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Abstract. These notes, written for the Summer school in Operator Theory
(Chios 2010) provide a brief and elementary introduction to the Logic of
Quantum mechanics and its connections with the theory of operators in a
Hilbert space.

1. Introduction. In order to examine a physical system S we have to
make observations that are measurements of some physical quantities related
to the system (as the energy, the position or the momentum of some elements
of the systems). These quantities which can be measured by an experiment are
called the observables of the system. All the assertions about the system S are
the propositions of the system and the structure of the set of all propositions is
called the logic of the system.
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Suppose that A is a physical quantity (observable) related with the system
S. A typical elementary proposition concerning the system is of the form “the
observable A has a value in the set δ of real numbers” for which we use the
shorthand notation “A ∈ δ”. In all applications, the set δ will be a Borel subset
of the real numbers R. In Physics we must be able to tell something about the
“truth” of a proposition of the form A ∈ δ. But this depends of the “state” of
the system in the moment that we make our measurements. Suppose now that
we prepare an experiment in order to assign a truth value to the proposition
A ∈ δ. First, we must be able to repeat this experiment, so we have to specify
the exact conditions of the experiment. These conditions consist the state of the
system. But, even with the same conditions we do not assume that the results
of the experiments are identical. As it is mentioned in [7, p. 6] there are two
possible reasons to explain the fact that we cannot in general expect that in the
repetitions of the same experiment we take the same values.

1) The conditions are insufficient to determine the exact value of the mea-
surement of the observable. In this case we may assume that if we add
complementary conditions in the preparation of the experiment this uncer-
tainty can be removed and the results of the experiment will be uniquely
determined. In classical mechanics is the only explanation for the uncer-
tainty in the repeated trials of the same experiment.

2) The properties of the physical system are such that in every repeated trial
of an experiment we shall take different values for the the observable, in-
dependently how well the experiment is prepared. This means that the
uncertainty is an inner property of the system. This is the case of quantum
mechanics.

In their seminal paper Birkhoff and non Neumann [3] proposed a math-
ematical foundation of quantum mechanics based in the concept of the “logic of
a quantum mechanical system” which is the mathematical structure of the set
all propositions related to the system. The set of all propositions of a system
S is called the logic of S and it is denoted by L (S). Roughly speaking, “the
logical point of view of quantum mechanics” is to describe the structure of the
sets O(S) of all observables and S (S) of all states of S, and even the dynamical
laws of the system starting from the mathematical structure of the logic L (S)
of a quantum mechanical system S. For a very interesting discussion concerning
the ideas related to the concept of Quantum Logic see [14].

In our presentation we follow mainly the approach on the subject of the
Logic of Quantum Mechanics given in [6], [12] and [15].
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2. Logics. The point of view of classical logics is to assume that the set
of all propositions has an algebraic structure which is the structure of a boolean
algebra. A boolean algebra B can be described using to basic operations, the
implication and the negation. So, for every a, b ∈ B corresponds a unique element
a⇒ b of B, which can be interpreted as the proposition “a implies b” and for every
a ∈ B corresponds a unique element ¬a which can interpreted as the “negation of
the proposition a”. The implication is a kind of order between the propositions
(you can write a⇒ b as a ≤ b). If a⇒ b then b is a proposition stronger of a, or
a is a proposition more general of b. The axioms of an order are the following:

(O1) If a⇒ b and b⇒ c then a⇒ c.

(O2) For every a we have a⇒ a.

(O3) If a⇒ b and b⇒ a then a = b.

The basic axioms are the first and second one. The third axiom can be considered
as a definition of the equality of propositions. A set P where a binary relation ⇒
or ≤ is defined so that the axioms (O1), (O2) and (O3) are satisfied (if we replace
⇒ by≤) is called a partially ordered set or a poset. We shall always suppose that
a poset has a least element denoted by 0 and a greatest element denoted by 1.

The negation is an operation a 7→ ¬a which is is connected with implica-
tion by the following axioms

(N1) If a⇒ b then ¬b⇒ ¬a.

(N2) For every a ∈ B we have ¬(¬a) = a.

(N3) ¬1 = 0 and ¬0 = 1.

We wish also formate, given the propositions a and b the propositions “a
and b” and “b or a”, which are denoted by a∧ b and a∨ b respectively. We define
a ∧ b as the strongest proposition c which has the property “c ⇒ a and c ⇒ b”.
This means that a ∧ b must have the following properties:

(Inf1) (a ∧ b) ⇒ a and (a ∧ b) ⇒ b.

(Inf2) If for some proposition c happens that c⇒ a and c⇒ b then c⇒ (a∧b).

So, in the terminology of the theory of order a∧ b is the “greatest lower bound of
a and b”, or the “ infimum of the set {a, b}”.
We also define a ∧ b as the weakest proposition c which has the property “a⇒ c

and b⇒ c”. This means that a ∧ b must have the following properties:

(Sup1) a⇒ (a ∨ b) and b⇒ (a ∨ b).

(Sup2) If for some c happens that a⇒ c and b⇒ c then (a ∨ b) ⇒ c.

In the terminology of the theory of order, a∨ b is the “least upper bound of a and
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b”, or the “supremum of the set {a, b}”. In general, if Q is a (nonempty) subset

of we denote by
∧

Q to be the greatest element a ∈ P (if a such element exists)

with the property a ⇒ x for every x ∈ P . Also, by
∨

Q we shall denote the

least element a ∈ P with the property x ⇒ a for every x ∈ P (if a such element
exists). In the following, the order relation will be denoted by ≤ instead of ⇒
and the negation with a⊥ instead of ¬a.

Definition 2.1.

(1) A poset (P,≤, 0, 1) with a negation (that is with an operation a 7→ a⊥ which
satisfies the axioms (N1), (N2) and (N3)) is called an orthoposet.

(2) A poset (resp. orthoposet) P such that for every a, b ∈ P there exist the
a∨b and a∧b is called a lattice (resp. ortholattice). If for every Q ⊆ P , the

elements
∧

Q and
∨

Q exist then P is called a complete lattice. Finally,

if for every countable set Q ⊆ P , the elements
∧

Q and
∨

Q exist then P

is called a σ-complete lattice.

(3) A lattice such that for every three elements a, b, c we have the identity

(D) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

is called a distributive lattice.

(4) A distributive ortholattice is called a boolean algebra.

The following proposition is a simple consequence of definitions.

Proposition 2.2. Let (L,≤) be a lattice. Then

(1) a ∨ a = a and a ∧ a = a.

(2) a ∨ b = b ∨ a and a ∧ b = b ∧ a

(3) a ≤ b if and only if a ∨ b = b .

(4) a ≤ b if and only if a ∧ b = a.

The basic assumption of classical mechanics is that the set of propositions
of any (classical) system has the structure of a Boolean algebra.

The situation is very different from the point of view of quantum me-
chanics. First, is not clear that from the propositions a and b we can formate
the proposition a ∧ b. This problem is discussed in many books of quantum me-
chanics; however, it can be overcome (see the discussion in [6, CHAPTER 5]).
The second and more serious objection is that many experiments show that the
distributive law does not hold. An example of a such situation is presented in
[12, p. 22]:
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We shall call a question every experiment leading to an alternative of
which the terms are “yes” and “no”. (. . . ) Let us suppose that we have a beam of
photons. The experiment which consists in placing a polarizer in the beam defines
a question. In fact it is possible to verify, by despatching photons one by one, that
this experiment leads to a plain alternative: either the photon passes through, or
it is absorbed. We shall define the proposition aφ by specifying the orientation of
the polarizer (the angle φ) and interpreting the passage of a photon as a “yes”.
Experience shows that, to obtain a photon prepared in such a way that “aφ is
true” it is sufficient to consider the photons which have traversed a first polarizer
oriented at this angle φ. But experiment also shows that it is impossible to prepare
photons capable of traversing with complete certainty a polarizer oriented at the
angle φ as well as another oriented at an angle φ′ 6= φ mod π. In other words

aφ ∧ aφ′ = 0, if φ′ 6= φ mod π

To summarize, the propositional lattice for the photon, L = {aφ : φ ∈ [0, π)}
evidently is not distributive.

Therefore, we need a more “flexible” structure for the set of propositions
of a quantum system than the boolean algebra. Birkhoff and von Neumann
proposed to replace the distributive law by the following modular law :

(ML) If a ≤ b and then for every c we have that a ∨ (b ∧ c) = b ∧ (a ∨ c)

which says that if a, b, c are three elements of a lattice and two of them are
comparable then the distributive laws hold.

In fact, von Neumann [11] has also studied an important class of lattices
which obey the modular law (the continuous geometries) and he proved a very
deep representation theorem about them.

Von Neumann also, [10] had already presented a very elegant theory on
the mathematical foundations of quantum mechanics based in the *-algebra B(H)
of all linear bounded operators T : H → H. This presentation implies that the
logic of the the quantum mechanics must be the complete lattice (P (H),≤) of
all projections P : H → H where P ≤ Q means PQ = P . As we shall see
later, (P (H),≤) is modular if and only if the dimension of H is finite. But
(P (H),≤) does satisfy a “weak modular law” the so-called “orthomodular law”
(see Definition 2.3 below).

In these notes we shall assume that the set of all propositions of a system
has the structure of an orthomodular poset.

Definition 2.3. An orthoposet (P,≤,⊥) is called an orthomodular poset
when
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(1) If a ⊥ b then a ∨ b exists.

(2) (P,≤,⊥) satisfies the following orthomodular law

(OM) If a ≤ b⊥ and a ∨ b = 1 then a = b⊥.

An orthomodular lattice is an orthomodular poset which is a lattice.

Remark 2.4. In an orthomodular poset any finite orthogonal subset
has a least upper bund and also x∧ y = (x⊥ ∨ y⊥)⊥ exists whenever y⊥ ≤ x . In
the definition of an ortho- modular poset one may replace the implication (OM)
by any one of the the following

(OM)1 If a⊥ ≤ b and a ∧ b = 0 then a = b⊥.

(OM)2 If a ≤ b⊥ then (a ∨ b) ∧ b⊥ = a.

(OM)3 If a ≤ b then a ∨ (a⊥ ∧ b) = b.

If Q is a subset of an orthoposet we set

Q⊥ = {q⊥ : q ∈ Q}

Lemma 2.5 (The De-Morgan Laws). Let (P,≤,⊥) be an orthoposet and
Q a subset of P . Then

(1) If
∨

Q exists then (
∨

Q)⊥ =
∧

Q⊥.

(2) If
∧

Q exists then (
∧

P )⊥ =
∨

Q⊥.

P r o o f. Suppose that
∨

Q exists. Then,

(a)
(

∨

Q
)⊥

is a lower bound of Q⊥. Indeed, if q ∈ Q then q ≤
∨

Q and so
(

∨

Q
)⊥

≤ q⊥.

(b)
(

∨

Q
)⊥

is the greatest lower bound of Q⊥. Indeed p ∈ P is a lower bound

of Q⊥. then for every q⊥ ∈ Q⊥ we have that q⊥ ≤ p so p⊥ ≤
∨

Q and so
(

∨

Q
)⊥

≤ p.

By (a) and (b) we have that (
∨

Q)⊥ =
∧

Q⊥. The proof of the second assertion

of the Lemma is similar. �



The logic of quantum mechanics 135

Axiom 1. The logic L (S) of a physical system S is a σ-complete or-
thomodular lattice.

Definition 2.6. A σ-complete orthomodular lattice is called a logic.

Now we shall introduce the important notion of orthogonality in a logic.

Definition 2.7. If a, b are elements of a logic we shall say that the a is
orthogonal to b, and we shall write a ⊥ b if a ≤ b⊥.

Note that if a ≤ b⊥ then (b⊥)⊥ ≤ a⊥ or equivalently b ≤ a⊥ which means
that also b ⊥ a. So, if a ⊥ b we shall say that a, b are orthogonal.

Proposition 2.8. If a ≤ b there exists a unique element c of the logic
such that a ⊥ c and a ∨ c = b.

P r o o f. Indeed, if c = b ∧ a⊥ then c ≤ a⊥ and so c ⊥ a. By the
orthomodular law (OM) we have that a ∨ c = b and so a such c exists. If c′ is
an element of the logic such that c′ ⊥ a and a ∨ c′ = b then – since c′ ≤ a⊥ and
c′ ≤ b– we have that c′ ≤ a⊥ ∧ b = c. But a⊥ ≤ c′ and so b ∧ a⊥ ≤ b ∧ c′ = c′.
Therefore c′ = c and so c is unique. �

If a ∨ c = b with a ⊥ c we shall write b = a⊕ c and c = b⊖ a.

Proposition 2.9. Let (an)
∞
n=1 a sequence of elements of a logic L. If

b ⊥ an for every n then b ⊥
∨

n

an and b ⊥
∧

n

an.

P r o o f. Since for every n we have an ≤ b⊥, then for every n, b ≤ a⊥n and

so b ≤
∧

n

a⊥n Therefore,
∨

n

an =

(

∧

n

a⊥n

)⊥

≤ b⊥. Also, since for every n we

have an ≤ b⊥, we have that
∧

n

an =≤ b⊥. �

It is not difficult to show that

Proposition 2.10. If a, b are elements of the logic L with a ≤ b. Then
the set L(a, b) = {x ∈ L : a ≤ x ≤ b} is also a logic, with 0 = a, 1 = b and
x⊥ = b⊖ x.

Definition 2.11. Let L and M be two logics. A mapping f : L →M is
called a morphism if for x, xi ∈ L, i = 1, 2, . . . we have that

(1) f

(

∞
∨

i=1

xi

)

=
∞
∨

i=1

f (xi).
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(2) f(x⊥) = f(x)⊥.

If a morphism f is 1-1 is called a monomorphism and if it is 1-1 and onto is
called an isomorphism.

2.1. Algebras of sets. The standard example of a complete comple-
mented and distributive lattice is the the set ℘(X) of all subsets of a set X,
with partial order the inclusion ⊆ of sets. In this case if A,B are subsets of X.
A ∨ B = A ∪ B the union of the sets A and B and in general if A is any family
of subsets of X,

∨

A =
⋃

A = {x ∈ X : there exists A ∈ A with x ∈ A}

Also, A ∧B = A ∩B the intersection of the sets A, and B and in general if A is
any family of subsets of X,

∧

A =
⋂

A = {x ∈ X : for every A ∈ A we have x ∈ A}

Finally, A′ = X \ A = {x ∈ X : x 6∈ A} is the usual complement of a set A. The
proof of following proposition is left to reader.

Proposition 2.12. Let X be set. Then (℘A,⊆) is a complete Boolean
algebra where

(1) 1 = X, 0 = ∅,

(2) A′ = X \A

(3) If A ⊆ ℘(X) is any family of subspaces of X then the greatest lower bound
∧

A of the elements of A is the intersection
⋂

A of the elements of A.

Also,
∨

A =
⋃

A.

Definition 2.13. An algebra of subsets of a set X is a family A of
subsets of X such that

(1) If A,B ∈ A then A ∪B ∈ A

(2) If A ∈ A then X \ A ∈ A.

(3) X ∈ A.

If an algebra of sets satisfies the following property

(1)′ If An ∈ A for n = 1, 2, . . . then
∞
⋃

n=1

An ∈ A.
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is called a σ-algebra of subsets of X.

Since the intersection of σ-algebras is a σ-algebra we may define

Definition 2.14. The family B(R) of Borel subsets of R is the smallest
family A of subsets of R which contains the open intervals.

The family B(R) is very rich and contains all the interesting (from the
physical point of view) subsets of R, like all kinds of intervals (open, closed, semi-
open, bounded or unbounded), also every open and closed set of reals, and much
more.

3. Observables. Let X be an observable of physical system S. Then
for every set δ of real numbers corresponds a proposition X ∈ δ which says that
“the value of observable belongs to the set δ”. For example if S is a system
consisting from a single particle, an electron and X is the total energy of S then
X ∈ (90,+∞)∪ (3, 0)) is the proposition “the electron has energy > 90 or < 3 ”.

Clearly, there exist sets δ of real numbers where X ∈ δ is impossible to be
verified. For example if δ = R\Q then X(δ) means that the observable takes only
irrational numbers, and this proposition cannot be experimentally verified. Also,
we cannot expect that X = π, the total energy of the electron is equal to π, can
be verified by a finite number of observations, but we can accept this proposition
since we may suppose that with verified this proposition making experiments of
more and more accuracy. We shall suppose that X(δ) will be defined to a family
of sets which contains the open intervals of R and it is closed under countable
unions and complements. This family is the family B(R) of Borel subsets of R.
But the main reason that we use the Borel sets is that the main mathematical tool
in quantum mechanics is the Lebesgue measure and the corresponding notion of
Lebesgue integral. The Lebesgue measure λ(δ) of set cannot be defined for every
subset of R but only for a family of subsets of R which contains the Borel sets.
Also, for the same mathematical reasons, we shall not consider all the functions
f : R → R but only the Borel functions.

So every A defines a function A : B(R) → L (S), where A(δ) is the propo-
sition A ∈ δ. We consider that every such correspondence determines completely
an observable:

Definition 3.1. Let S be a physical system and L (S) its logic. An
observable of S is function X : B(R) → L (S) such that

(1) X(R) = 1.

(2) For every Borel subset δ of R we have that X(R \ δ) = X(δ)⊥.



138 V. Felouzis

(3) For every sequence (δ)∞n=1 of pairwise disjoint Borel subsets of R we have

that X

(

∞
⋃

n=1

δn

)

=

∞
∨

n=1

X(δn).

Suppose that X is an observable which can take the values {0, 1, 2, 3} and
we wish define the observable X2 which has as possible values the {02, 12, 22, 32}.
In general, if f : R → R is a real valued function we want define an observable
Y = f ◦X, such that if the value of X is in the set δ if and only if the value of
Y belongs in the set f(δ) = {f(t) : t ∈ δ}. So, the value of Y will be in the Borel
set δ if the value of X is in the set f−1(δ) = {t : f(t) ∈ δ}. Since we demand
that the value of X must be in a Borel set the function f must have the property
that for every δ ∈ B(R) the set f−1(δ) ∈ B(R).

Definition 3.2. A function f : R → R is called a Borel function if for
every Borel subset δ of R the set f−1(δ) is also a Borel set.

Definition 3.3. For every observable X ∈ O(S) and for every Borel
function f : R → R we define an observable f ◦X by

f ◦X(δ) = X
(

f−1(δ)
)

Proposition 3.4. For every observable X ∈ O(S) and for every sequence
(δn)

∞
n=1 of Borel sets we have that

If δ1 ⊆ δ2 then X(δ1) ≤ X(δ2)(1)

X

(

∞
⋃

n=1

δn

)

=

∞
∨

n=1

X (δn)(2)

X

(

∞
⋂

n=1

δn

)

=
∞
∧

n=1

X (δn)(3)

Also, f and g are Borel functions and X is an observable then

(f ◦ g) ◦X = f ◦ (g ◦X)

P r o o f. Since δ1 ⊆ δ2 we have that δ2 = δ1 ∪ (δ2 \ δ1) and so X(δ2) =
X(δ1) ∨X(δ2 \ δ1). This proves (1).
Since for every n, X(R \ δn) ⊥ X(δn) and X(R \ δn)∨X(δn) = 1, by Lemma 2.5,
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(2) implies (3) and so it is enough to prove (2). Let δ =
⋃

n

δn. By (1), for every

n we have X(δn) ≤ X(δ) and so

(4)
∨

n

X(δn) ≤ X(δ)

On the other hand, if we let ε1 = δ1 and εn+1 = δn+1 \

(

n
⋃

i=1

δi

)

. The sets

εn are pairwise disjoint, εn ⊆ δn and
⋃

n

εn = δ. Therefore,

(5) X(δ) =
∨

n

X(ǫn) ≤
∨

n

X(δn)

By (4) and (5) we have (2). �

Definition 3.5. The spectrum σ(X) of an observable is defined by

σ(X) =
⋂

{C : C is closed and X(C) = 1}

An observable X is called bounded if its spectrum is a compact set.

Exercise 3.6. Prove that X(σ(X)) = 1 and so the spectrum of X is the
smallest closed subset C of R which have the property X(C) = 1

Exercise 3.7. Prove that if X({λ))) 6= 0 then λ ∈ σ(X). A such λ is
called a strict value of X. Therefore the strict values of an observable belong to
the spectrum of the observable but the converse is not in general true.

4. States. A probability measure on R or simply a probability on R is
a function P : B(R) → [0, 1] such that for every Borel subset δ of real numbers
corresponds a real number P (δ) such that

(1) P(∅) = 0.

(2) For every Borel set δ, P(R \ δ) = 1− P(δ).

(3) For every sequence of pairwise disjoint Borel sets (δn)
∞
n=1 we have that

P

(

∞
⋃

n=1

δn

)

=
∞
∑

n=1

P(δn).
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By M(R) we shall denote the set of all probability measures of R.

For every function f : R → R and for every subset δ of R we have that
f−1(R \ δ) = R \ f−1(δ). Also, if (δn)

∞
n=1 is sequence of pairwise disjoint sets the

sets f−1(δn) are pairwise disjoint and f−1

(

∞
⋃

n=1

δn

)

=

∞
⋃

n=1

f−1 (δn).

These remarks imply that if P ∈ M(R) and f is Borel function then the
mapping f ◦ P : B(R) → [0, 1] defined by

f ◦ P(δ) = P
(

f−1(δ)
)

, δ ∈ B(R

is a probability.

Suppose that X is an observable and δ a Borel set. The truth or the
falsity of the proposition X(δ) depends of the “state” of the system. Also, basic
principle of quantum mechanics (and of classical statistic mechanics too) is the
probabilistic nature of quantum mechanical systems. That means that in general
we cannot say that a proposition a is true or false but to calculate the probability
p(a) of truth of the proposition. So if our system “is in a state s” then for every
observable X and every Borel set δ we may find a number 0 ≤ s(X, δ) ≤ 1 which
is “the probability that the value of X is in δ.”

Consider now the function PX : B(R) → [0, 1], where PX(δ) = s(X, δ). It
is clear (since it is sure that the observable will take some value) that PX(R) = 1
and PX(∅) = 0. Also if δ is Borel set and (δ)∞n=1 a sequence of pairwise disjoint

Borel subsets of R with

∞
⋃

n=1

δn = δ we must have that s (X, δ) =

∞
∑

n=1

s(X, δn).

So, a state s determines for every observable X a probability measure
PX ∈ M(R) by PX(δ) = s(X, δn).

Definition 4.1. Let S be a physical system and O(S) the set of all its
observables. A state of S is function s : O(S) → M(R) which assigns to every
observable X ∈ O(S) a probability measure PsX ∈ M(R) such that

(6) Psf◦X = f ◦ PsX

for every Borel function f : R → R.

There is a very simple manner to describe the states of a system as mea-
sures defined on the logic of the system.

Definition 4.2. A measure on a logic L is a function µ : L → [0, 1] such
that
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(1) µ(0) = 0 and µ(1) = 1.

(2) If (an)
∞
n=1 is a sequence of elements of L such that an ⊥ am if n 6= m then

µ

(

∞
∨

n=1

an

)

=
∞
∑

n=1

µ(an).

Every measure µ on the logic L (S) defines a state sµ. Indeed, if X ∈
O(S) is an observable of the system we define the function PµX : B(R) → [0, 1]
by

(7) PµX(δ) = µ (X(δ))

Suppose that (δn)
∞
n=1 is a sequence of pairwise disjoint Borel sets and δ =

∞
⋃

n=1

δn.

Then X(δ) =
∞
∨

n=1

X(δn) and so

PµX(δ) = µ

(

∞
∨

n=1

X(δn)

)

=
∞
∑

n=1

µ (X(δn)) =
∞
∑

n=1

PµX(δn)

Also 1 = PµX(R) = µ (X(δ ∪ (R \ δ)) = µ (X(δ) ∨X(R \ δ)) = PµX(δ)+PµX (R\δ).
This shows that PµX is a probability measure. Finally, for every Borel function f
and every Borel set δ we have that

Pµf◦X(δ) = µ (f ◦X(δ)) = µ
(

X(f−1δ)
)

= PµX(f
−1(δ) = f ◦ PµX(δ)

Therefore the mapping X 7→ PµX defines a state.
In order to prove that every state s defines a measure on the logic of the

system we shall use the notion of a question due to Mackey [9].

Definition 4.3. A question is an observable Q such that Q({0, 1}) = 1.

If Q({1}) = aQ then the proposition aQ defines completely the question
Q. Indeed, for every Borel set δ

(8) Q(δ) =







aQ if 1 ∈ δ

a⊥Q if 1 6∈ δ

Conversely every proposition a defines a question Qa by

(9) Qa(δ) =







a if 1 ∈ δ

a⊥ if 1 6∈ δ
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and the mapping a 7→ Qa is bijection between the propositions of the system with
the questions.

Let X 7→ PX be a state. We define for every a ∈ L (S)

µ(a) = PQa
({1})

It is not hard to show that µ is a measure on the logic of the system (for details
see [15, p. 50–51]

5. Boolean algebras–classical logics. In classical statistical me-
chanics the states s are probability measures on a topological space X , which is
called the phase space and the observables are Borel functions f : X → R. If
X is an observable and δ is a Borel set of real numbers then s

(

X−1(δ)
)

is the
probability that, when the system is in the state s, the value of X lies inside the
set δ. In this section we shall see that this exactly the case if logic L of a system
S is distributive, that is a Boolean algebra. For this reason we shall call a system
S with a a Boolean algebra as logic a classical system and a system S which its
logic is not Boolean a quantum system. So, we can say that the property that
distinguishes classical and quantum systems is the distributivity law.

The distributive lattices are in fact sublattices of the lattice ℘(X ) of all
subsets of a set X, which means that for every distributive lattice L there exists
a set X and a function f : L → ℘(X ) such that for any a, b ∈ L we have that
a ≤ b if and only if f(a) ⊆ f(b). This implies that f(a ∨ b) = f(a) ∪ f(b)
and f(a ∧ b) = f(a) ∩ f(b) which means that L is (lattice) isomorphic to a
sublattice of (℘(X ),⊆). For Boolean algebras we have a stronger result, the
Stone’s Representation Theorem. In order, to describe this important theorem
we need some notions. A topological space X is called a totally disconnected space
if every open subset of X is the union of a family of subsets of X which are in
the same time open and closed. A compact Hausdorff totally disconnected space
is called a Stone space. For every topological space the family OC(X ) of all open
and closed subsets of X is Boolean algebra.

Definition 5.1.

(1) A filter of a lattice L is a subset F of L such that

(a) 0 6∈ F .

(b) If a ∈ F and a ≤ b then b ∈ F .
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(c) If a, b ∈ F then a ∧ b ∈ F .

A filter which is not properly contained in any other filter is called a maxi-
mal filter.

(2) The set M (B) of all maximal filters of a Boolean algebra B is denoted by
M (B) and it is called the Stone space of B.

(3) In the Stone space X = M (B) we define a topology which has as basis the
sets of the form

Xa = {F ∈ M (B) : a ∈ F}, a ∈ B

This means that the open sets of this topology are the unions of sets of the
form Xa. This topology is called the Stone Topology of the boolean algebra
B.

Remark 5.2. Note that a filter of a distributive lattice is maximal if
and only if a ∨ b ∈ F then a ∈ F or b ∈ F . This is a characteristic property of
distributivity.

We can now state (without a proof1) the Stone’s Representation Theorem:

Theorem 5.3 (Stone’s Representation Theorem). Let B be a Boolean
algebra. Then the Stone space X = M (B) of B is a compact Hausdorff totally
disconnected topological space and the map a 7→ Xa is a lattice isomorphism of B
with the Boolean algebra OC(X ) of all open and closed subsets of X .

If the logic L of a system S is a Boolean algebra then it is (by the
definition of the logic) a Boolean σ-algebra and then if X is the Stone space
of L we can find a σ-algebra A of Borel subsets of X and a σ-homeomorphism
h : A → L, from A onto L (this is the Theorem of Loomis, see [15] for the proof).
In fact, if OC(X ) is the boolean algebra of open and closed subsets of X then L
is isomorphic to OC(X ) and we take as A to be the smallest σ-algebra of subsets
of X which contains OC(X ). Using Loomis theorem we can show that the states
in the classical case are the usual probability measures.

6. Simultaneous observability and the center of a logic. Let
L be a logic. A sublattice of L is subset L′ of L such that if a, b ∈ L′ then a ∨ b
and a ∧ b belong to L′. Since the intersection of sublattices is again a or every
subset S of L there exists the smallest sublattice Lat(S) of L that contains S.

1for a proof see the classical book of G. Birkhoff [2]
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Definition 6.1. Let (L,≤,⊥) be a logic. Two propositions a, b ∈ L are
said to be simultaneously verifiable if there exist a1, a2, c ∈ L, pairwise orthogonal
such that a = a1 ∨ c and b = b1 ∨ c. If a, b are simultaneously verifiable we shall
write a↔ b and if they are not simultaneously verifiable shall write a 6↔ b

Proposition 6.2. Let (L,≤,⊥) be a logic and a, b ∈ L. The following
are equivalent:

(1) a↔ b.

(2) The sublattice of L generated by a, b, a⊥, b⊥ is distributive.

(3) a = (a ∧ b) ∨ (a ∧ b⊥).

(4) a ∧ (a⊥ ∨ b) = a ∧ b.

(5) b⊥ = (a ∧ (a⊥ ∨ b⊥)) ∨ (a⊥ ∧ b⊥).

(6) a ∧ (a⊥ ∨ b⊥) ⊥ b ∧ (a⊥ ∨ b⊥).

(7) (a ∧ b) ∨ (a⊥ ∧ b) ∨ (a ∧ b⊥) ∨ (a⊥ ∧ b⊥) = 1.

Definition 6.3. Let L be logic and M ⊆ L.

(1) The commutant of M is the set

C(M) = {a ∈ L : for every x ∈ L, a↔ x}

(2) The center of a L is the set

C(L) = {a ∈ L : for every x ∈ L, a↔ x}

(3) Clearly, {0, 1} ⊆ C(L) and if C(L) = {0, 1} we shall say that L has a trivial
center.

Definition 6.4. Let (L1,≤1,⊥1), (L2,≤2,⊥2) be two logics. The direct
sum L1 ⊕ L2 of L1, L2 is the logic (L1 × L2,≤,⊥) where if x1, y1, x ∈ L1 and
x2, y2, y ∈ L2,

(1) (x1, x2) ≤ (y1, y2) if x1 ≤1 y1 and x2 ≤2 y2.

(2) (x, y)⊥ = (x⊥, y⊥).
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Proposition 6.5. Let (L1,≤1,⊥1), (L2,≤2,⊥2) be two logics and L1⊕L2

their direct sum. If (x1, x2), (y1, y2) ∈ L1⊕L2 then (x1, x2) ↔ (y1, y2) if and only
if x1 ↔ y1 and x2 ↔ y2. Therefore

C(L1 ⊕ L2) = {(x, y) : x ∈ C(L1) and y ∈ C(L2)}

In particular, the center if a direct sum of logics is never trivial.

P r o o f. This follows easily from the facts that

(x1, x2) ∨ (y1, y2) = (x1 ∨ y2, y1 ∨ y2), (x1, x2) ∧ (y1, y2) = (x1 ∧ y2, y1 ∧ y2). ✷

Definition 6.6. We say that a logic L is reducible if there exist logics
L1 and L2 such that L is isomorphic to L1 ⊕ L2. If L is not reducible we shall
say that L is irreducible.

Let L be a logic. If a ∈ L we denote by [0, a] the logic where [0, a] =
{x ∈ L : 0 ≤ x ≤ a}, the order relation is the usual one and the complement of a
x ∈ [0, a] as a member of [0, a] is defined to be x⊥ ∧ a (see also Proposition 2.10).

Proposition 6.7. A logic L is irreducible if and only if its center is
trivial.

P r o o f. Suppose that L has not trivial center and choose c ∈ C(L) such
that c 6= 0 and c 6= 1. Let L1 = [0, c] and L1 = [0, c⊥]. Since for every x ∈ L we
have that x↔ x we shall have that

x = (x ∧ c) ∨ (x ∧ c⊥)

and therefore the mapping x 7→ (x ∧ c, x ∧ c⊥) is an isomorphism from L onto
L1 ⊕ L2. The converse follows immediately from Proposition 6.5. �

In the classical case the center of the logic is equal to whole logic. In the
pure quantum case the center is trivial. In physics there exists a large number of
intermediate cases in which the center is strictly smaller than the whole lattice but
contains nontrivial propositions. In that case we say that the system possesses
superselection rules.

7. Concrete logics.

7.1. The Hilbert space formulation of quantum mechanics. In
the Hilbert space formulation of quantum mechanics the observables are simply
self-adjoint linear operators on a separable Hilbert space H. The spectrum σ(T )
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of a linear operator ? is the set of all λ ∈ R such that the operator T − λI

is not invertible. If the spectrum of an operator ( observable) is finite then
the observable can have only finite many values and if the spectrum is discrete
then the observable has a discrete set of possible values. Note that, since the
operators are self-adjoint, their spectrum is a subset of the real line. In general
the observables T cannot be defined for every x ∈ H but their domain D(T ) is
a linear subspace of H which is dense in H, in the sense that every x ∈ H is a
limit of a sequence of vectors belonging to the domain D(T ) of the observable.

Also, the observables are not in general bounded. An observable T is said
to be bounded as a linear operator if there is a constant C such that ‖Tx‖ ≤ C

for every x ∈ D(T ) with ‖x‖ ≤ 1. Note that T is bounded if and only if it is
uniformly continuous as a function and therefore we can extend T in D(T ) and
therefore we can always assume that the domain of T is a closed subspace of H.
Since we also assume that the domain of observables is a dense subset of H in
the case of bounded observables their domain is the whole space H. If a linear
operator T : H → H is bounded then there exists a unique linear and bounded
operator T ∗ : H → H which has the property

〈Tx, y〉 = 〈x, T ∗y〉

for every x, y ∈ H, which called the adjoint operator of T . A bounded linear
operator is called self-adjoint if T = T ∗. But if T is not bounded it is more
difficult to define what means that T is self-adjoint. We shall give the elements
of the theory of Hilbert spaces and the linear operators in the next paragraphs.

Example 7.1. In the simplest case of a particle moving on a straight line
the model is the one dimensional Hilbert space L2(R, µ) (of the equivalent classes)
of all square integrable functions f : R → C and µ is the usual Lebesgue measure.
A Lebesgue measurable function f : R → C is said to be square integrable if the

(Lebesgue integral)

∫ +∞

−∞

|f(x)|2dx < +∞. We consider that two measurable

functions f, g : R → C as equal if f = g almost everywhere in the sense that
the set {x ∈ R : f(x) 6= g(x)} of all points where the two functions have different
values has Lebesgue measure equal to zero.

The linear space L2(R, µ) is a Hilbert space with respect the inner product

〈f, g〉 =

∫ +∞

−∞

f(x)g(x)dx and with norm ‖f‖ =

∫ +∞

−∞

|f(x)|2dx < +∞. If φ is

a measurable function φ : R → C then φ can be considered as a linear operator
Tφ : L2(R) → L2(R) where Tφ(f) = φf for every f ∈ L2(R). If φ is not a bounded
function then Tφ cannot be defined on all the space L2(R) and it is not in general
bounded. An operator of the form Tφ is called a multiplication operator.
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The observable O of the position of the particle is the multiplication op-
erator Tφ defined by the identity function φ : R → C, that is φ(x) = x for every
x ∈ R. So X(f)(x) = xf(x) for every x ∈ R.

The domain of this operator is the set

D(X) =
{

f ∈ L2(R) : xf(x) ∈ L2(R)
}

Since D(X) contains all the square integrable functions with compact support
and therefore is a dense subset of all L2(R). Also D(X) 6= L2(R) since the
function

f(x) =











1 if x ∈ [−1, 1]

1

x
if |x| > 1

is a square integrable function but the function xf(x) is not.

The position is not a bounded operator. To see this we simply consider
the characteristic functions fn of the intervals [n, n+ 1], n ∈ N that is

fn(x) =

{

1 if x ∈ [n, n+ 1]

0 if x 6∈ [n, n+ 1]

and n = 0, 1, 2, . . . . Clearly fn ∈ L2(R), ‖fn‖ = 1 but

‖X(fn)‖
2 =

∫ n+1

n

x2dx =
(n + 1)3 − n3

3
> n2 + n

Note also that X is a self-adjoint operator, the spectrum of X is the whole real
line but X has no eigenvalues. Indeed, suppose that there exists a λ 6= 0 which
is an eigenvalue of X. Then for some f ∈ D(X) with f 6= 0 we must have that
X(f) = λf which means that xf(x) = λf(x) almost everywhere. Since f 6= 0 the
set {x : f(x) 6= 0} has measure 6= 0 and therefore λ = x for at least two different
values of x! A contradiction.

The theory of unbounded operators is much more complicated than that
of bounded ones. In the following paragraphs we shall give some basic notions
and facts of this theory, in order to examine the so called Standard Quantum
Logic, which is the logic of all projections of a separable Hilbert space.

7.2. The standard quantum logic. In this paragraph and in the fol-
lowing paragraphs by the term Hilbert space we shall always mean a separable

Hilbert space.
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Let H be a Hilbert space with inner product 〈·, ·〉. The set B(H) of the
bounded linear operators T : H → H, is a ∗-algebra with respect the operation
(S, T ) 7→ S + T , (S, T ) 7→ ST , where ST is the usual composition of operators
and involution T 7→ T ∗ where T ∗ is the unique linear bounded operator with the
property, for every x, y ∈ H

〈Tx, y〉 = 〈x, T ∗y〉

A projection is an element P ∈ B(H) such that P = P ∗ = P 2.

The set S(H) of all closed subspaces of H is also a complete ortholattice
lattice with respect the partial order of the usual set inclusion ⊆, where and if
M,N ∈ S(H) then

M ∧N =M ∩N, M ∨N =
⋃

{V ∈ S(H) :M ∪N ⊆ V }

and complement

M⊥ = {x ∈ H : x ⊥M}

where x ⊥ M means 〈x, y〉 = 0 for every y ∈ M . The fact that (S(H),⊆)
is a complete lattice follows easily from the fact that the intersection of closed
subspaces is a closed subspace and therefore if F is a family of closed subspaces
then their greatest lower bound and least upper bound are

∧

F =
⋂

{S : S ∈ F},
∨

F =
⋂

{

S : S ⊇
⋃

F
}

The fact that M 7→M⊥ is an orthocomplement ia a consequence of the following
basic geometric property of Hilbert spaces.

Lemma 7.2. Let H be a Hilbert space and M a subspace of H. Then for
every x ∈ H there exists a unique xM ∈M such that

‖x− xM‖ = dist(x,M) = inf{‖x− y‖ : y ∈M} and x− xM ⊥M

P r o o f. (Halmos) Let δ = dist(x,M) = inf{‖x− y‖ : y ∈M}. We choose
a sequence (yn)n of elements of M such that ‖x− yn‖ → δ. Since H is an inner
product space holds the parallelogram law:

‖a+ b‖2 + ‖a− b‖2 = 2(‖a‖2 + ‖b‖2)
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Let n,m ∈ N. Since
yn + ym

2
∈ M we have that

∥

∥

∥

∥

yn + ym

2
− x

∥

∥

∥

∥

≤ δ and by the

parallelogram low we obtain

‖yn − ym‖
2 = 2

(

‖yn − x‖2 + ‖ym − x‖2 − 2

∥

∥

∥

∥

yn + ym

2
− x

∥

∥

∥

∥

2
)

≤ 2
(

‖yn − x‖2 + ‖ym − x‖2 − 2δ2
)

→ 2(δ2 + δ2 − 2δ2)

= 0

So (yn)n is a Cauchy sequence and since H is a complete it converges to an
element xM ∈M . The continuity of the norm implies that ‖x− xM‖ = δ.
In order to prove that z = x − xM ⊥ M we consider y ∈ M with y 6= 0. Let
λ ∈ R. Then ‖z‖ = δ and since λ〈z, y〉y ∈ M we have ‖z + λ〈z, y〉y‖ ≥ δ and so
‖z + λ〈z, y〉y‖2 − ‖z‖2 ≥ δ2 − δ2 = 0 which implies that

|〈z, y〉|2
(

λ2‖y‖2 + 2λ
)

≥ 0

and if we choose the value of λ to be λ = −
1

‖y‖2
we shall have that −|〈z, y〉|2 ≥ 0

and therefore 〈z, y〉 = 0.

Finally, suppose that there exist x1, x2 ∈ M such that x − x1 ⊥ M and
x − x2 ⊥ M . Then 〈x2 − x,−x1〉 = 0 and 〈x − x1, x2〉 = 0. Adding, we obtain
that 〈x1 − x2, x1 − x2〉 = 0 and so x1 = x2. Therefore, xM is unique. �

Lemma 7.3. M⊥⊥ =M

P r o o f. Note that

(1) M ∩M⊥ = {0}, since if x ∈M ∩M⊥ then 〈x, x〉 = 0 and so x = 0.

(2) M ⊆M⊥⊥

Suppose that there exists x ∈ M⊥⊥ \M . Clearly, x 6= 0. Let xM ∈ M such
that x − xM ∈ M⊥. Since xM ∈ M we have that xM ∈ M⊥⊥ and therefore
x− xM ∈M⊥⊥ ∩M⊥. So, by (1), x = xM = 0, a contradiction. �

By the previous lemma we have that

Proposition 7.4. (P (H),≤) is complete ortholattice.

Remark 7.5. The prove that M⊥⊥ = M we used in Lemma 7.2 the
fact that a Hilbert space is a complete inner product space

If H is an inner product space which is not complete then it is not in
general true that for every closed subspace M of Hwe shall have M⊥⊥ =M . Let
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us denote by S(H) the complete lattice of all closed subspaces of H and let

C(H) =
{

M ∈ S(H) :M⊥⊥ =M
}

Then (C(H),⊆) is an ortholattice. Amemiya and Araki [1] proved that (C(H),⊆)
is orthomodular if and only if H is a Hilbert space, and so if and only if C(H) =
S(H).

If x ∈ H then for every M ∈ S(H) there exists a unique decomposition
of x

x = xM + x⊥M

with xM ∈M and x⊥M ∈M⊥. It is easy to see that the mapping

PM : H → H, PM (x) = xM

is a projection such that for every M ∈ S(H) and every Q ∈ P (H) we have

(10) PM (H) =M, PQ(H) = Q

and

(11) PM ≤ PN if and only if M ⊆ N

By (10) and (11) we see that the mappingM 7→ PM is a bijection from S(H) onto
P (H) which respects the orders and therefore S(H)n and P (H) as isomorphic as
otholattices and since (S(H),⊆) is a complete otholattice the same holds for
(P (H),≤) respect the partial order

P ≤ Q if and only if P (H) ⊆ Q(H)

The lattice operations in (P (H),≤) have interesting connections with the alge-
braic operations of B(H). We present a list of them

Proposition 7.6.

(i) P ≤ Q if and only if PQ = P.

(ii) P⊥ = 1− P.

(iii) P ⊥ Q if and only if PQ = 0

(iv) PQ = QP implies that P ∧Q = PQ and P ∨Q = P +Q− PQ.

(v) P ↔ Q if and only if PQ = PQ.

(vi) P ⊥ Q implies that P ∨Q = P +Q.
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Theorem 7.7. (P (H),≤) is a logic.

P r o o f. By Proposition 7.4, (P (H),≤) is a complete ortholattice. It
remains to show that in (P (H),≤) holds the orthomodular law:

If P ≤ Q then Q = P ∨ (Q ∧ P⊥).

Since, P ≤ Q we have that Q(1 − P ) = (1 − P )Q = Q − P and so by (iv)
Q ∧ P⊥ = Q(1− P ) = Q− P . By (vi) we shall have that

P ∨ (Q ∧ P⊥) = P + (Q− P ) = P ✷

Definition 7.8. Let H We shall refer to logic of the form (P (H),≤) as
the standard logic on H.

Theorem 7.9. (P (H),≤) is a modular logic if and only if H is a finite
dimensional vector space.

P r o o f. If H is finite dimensional then every subspace of H is closed and
we know that the lattice of all subspaces of a linear space is modular.

We shall show that if H is an infinite dimensional Hilbert space we can
find closed subspacesM,N of H such thatM ∩N = {0} andM+N is not closed.
If L =M +N =M ∨N then M ∨ (L∧N) =M ∩N = {0} but L∧ (M ∨N) = L.
So, the modular law does not hold.

In order to construct the subspaces M and N we consider two sequences
(en)

∞
n=1, (fn)

∞
n=1 of elements of H such that 〈ei, fj〉 = 0, 〈ei, ej〉 = δij , 〈fi, fj〉 =

δij , where δij =

{

1 if i = j

0 if i 6= j
, and two sequences of real numbers (λn)

∞
n=1,

(µn)
∞
n=1 such that

∞
∑

n=1

λ2n < +∞ and µn → 1, µn 6= 0 for every n (take λn =

sin
1

n
, µn = cos

1

n
). Then M is smallest closed subspace of H containing the

vectors (fn)
∞
n=1 and N is the smallest closed subspace of H containing the vectors

gn = λnen + µnfn, n = 1, 2, . . . . �

7.3. Linear operators and observables of the standard logic. Let
H be a Hilbert space. A linear operator is a mapping T from a linear subspace
D of H, called the domain of T into H. If S, T are linear operators then we define
their sum S+T to be the operator denoted by S+T withD(S+T ) = D(S)∩D(T )
and (S+T )x = Sx+Tx for every x ∈ D(S)∩D(T ). Also we define the operator
ST to be the operator with domain to be the set

D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)} and (ST )x = S(Tx)
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Finally, for every linear operator T the adjoint operator T ∗ of T , is the operator
where

(1) The domain D(T ∗) of T is the set of all x ∈ H such that there exists y ∈ H
such that 〈Tw, x〉 = 〈w, y〉 for every w ∈ D(T ).

(2) We set T ∗x = y, where x ∈ D(T ∗) and y is defined in (1) .

Therefore, we have

〈Tx, y〉 = 〈x, T ∗y〉, if x ∈ D(T ), y ∈ D(T ∗)

Definition 7.10. A linear operator T is said to be

(1) densely defined if its domain D(T ) is a dense subset of H

(2) closed if for every sequence (xn)n of elements of D(T ) such that lim
n
xn

and lim
n
Txn exist then x ∈ D(T ) and lim

n
Txn = T

(

lim
n
xn

)

.

(3) closable if for every sequence (xn)n of elements of D(T ) such that lim
n
xn =

0 and lim
n
Txn exist then lim

n
Txn = 0.

If T is closable and non-closed then we can extend T to a closed operator
T̄ , where x ∈ D(T̄ ) if there exists a sequence (xn)n of elements of D(T ) such that
lim
n
xn = x and y = lim

n
Txn exists. In that case2 we set T̄ x = y. The operator T̄

is closed, it is the minimal closed extension of T and it is called, the closure of
T . We have the following result which connects the closable operators and the
second adjoint operator [4, p. 70]:

Proposition 7.11. If T is a densely defined operator then T ∗ is densely
defined if and only if T is closable. In that case T ∗∗ exists and T ∗∗ = T̄ . So, if
T is a densely defined closed operator we have that T = T ∗∗.

Definition 7.12. An operator T is called

(1) symmetric if for every x, y ∈ D(T ),

〈Tx, y〉 = 〈x, Ty〉

(2) self-adjoint if T = T ∗.

2The operator T̄ is well defined. Indeed, suppose that lim
n

xn = lim
n

x
′

n
= x = x, y = lim

n

Txn

and y
′ = lim

n

Tx
′

n
. Then y − y

′ = lim
n

T (xn − x
′

n) and since T is closable then y − y
′ = 0 or

y = y
′
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Clearly, a linear operator T is symmetric if and only if T ⊆ T ∗. Also, a
self-adjoint linear operator is symmetric but the converse is not always true.

In order to examine how the observables of a standard logic P (H) are
connected with the self-adjoint linear operators on H we need the notion of the
spectral measure.

Let X be a set and A a σ-algebra of subsets of X. We shall refer to the
pair (X,A) as a measurable space.

Definition 7.13. Let H be a Hilbert space, P (H) the lattice of all projec-
tions of H and (X,A) a measurable space. A mapping E : A → P (H) satisfying
the following properties

(1) (Countable Additivity) If (δn)
∞
n=1 is a sequence of pairwise disjoint elements

of A then

E

(

∞
⋃

n=1

δn

)

=

∞
∑

n=1

E(δn)

(2) (Completeness)

E(X) = 1

is called a spectral measure. We shall refer to (X,A,H, E) as a spectral measure
space.

Definition 7.14. Let (Tn)
∞
n=1 be a sequence of bounded linear operators.

A bounded linear operator T is called the

(1) uniform limit of (Tn)
∞
n=1 and we shall write T = lim

n→∞
Tn if

lim
n→∞

Tn = T

(2) strong limit of (Tn)
∞
n=1 and we shall write T = s− lim

n→∞
Tn if

lim
n→∞

Tnx = Tx

for every x ∈ H.

(3) weak limit of (Tn)
∞
n=1 and we shall write T = w − lim

n→∞
Tn if

lim
n→∞

〈Tnx, y〉 = 〈Tx, y〉

for every x, y ∈ H.
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Proposition 7.15. Let (X,A,H, E) be a spectral measure space and
δ1, δ2, . . . a sequence of elements of A. Then

(1) E(δ1 ∩ δ2) = E(δ1)E(δ2).

(2) If δ1 ⊆ δ2 . . . then E

(

∞
⋃

n=1

δn

)

= s− lim
n→∞

E(δn).

(3) If δ1 ⊇ δ2 . . . then E

(

∞
⋂

n=1

δn

)

= s− lim
n→∞

E(δn)

Every spectral measure E generates a family of finite complex measures
on the σ-algebra A:

Definition 7.16. Let (X,A,H, E) be a spectral measure space. Then for
every x, y ∈ H we define a measure µx,y : A → C by

µx,y(δ) = 〈E(δ)x, y〉

In particular if x = y we set

µx(δ) = 〈E(δ)x, x〉 = 〈E(δ)x,E(δ)x〉 = ‖E(δ)x‖2

For a detailed proof of the following theorem we we refer to [4].

Theorem 7.17. Let (X,A,H, E) be a spectral measure space. Then for
every φ ∈ S(X,E) corresponds a closed dense linear operator Tφ on H denoted

by

∫

X

φdE. The mapping φ 7→ Tφ has the following properties:

(1)

D(Tφ) =

{

x ∈ H :

∫

|φ|2dµx <∞

}

(2) For every x ∈ D(Tφ) and y ∈ H

〈Tφx, y〉 =

∫

φ dµx,y

(3) If φ,ψ ∈ S(X,E) and α, β ∈ C then

(a) D(αTφ + βTψ) = D(Tφ) ∩D(Tψ), D(TφTψ) = D(Tφ) ∩D(Tψ).
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(b) αTφ + βTψ ⊂ Tαφ+βψ, TφTψ ⊂ Tφψ.

(c) D(T ∗
φ ) = D(Tφ and T ∗

φ = Tφ̄

(d) Tαφ+βψ = αTφ + βTψ.

(e) Tφψ = TφTψ = TψTφ.

If we consider the logic of a quantum system to be the lattice of projections
of a Hilbert space H then the observables E are the spectral measure spaces of
the form (R,B(R),H, E). By Theorem 7.17 to every observable E corresponds

a self-adjoint operator TE =

∫

R

tdE and for every Borel function f we have that

Tf(E) =

∫

R

f(t)dE. A very important theorem of spectral theory, the so called

spectral theorem for self-adjoint operators, shows that the converse statement
also holds: For every self-adjoint operator T there exists a spectral measure E

on R such that T =

∫

R

tdE. So we have the following (see also [15])

Theorem 7.18. If the L is the logic of all projections af a Hilbert space
H then there exists a bijection E 7→ TE from the set all observables of L onto
the set of all self-adjoint operators on H. The bounded observables correspond to
the bounded self-adjoint of aperators on H. Two bounded observables are simul-
taneously observable if and only if the corresponding bounded operators commute.

7.4. States of the standard logic. Let H be a Hilbert space, L the
lattice of all projections on H and x ∈ H be a vector with ‖x‖ = 1. If P ∈ L

(12) sx(P ) = 〈Px, x〉 = ‖Px‖2

The last equation holds because, since P is a projection then P = P 2 = P ∗ and
so we shall have that 〈Px, x〉 = 〈P 2x, x〉 = 〈Px, P ∗x〉 = 〈Px, Px〉 = ‖Px‖2.
Therefore if (Pi)

∞
i=1 is a family of pairwise orthogonal elements of L then we shall

have

sx

(

∞
∨

i=1

Pi

)

=

∥

∥

∥

∥

∥

∞
∨

i=1

Pix

∥

∥

∥

∥

∥

2

=
∞
∑

i=1

‖Pix‖
2 =

∞
∑

i=1

sx (Pi) .
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This shows that the mapping sx : L → [0,+1] is a state of L. To give a general
description of the states in the case where the logic L is the lattice of all projection
on H we need the notion of a trace class operator.

Let T : H → H is a bound linear operator then there exist two possibili-

ties. Either for every orthonormal basis (ei)
∞
i=1 of H we shall have

∞
∑

i=1

|〈Tei, ei〉| =

+∞ or for every orthonormal basis (ei)
∞
i=1 ofH we shall have

∞
∑

i=1

|〈Tei, ei〉| < +∞.

In the second case the series

∞
∑

i=1

〈Tei, ei〉 is absolutely convergent and its value of

is independent of the choice of the basis of H.

Definition 7.19. A bounded linear operator T : H → H is called a trace
class operator if for every for every orthonormal basis (ei)

∞
i=1 of H we have that

∞
∑

i=1

|〈Tei, ei〉| < +∞. The number tr(T ) =
∞
∑

i=1

〈Tei, ei〉, which is independent of

the choice of the basis (ei)
∞
i=1 of H, is called the trace of T . The set of all trace

class operators is denoted by S1(H).

The set S1 of all trace class operators is an ideal of B(H), which means
that

(i) it is a (non closed) subspace of B(H) and
(ii) for every A ∈ S1 T ∈ B(H) we have that AT ∈ S1 and TA ∈ S1.

Moreover tr(AT ) = tr(TA).

Definition 7.20. Let H be a Hilbert space. A bounded linear operator
T : H → H is called a density operator or a von Neumann operator is

(1) It is positive, i.e. for every x ∈ H we have that 〈Tx, x〉 ≥ 0.

(2) T is of trace class.

(3) tr(T ) = 1.

Every von Neumann operator T is of the form

T =
∑

λiPi

where Pn are pairwise orthogonal projections of dimension 1 and λi ate positive
numbers with sum equal to 1. Therefore, if T is a von Neumann operator then
the function sT : L → [0,+1] given by sT (P ) = tr(PT ) is a state.

The following important theorem of Gleason shows that if dimH ≥ 3 then
every state is of the form sT where T is a von Neumann operator.
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Theorem 7.21 (Gleason). If H is a Hilbert space with dimH ≥ 3 and
L is the logic of all projections on H then for every state s of L there exists
a von Neumann operator T such that for every projection P ∈ L we have that
s(P ) = tr(PT ).

The proof of Gleason’s theorem is complicated. We refer to [15] for a
proof.

REFERENCES

[1] I. Amemiya, H. Araki. A remark on Piron’s paper. Publ. Res. Inst. Math.
Sci. (Ser A) 2, (1966/1967) 423–427.

[2] G. Birkhoff. Lattice Theory, New York, AMS, 1948.

[3] G. Birkhoff, J. von Neumann. The logic of quantum mechanics. Ann.
of Math. (2) 37, 4 (1936), 823–843.

[4] M. S. Birman, M. Z. Solomjak. Spectral theory of self-adjoint operators
in Hilbert space. Mathematics and Its Applications. Soviet Series, vol. 5. Dor-
drecht etc., Kluwer Academic Publishers, 1987; translation from Leningrad,
Leningrad. Univ., 1980.

[5] P. A. M. Dirac. Principles of Quantum Mechanics. 4th ed. Oxford, Claren-
don Press, 1958.

[6] J. Jauch. Foundations of Quantum Mechanics. Reading, Mass.-Menlo Park,
Calif.-London-Don Mills, Ont., Addison-Wesley Publishing Company, 1968.
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