first examples of such
double covers were discovered by Mukai in [12], who constructed them as moduli
spaces of stable rank two vector bundles on a polarized K3 surface of degree 10.

Moreover O’Grady showed in [14] that the generic such double cover is a
deformation of the Hilbert square of a K3 and that the family of double EPW
sextics is a locally versal family of projective deformations of such a Hilbert square
of a K3 surface.

Let V be a 6-dimensional complex vector space and let us choose a volume-
form on V

vol : ∧6V → C

and let us equip ∧3V with the symplectic form (α, β)V := vol(α ∧ β).

Let LG(∧3V ) be the symplectic Grassmannian parametrizing Lagrangian
subspaces of ∧3V . Given a non-zero v ∈ V let

Fv := {α ∈ ∧3V |v ∧ α = 0}
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be the sub-space of ∧3V consisting of multiples of v. The form ( , )V is zero on
Fv and dim(Fv) = 10, thus Fv ∈ LG(∧3V ). Let

(1) F ⊂ ∧3V ⊗ OP(V )

be the sub-vector-bundle with fiber Fv over [v] ∈ P(V ). Then

(2) detF ∼= OP(V )(−6).

Given A ∈ LG(∧3V ) we let YA = {[v] ∈ P(V )|Fv ∩A 6= {0}}. Thus YA is
the degeneracy locus of the map λA : F → (∧3V/A) ⊗ OP(V ) where λA is given
by inclusion (1) followed by the quotient map

(3) ∧3V ⊗ OP(V ) → (∧3V/A) ⊗ OP(V ).

Since the vector bundles appearing in (3) have equal rank, the determinant of
λA makes sense and YA is the zero-scheme of detλA in P(V ); in particular YA

has a natural structure of a closed subscheme of P(V ). By (2) we have detλA ∈
H0(OP(V )(6)), and hence YA is either a sextic hypersurface or P(V ). An EPW

sextic is a sextic hypersurface in P
5 which is projectively equivalent to YA for

some A ∈ LG(∧3V ), and a double EPW sextic is its associated double covering
studied by O’Grady.

2.3. Necessary conditions and negative Pell’s equations. Next we
will look for necessary conditions to have a birational map between a Hilbert
square of a K3 surface of degree d and a double EPW sextic. We will follow
Mukai ([12]).

Proposition 2.1. Let Ỹ → Y be a double EPW sextic which is smooth

and birational to S[2] for a primitively polarized K3 surface S of degree d =
2g − 2 ≥ 10 and Picard number 1. Then the negative Pell’s equation

y2 − (g − 1)x2 = −1

has an integer solution.

P r o o f. By a result of Mukai (see [12, Corollary 5.9]), if Y is birational
to S[2], then there exists an isometry between the Neron–Severi lattices NS(Y ) ∼=
NS(S[2]). Recall that NS(S[2]) = Zh+Zδ, where (h, h) = d = 2g− 2, (h, δ) = 0,
and (δ, δ) = −2.

Let π : Ỹ → Y be the double covering defined by the antisymplectic
involution, as in [13], [14]. The EPW polarization γ on Ỹ is the preimage of the
hyperplane class on the EPW sextic Y ⊂ P

5. Therefore the intersection index

γ4 = deg π · deg(Y ) = 2 · 6 = 12.
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Since the double EPW sextic Ỹ is a deformation of a Hilbert square of a K3
surface (see [14]) then the Fujiki constant c(Ỹ ) = c(S[2]) = 3, see (1.0.1) and
(4.1.4) in [13]. Therefore for the Beauville form (·, ·) on NS(Ỹ ) one will have:

12 = γ4 = c(Ỹ )(γ, γ)2 = 3(γ, γ)2,

which yields

(γ, γ) = 2.

By the isometry NS(Ỹ ) ∼= NS(S[2]) we can identify γ with an element of
NS(S[2]), i.e. the birationality of Ỹ with the Hilbert square of a K3 surface as
above implies that there exist integers x, y such that γ = xh− yδ. Then

2 = (γ, γ) = (xh− yδ, xh − yδ) = dx2 − 2y2 = (2g − 2)x2 − 2y2,

from where

y2 − (g − 1)x2 = −1. ✷

Remark 2.2. It is well known that if p is prime then the negative Pell’s
equation y2 − px2 = −1 has a solution if and only if p = 2 or p ≡ 1 (mod 4), see
e.g. Theorem 3.4.2 in [1].

Below we use the case when p = 5 which corresponds to a double EPW
sextic birational to the Hilbert square of a K3 surface of degree 10, see §4.3 in
[13]. For p = 5, the minimal solution of y2 − 5x2 = −1 is (y, x) = (2, 1). All
solutions (yn, xn), n ≥ 0 to y2 − 5x2 = −1 are given by

2yn = (1 + 2
√
5)(2 +

√
5)2n + (1− 2

√
5)(2−

√
5)2n,

2xn = (2 + 1/
√
5)(2 +

√
5)2n + (2− 1/

√
5)(2 −

√
5)2n,

the minimal solution being (2, 1), see e.g. Theorem 3.4.1 on p.141 and the for-
mulas on p.305 in [1].

3. Double EPW sextics and Hilbert squares of K3 surfaces.

We can now state main result of the paper, which is the following:

Main Theorem. The Hilbert square of a very general K3 surface of

degree d = d(n) = 2(4n2 + 8n + 5), n ≥ 1 is birational to a double EPW sextic.

The proof of the Main Theorem uses methods, similar to those used by
Hassett in [10] to show a (stronger, in some sense) similar result for the variety
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of lines on a cubic fourfold. Our main observation is that the same approach can
be used also in the case of double EPW sextics. We divide the proof into several
parts:

3.1. The birational involution on S
[2] for a K3 surface S of degree

10. For a K3 surface S with a polarization f of degree f2 = d = 2g−2 and Picard
number 1, any curve C ∈ |f | defines a divisor FC = {ξ ∈ S[2] : Supp(ξ) ∩C 6= ∅}
on S[2]. All divisors FC belong to the same class f ∈ NS(S[2]). We use the same
notation for the class f and for the polarization f on S. The class of the diagonal
∆ = {ξ ∈ S[2] : Supp(ξ) = point} is divisible by two in NS(S[2]), and if ∆ = 2δ
then

NS(S[2]) = Zf + Zδ.

If (·, ·) is the Beauville form on NS(S[2]), then

(f, f) = d, (f, δ) = 0, (δ, δ) = −2.

If on S there is a polarization f of degree d = 10, then there exists a
birational involution

j : S[2] → S[2].

For the general pair (x, y) of points on the general S the involution j can be
described geometrically as follows (for more detail see [13]):

Let G = G(2, 5) = G(1 : P4) ⊂ P
9 be the grassmannian of lines in P

4.
By [12], the general smooth K3 surface S of degree 10 is a quadratic section
S = V5 ∩ Q of the unique smooth del Pezzo threefold V5 = G ∩ P

6, which is a
prime Fano threefold of index 2 and degree 5. By the general choice of S ⊂ V5,
the general non-ordered pair of points (x, y) on S ⊂ V5 is a general pair of points
on V5. The del Pezzo threefold V5 has the property that through the general
pair of points on V5 passes a unique conic q = qx,y. Indeed, let lx, ly be the two
lines in P

4 representing the points x, y ∈ V5 ⊂ G = G(1 : P4). By the general
choice of x, y, the lines lx and ly do not intersect each other and span a 3-space
P
3
x,y ⊂ P

4. Any conic q ⊂ G which passes through x and y lies in the Plücker

quadric G(2, 4)x,y = G(1 : P3
x,y) ⊂ G. In addition, since V5 = G ∩ P

6 then any
conic on V5 which passes through x and y lies on the codimension 3 subspace
P
6 ⊂ P

9 = Span(G). Therefore the set of conics on V5 which pass through x and
y sweept out the intersection qx,y = G(2, 4)x,y∩P

6, which by the general choice of
x, y is a codimension 3 linear section of the 4-dimensional quadric G(2, 4)x,y , i.e.
a conic. Since S = V5 ∩Q is a quadratic section of V5, the conic qx,y intersects S
at x, y and a pair of other 2 points x′, y′. This defines a birational involution

j : S[2] −→ S[2], j(x, y) = (x′, y′).
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Let r = f − 2δ ∈ NS(S[2]). Then

(r, r) = (f − 2δ, f − 2δ) = (f, f) + 4(δ, δ) = 2.

By Propositions 4.1 and 4.21 in [13], on NS(S[2]) the involution j is given by the
reflection with respect to r

j : z 7→ j(z) = −z + (z, r)r = −z + (z, f − 2δ)(f − 2δ).

We keep the same notation for the involution j on S[2] and the involution j on
NS(S[2]). In particular,

j(f) = −f + (f, f − 2δ)(f − 2δ) = −f + 10(f − 2δ) = 9f − 20δ,

j(δ) = −δ + (δ, f − 2δ)(f − 2δ) = −δ + 4(f − 2δ) = 4f − 9δ.

3.2. The Hilbert square of a K3 surface of degree 10 as a double

EPW sextic. Let S ⊂ V5 ⊂ G = G(1 : P4) be a very general K3 surface with
a polarization h of degree 10, where V5 = G ∩ P

6 is as above. By [13], [14], the
Hilbert square S[2] is a special case (as a birational equivalence class) of a double
EPW sextic. The double covering is defined by the involution j on S[2], and can
be described as follows.

Let P5 = |IS(2)| be the projective space of quadrics in P
6 which contain

S ∈ |OV5
(2)|. In P

5, the quadrics which contain V5 form a hyperplane identified
with the space of Pfaffian quadrics. Let ξ ∈ S[2], and let P

1
ξ = Span(ξ). Then ξ

defines a hyperplane

P
4
ξ = |IS∪P1

ξ
(2)| ⊂ |IS(2)| = P

5.

If S does not contain lines, which is the general case, then the map

π : S[2] → P̌
5, ξ 7→ P

4
ξ

is well defined for any ξ ∈ S[2]. The map π is (generically) the double covering
defined by the involution j. We shall show only that the images of two involutive
elements by π coincide; for more detail see [13] and [12]. Indeed, if j(ξ) is the
involutive of ξ, then the lines P1

ξ = Span(ξ) and P
1
j(ξ) = Span(j(ξ)) intersect each

other, since by construction of j(ξ), ξ + j(ξ) lie on a conic – see above. Since
the lines P1

ξ and P
1
j(ξ) are bisecant or tangent to S and intersect each other, any

quadric which contains S together with one of these two lines contains also the
other line. By the definition of π, the latter yields that the images π(ξ) and
π(j(ξ)) coincide.
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By §4.3 in [13], the image Y0 ⊂ P̌
5 of the double covering π is an EPW

sextic, defining the double EPW sextic

Ỹ0 → Y0,

which is birational to the Hilbert square S[2], see also Theorem 4.15 in [15].

In the sequel we will also need the following result of O’Grady:

Lemma 3.1 (see Proposition 4.21 and Corollary 5.21 in [13]). The class

γ of the EPW polarization π∗(OY0
(1)) ∈ NS(S[2]) = Zh+ Zδ is γ = h− 2δ.

Remark 3.2. Here we assume that NS(S) ∼= Z and denote by h the
ample generator. The EPW-polarization γ = xh−yδ is j-invariant, i.e. j(γ) = γ,
where

j : z 7→ −z + (z, r)r

is the involution defined by r = h− 2δ, which interchanges the two preimages of
the general point p ∈ Y0, see Subsection 3.2. The equality γ = j(γ) = −γ+(r, γ)r
yields 2γ = (r, γ)r, i.e. γ is proportional to r = h − 2δ. Since γ is primitive, i.e.
not divisible by an integer, γ = r.

3.3. K3 surfaces with two polarizations of degree 10.

Lemma 3.3. Let R be the rank two lattice R = Zf+Zh with intersection

form

f h

f 10 n+ 10
h n+ 10 10

where n ≥ 1. Then there exists a K3 surface S with NS(S) = Zf + Zh, such
that f and h are two very ample polarizations on S.

P r o o f. Let Λ = U⊕3 ⊕ E8(−1)⊕2 be the K3 cohomology lattice. By
Theorem 2.4 in [11], there exists an embedding R ⊂ Λ. By the surjectivity of
the period map for K3 surfaces one can assume that e.g. f is a very ample
polarization on a K3 surface S. Since (f, h) > 0 then the divisor class h is
effective, and one needs to see that h is very ample. If h is not ample then on
S will exist a (−2)-curve E such that (h,E) ≤ 0. If then k = (h,E) = 0 then
R0 = Zh + ZE will be a sublattice of R of discriminant d(R0) = −20. Since
R0 ⊂ R then d(R) = −n(n + 20) divides d(R0) = −20, which is not possible.
There remains the possibility when (h,E) = −k < 0. Since E2 = −2, then E
defines a reflection

rE : x 7→ x̄ = x+ (x,E)E,
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x ∈ NS(S) ⊃ R. In particular, h̄ = h − kE, (h̄, h̄) = (h, h) = 10, and (f, h̄) =
(f, h− kE) = (f, h)− k(f,E) < (f, h) since f is (very) ample and E is effective.
Since h̄ ∈ R then R′ = Zf + Zh̄ is a sublattice of R = Zf + Zh. Therefore d(R)
divides d(R′), and since both d(R) and d(R′) are negative, then d(R′) ≤ d(R).
But

d(R′) = (f, f)(h̄, h̄)− (f, h̄)2 =

= (f, f)(h, h) − (f, h̄)2 > (f, f)(h, h) − (f, h)2 = d(R),

contradiction. This proves the Lemma. For more detail see Lemma 4.3.3 and §6
in [10]. ✷

3.4. Proof of the Main Theorem. Let S be a very general K3 surface
with a primitive polarization h of degree 10 as in Subsection 3.2. Denote by
Ỹ0 the EPW sextic, corresponding to S[2]. Let Ỹt be a local deformation of Ỹ0

in the polarization γ = h − 2δ as a double EPW sextic πt : Ỹt → Yt. Since
Ỹt is a deformation of a Hilbert square of a K3 surface, the Fujiki constant
c(Ỹt) = c(S[2]) = 3, and as in the proof of Proposition 2.1, we get (γ, γ) = 2.

Let S be a very general K3 surface with two polarizations f and h (gener-
ating the Neron–Severi lattice) as in Lemma 3.3. By above, e.g. in the polariza-
tion h, the Hilbert square S[2] is birational to a double EPW sextic Ỹ0. By Propo-
sition 2.2 and Theorem 4.15 in [15], Y0 = YA, A ∈ ∆ − Σ (ibid. (0.0.7)-(0.0.8)),
and by Proposition 6.1 of [14] has a unique singular point p0 of multiplicity three.
The Hilbert square S[2] → Ỹ0 is a small resolution of p0 which is a contraction of
a Lagrangian plane on S[2] to the point p0.

Next, we proceed as in the proof of Theorem 6.1.4 in [10] for families of
lines on cubic fourfolds, adapted to the case of double EPW sextics.

By [15] the period map for double EPW sextics extends regularly around
the period point of S[2]. By the surjectivity of the period map for K3 surfaces
(see [11]), one can consider h2 = γ+(2n+2)δ2 ∈ Π as the quasi-polarization of a
K3 surface of genus g(n) = d(n)/2 + 1 (see below for the definition of the lattice
Π), with δ2 = 4f −9δ ∈ Π the class of the half-diagonal on its Hilbert square, see
also the proof of Proposition 7 in [4]. By Proposition 10, Theorem 6 and Remark
2 on p. 779–780 of [2] (see also Theorem 6.1.2 in [10]) in the 20-dimensional
local moduli space M of double EPW sextics Ỹt around Ỹ0 the condition that
δ2 = 4f − 9δ remains algebraic, i.e. an element of NS(Ỹt), describes locally
a smooth component of the divisor in M on which Ỹt remains birational to a
Hilbert square of a K3 surface St of genus g(n).

For the general double EPW sextic Ỹt as above, the lattice NS(Ỹt) has
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rank two, and is the saturation of the rank two sublattice

Π = Zγ + Zδ2 = Z(h− 2δ) + Z(4f − 9δ).

Since Π is saturated, then NS(Ỹt) coincides with Π, in particular the discriminant
d(NS(Ỹt)) is the discriminant of Π. By using (γ, γ) = 2 and (δ2, δ2) = −2, and
the intersection table from Lemma 3.3, we compute

(γ, δ2) = (h− 2δ, 4f − 9δ) = 4(h, f) + 18(δ, δ) = 4(n + 10) − 36 = 4n+ 4.

Therefore

d(NS(Ỹt)) = d(Π) = det

(
(γ, γ) (γ, δ2)
(γ, δ2) (δ2, δ2)

)
=

= (γ, γ)(δ2, δ2)− (γ, δ2)
2 = 2(−2)− (4n + 4)2 =

= (−2)(8n2 + 16n+ 10).

Therefore Ỹt is birational to the Hilbert square of a K3 surface St of degree

d(n) = 2g(n)− 2 = 8n2 + 16n+ 10 = 2(4(n + 1)2 + 1).

This proves the Main Theorem. �

Remark 3.4. Let NS(S
[2]
t ) = Zh2 + Zδ2, where h2 is the primitive

polarization class on S
[2]
t . By using that

NS(S
[2]
t ) ∼= NS(Ỹt) ∼= Π,

we can compute directly the degree d(n) = (h2, h2) of the K3 surface St. Since
h2 is primitive and orthogonal to the half-diagonal class δ2, and since

Π ∩ δ⊥2 = Z(γ + (2n + 2)δ2),

then h2 = γ + (2n+ 2)δ2. From here, and by the intersection table from Lemma
3.3, we get again

d(n) = (h2, h2) = (γ + (2n + 2)δ2, γ + (2n+ 2)δ2) =

= (γ, γ) + 2(2n + 2)(γ, δ2) + (2n + 2)2(δ2, δ2) =

= 2 + 2(2n + 2)(4n + 4) + (2n+ 2)2(−2) =

= 2 + 8(n + 1)2 = 8n2 + 16n+ 10.
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The intersection matrix of Π in the base h2, δ2, is

h2 δ2
h2 d(n) 0
δ2 0 −2.

Remark 3.5. The Main Theorem implies that on the Hilbert square
S[2] of a general K3 surface S of degree d(n) = 8n2 + 16n + 10, n ≥ 1 the EPW
polarization γ = h2 − (2n + 2)δ2 defines an antisymplectic birational involution.

This proves the O’Grady conjecture that on the Hilbert square of a K3
surface of genus g = r2 + 2, r ≥ 0 there exists an antisymplectic involution (see
(4.3.3) in [13]), in the case when r is even. Indeed, for d(n) = 8n2 + 16n + 10 =
2(4(n+1)2+1), the genus of S is g(n) = d(n)/2+1 = 4n2+8n+6 = (2n+2)2+2,
and for n ≥ 1, r = 2n + 2 covers all even numbers r ≥ 4. The case r = 0 is well
known, and the case r = 2 is studied in detail by O’Grady, see e.g. §4.3 in [13].
The odd case r = 1 is studied in [5] and [8].
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