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Abstract. The artice is a survey of several topics that have led to fruit-
ful interactions between Operator Theory and Harmonic Analysis, including
operator and spectral synthesis, Schur and Herz-Schur multipliers, and re-
flexivity. Some open questions and directions are included in a separate
section.

1. Introduction. Functional analytic methods have proved fruitful in
Abstract Harmonic Analysis [19], [38], [8]. On the other hand, operator alge-
bras constructed from topological groups have served as important examples in
Operator Theory [27]. The aim of this article is to present some aspects of the
symbiosis between the two areas which, broadly speaking, starts from Varopou-
los’ and Arveson’s seminal papers [38] and [1]. We will summarise results by a
number of authors, which can be grouped under the following headings:

• Spectral and operator synthesis;
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• Schur and Herz-Schur multipliers;

• Reflexivity and the union problem.
The underlying idea for all of the above connections is to transport notions

and properties from Harmonic Analysis to Operator Theory. Harmonic Analysis
traditionally studies spaces of functions defined on a topological group; in this
sense it can be thought of as a one-variable function theory. Operator Theory,
on the other hand, mostly studies operators acting on Hilbert spaces. Since
operators can often be identified with matrices, one can heuristically think of
Operator Theory as a two-variable (and non-commutative) function theory. The
passage from one-variable functions to two-variable ones is given in this context
by the following map (first introduced by Varopoulos) which will play a major role
in the sequel: given a group G and a function f : G→ C, let Nf : G×G→ C be
given by Nf(s, t) = f(st−1). We will see that the function N carries important
objects from Harmonic Analysis to corresponding objects from Operator Theory.
In this way, results from Harmonic Analysis can be carried over to Operator
Theory and vice versa.

The paper is organised as follows: In Section 2, we recall some basic
facts from Harmonic Analysis and Operator Theory that will be needed in the
sequel. Section 3 discusses the relation between Schur multipliers and Herz-Schur
multipliers. Section 4 is devoted to the notions of spectral and operator synthesis
and their interrelations. Finally, Section 5 is centred around the connections
of reflexivity and operator synthesis, highlighting some recent applications of
reflexivity to the union problem for operator synthesis.

It should be mentioned that many important aspects of the interactions
between Harmonic Analysis and Operator Theory are not covered here. For
example, we have not touched upon the important developments in the theory of
locally compact quantum groups, a rapidly expanding area which can be thought
of as a Non-commutative Non-commutative Harmonic Analysis (the repetition is
intended). We refer the reader to [13] and the references therein for an overview
of the corresponding bibliography. Another area that has not been addressed
in this survey is the rich and very fruitful interaction between analytic function
theory on the unit disk and Operator Theory. We refer the reader to [29] for an
excellent survey of this field.

2. Setting the stage.

2.1. Operator theory. If H,H1 and H2 are Hilbert spaces, we let
B(H1, H2) (resp. C1(H1,H2), C2(H1,H2)) be the space of all bounded linear
(resp. trace class, Hilbert-Schmidt) operators from H1 into H2; it is a Banach
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space, when equipped with the operator (resp. trace, Hilbert-Schmidt) norm. We
note that the Banach space dual of C1(H2,H1) can be naturally identified with
B(H1,H2) via the pairing 〈T, S〉 = tr(TS), where tr(A) denotes the usual trace
of a trace class operator A. We set B(H) = B(H,H), C1(H) = C1(H,H) and
C2(H) = C2(H,H). The Hilbert spaces appearing in the paper will be assumed
to be separable.

Let (X,µ) and (Y, ν) be standard (σ-finite) measure spaces. A subset of
X × Y is said to be a measurable rectangle (or simply a rectangle) if it is of the
form α×β, where α ⊆ X and β ⊆ Y are measurable subsets. A subset E ⊆ X×Y
is called marginally null if E ⊆ (X0 × Y ) ∪ (X × Y0), where µ(X0) = ν(Y0) = 0.
We call two subsets E,F ⊆ X×Y marginally equivalent (and write E ≃ F ) if the
symmetric difference of E and F is marginally null. We say that E marginally
contains F (or F is marginally contained in E) if F is contained in the union of
E and a marginally null set; E and F are said to be marginally disjoint if E ∩ F
is marginally null.

A subset E of X × Y is called ω-open if it is marginally equivalent to
the union of a countable set of rectangles. The complements of ω-open sets are
called ω-closed. It is clear that the class of all ω-open (resp. ω-closed) sets is
closed under countable unions (resp. intersections) and finite intersections (resp.
unions); in other words, the ω-open sets form a pseudo-topology. A function
f : X × Y → C is called ω-continuous if f−1(U) is an ω-open set for each open
set U ⊆ C. The set of ω-continuous complex valued functions on X × Y is an
algebra under pointwise addition and multiplication [7]. We would like to note
that the theory of pseudo-topologies is becoming increasingly rich; we refer the
reader to [7], [20], [31], [32] and [33] for further properties of these structures.

Let H1 = L2(X,µ) = L2(X) and H2 = L2(Y, ν) = L2(Y ). The predual of
B(L2(X), L2(Y )) can be naturally identified with the projective tensor product

L2(X)⊗̂L2(Y ). Suppose that h ∈ L2(X)⊗̂L2(Y ) and let h =

∞
∑

k=1

fk ⊗ gk be

an associated series for h, where

∞
∑

k=1

‖fk‖
2
2 < ∞ and

∞
∑

k=1

‖gk‖
2
2 < ∞. These

conditions easily imply that the formula

h(x, y) =

∞
∑

k=1

fk(x)gk(y), (x, y) ∈ X × Y,

defines, up to a marginally null set, a function, which we denote again by h.
One can moreover check that, up to marginal equivalence, the function h does
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not depend on the choice of the representation of the corresponding element of
L2(X)⊗̂L2(Y ). Let Γ(X,Y ) be the set of all those functions h, equipped with
the norm

‖h‖Γ = inf

{

∞
∑

k=1

‖fk‖2‖gk‖2 : h =
∞
∑

k=1

fk ⊗ gk

}

,

where
∞
∑

k=1

‖fk‖
2
2 < ∞ and

∞
∑

k=1

‖gk‖
2
2 < ∞. The duality between Γ(X,Y ) and

B(L2(X), L2(Y )) is then given as follows: for h =
∞
∑

k=1

fk ⊗ gk ∈ Γ(X,Y ) and

T ∈ B(L2(X), L2(Y )), one lets

〈T, h〉 =
∞
∑

k=1

(Tfk, gk).

2.2. Harmonic analysis. Let G be a locally compact group which will
be assumed throughout to be σ-compact. We let Lp(G), p = 1, 2,∞, be the
corresponding function spaces with respect to left Haar measure. By λ : G →
B(L2(G)) we denote the left regular representation of G; thus, λsf(t) = f(s−1t),
s, t ∈ G, f ∈ L2(G). We recall that the Fourier algebra A(G) of G is the space
of all “matrix coefficients of G in its left regular representation”, that is,

A(G) = {s→ (λsξ, η) : ξ, η ∈ L2(G)}.

If G is commutative, then A(G) is the image of L1(Ĝ) under Fourier transform
(where Ĝ is the dual group of G). The Fourier algebra of general locally compact
groups was introduced and studied (along with other objects pertinent to Non-
commutative Harmonic Analysis) by Eymard in [8]. It is a commutative regular
semi-simple Banach algebra of continuous functions vanishing at infinity and
has G as its spectrum. Moreover, its Banach space dual is isometric to the
von Neumann algebra VN(G) of G, that is, to the weakly closed subalgebra of
B(L2(G)) generated by the operators λs, s ∈ G. The duality between these two
spaces is given by the formula 〈λx, f〉 = f(x).

A function g ∈ L∞(G) is called a multiplier of A(G) if gf ∈ A(G) for
every f ∈ A(G). A standard argument, using the Closed Graph Theorem, shows
that if g is a multiplier of A(G) then the map mg : A(G) → A(G) given by
mgf = gf , f ∈ A(G), is bounded. The identification of the multipliers of A(G)
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(which, as is easy to see, form a function algebra on G) has received a considerable
attention in the literature. A classical result in this direction (see [28]) states
that if G is abelian then g is a multiplier of A(G) if and only if it is the Fourier
transform of a regular Borel measure on Ĝ. A multiplier f of A(G) is called
completely bounded [3], if the map f → gf on A(G) is completely bounded.
Here, we equip A(G) with its canonical operator space structure arising from the
identification A(G)∗ ≡ VN(G) (we refer the reader to [35] for a detailed account
of the canonical operator space structures on various function spaces pertinent to
Harmonic Analysis, and to [23] for an account of the basic notions from Operator
Space Theory that will be used in this paper). We denote by M cbA(G) the
space of all completely bounded multipliers of A(G), which are also known in the
literature as Herz-Schur multipliers of A(G).

3. Multipliers. Let S(X,Y ) be the multiplier algebra of Γ(X,Y ); by
definition, a function ϕ : X × Y → C belongs to S(X,Y ) if ϕh is marginally
equivalent to a function from Γ(X,Y ), for every h ∈ Γ(X,Y ). If ϕ ∈ S(X,Y ),
one may thus consider the operator Mϕ : Γ(X,Y ) → Γ(X,Y ) given by Mϕh =
ϕh, h ∈ Γ(X,Y ). An application of the Closed Graph Theorem shows that
Mϕ is bounded; indeed, suppose that (hk)k∈N ⊆ Γ(X,Y ) is a sequence with
‖hk‖Γ →k→∞ 0 and ϕhk → h for some h ∈ Γ(X,Y ). By [32, Lemma 2.1],
there exists a subsequence (hkj )j∈N of (hk)k∈N such that hkj →j→∞ 0 and
ϕhkj →j→∞ h marginally almost everywhere. It follows that h = 0 marginally
almost everywhere, that is, h = 0.

Taking the dual operator of Mϕ, we arrive at an operator

Sϕ : B(H1,H2) → B(H1,H2)

which has the property

〈Sϕ(T ), h〉 = 〈T, ϕh〉, h ∈ Γ(X,Y ), T ∈ B(H1,H2).

If k ∈ L2(Y ×X), let Tk ∈ C2(H1,H2) be the operator given by

Tkξ(y) =

∫

X

k(y, x)ξ(x)dµ(x), ξ ∈ H1, x ∈ X.

One can easily see from the formula given above that if k ∈ L2(Y × X), then
Sϕ(Tk) = Tϕ̂k, where ϕ̂(y, x) = ϕ(x, y), x ∈ X, y ∈ Y .

The functions from S(X,Y ) are called Schur multipliers. We often iden-
tify ϕ with the corresponding linear transformation Sϕ, and speak about Schur



18 I. G. Todorov

multipliers on B(H1,H2). Let DX (resp. DY ) be the maximal abelian selfadjoint
algebra (masa, for short) consisting of all operators on L2(X) of multiplication
by functions from L∞(X) (resp. L∞(Y )). It can easily be checked that, if
ϕ ∈ S(X,Y ) then

Sϕ(BTA) = BSϕ(T )A, T ∈ B(H1,H2), A ∈ DX , B ∈ DY .

Using a result of R. Smith’s [34], one can now see that Schur multipliers are
completely bounded. In fact, we have the following fact, first established in this
form in [17]:

Proposition 3.1. The transformation ϕ→ Sϕ is an algebra isomorphism
from S(X,Y ) onto the algebra C of all weak* continuous completely bounded
masa-bimodule maps on B(H1,H2). Moreover, it is isometric when S(X,Y ) is
equipped with the multiplier norm, while C is equipped with the completely bounded
norm.

A special case of interest arises when X = Y = Z, equipped with the
counting measure. The elements of B(ℓ2(Z)) can be identified with (doubly infi-
nite) matrices. A function ϕ : Z×Z → C is in this case a Schur multiplier if and
only if, for every (xi,j)i,j∈Z ∈ B(ℓ2(Z)), the matrix (ϕ(i, j)xi,j)i,j∈Z defines again
a bounded operator on ℓ2(Z). A. Grothendieck showed in [11] that the function
ϕ is a Schur multiplier if and only if ϕ can be represented in the form

ϕ(i, j) =

∞
∑

k=1

ak(i)bk(j), i, j ∈ Z,

where ak and bk, k ∈ N, are bounded doubly infinite sequences, such that

sup
i∈Z

∞
∑

k=1

|ak(i)|
2 <∞ and sup

j∈Z

∞
∑

k=1

|bk(j)|
2 <∞.

This characterisation was extended by V. Peller [24] (see also [35]) to the general
measurable setting; namely, the following result holds true:

Theorem 3.2. Let ϕ ∈ L∞(X × Y ). The following are equivalent:

(i) ϕ ∈ S(X,Y );

(ii) there exist countable families (ak)k∈N ⊆ L∞(X) and (bk)k∈N ⊆ L∞(Y )
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such that esssup
x∈X

∞
∑

k=1

|ak(x)|
2 <∞, esssup

y∈Y

∞
∑

k=1

|bk(y)|
2 <∞ and

ϕ(x, y) =

∞
∑

k=1

ak(x)bk(y), for almost all (x, y) ∈ X × Y.

We refer the reader to [17] for an elegant operator space theoretic proof
of this result. As a consequence of Theorem 3.2, one can see the following:

Corollary 3.3. Every Schur multiplier is equivalent to an ω-continuous
function.

We now return to the setting of ℓ2(Z) and suppose that we are interested in
the Schur multipliers which leave the space T of all Toeplitz operators invariant.
Recall that an operator (xi,j)i,j∈Z ∈ B(ℓ2(Z)) is called Toeplitz if it has constant
diagonals, that is, if, for every k ∈ Z, there exists ck ∈ C such that xi,j = ck for
all (i, j) with i− j = k. It is easy to note that if ϕ ∈ S(Z,Z) leaves T invariant
then ϕ is a function of Toeplitz type, that is, ϕ = Nf for some f : Z → C. It
is well-known that a function ϕ = Nf is a Schur multiplier of Toeplitz type if
and only if there exists a regular Borel measure µ on the unit circle such that
f(n) = µ̂(n) for every n ∈ Z, where µ̂ is the Fourier transform of µ. In other
words:

Theorem 3.4. Let f : Z → C. The function Nf is a Schur multiplier if
and only if f belongs to the Fourier-Stieltjes algebra B(Z) of Z, namely, if and
only if it is the Fourier transform of a regular Borel measure on T.

This result remains true for all abelian locally compact groups in the
place of Z. In general, however, one needs to replace the Fourier-Stieltjes algebra
by the algebra of all completely bounded multipliers of A(G). This was shown
by Bożejko and Fendler in [2]. Alternative proofs were given by Gilbert and
Jolissaint (see [16]), while this class of multipliers was also studied by Herz (see
[14]).

Theorem 3.5. Let G be a locally compact group and f : G → C be a
measurable function. Then Nf ∈ S(G,G) if and only if f is equivalent to a
function from M cbA(G).

In defining Schur multipliers, our starting point was the space Γ(X,Y ).
An equivalent approach is to start with the space C2(L

2(X), L2(Y )) of all Hilbert-
Schmidt operators from L2(X) into L2(Y ), and recall that every such operator
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T has the form T = Tk, for some function k ∈ L2(Y × X). Given any mea-
surable complex function ϕ (note that ϕ is not assumed any more to be essen-
tially bounded), we can now consider the multiplication operator S0

ϕ defined on

C2(L
2(X), L2(Y )) and given by Tk → Tϕ̂k, k ∈ L2(Y × X). Here, as before,

ϕ̂ : Y × X → C is the function given by ϕ̂(y, x) = ϕ(x, y). The function ϕ is
a Schur multiplier if and only if this operator is bounded in the operator norm
of C2(L

2(X), L2(Y )). If this is the case, it extends by continuity to a bounded
operator on K(H1,H2) and, by taking second duals, to a bounded operator on
B(H1,H2).

If the operator S0
ϕ is not bounded in the operator norm, then one may

ask whether it is closable. This line of investigation was taken up in [31]. There
are two natural versions of closability that arise in this context:

(a) S0
ϕ is called norm closable if the conditions (Tkn)n∈N ⊆ C2(H1,H2),

‖Tkn‖op →n→∞ 0, T ∈ K(H1,H2) and ‖Tϕ̂kn − T‖op →n→∞ 0 imply that T = 0;

(b) S0
ϕ is called weak* closable if the conditions (Tkα)α∈A ⊆ C2(H1,H2)

(where A is a directed set), Tkα
w∗

→n→∞ 0, T ∈ B(H1,H2) and Tϕ̂kα
w∗

→n→∞ T

imply that T = 0.

We call ϕ a weak* closable (resp. norm closable) multiplier if the operator
S0
ϕ is weak* closable (resp. norm closable). It is easy to notice that weak* clos-

ability implies norm closability, and that if H1 = H2 = ℓ2(Z) then every function
ϕ : Z × Z → C is a weak* (and hence norm) closable multiplier. In the case of
continuous measure spaces, however, closable multipliers have a rich theory [31].
Here we include a characterisation of weak* closable multipliers. Let us denote
by V(X,Y ) the space of all measurable functions ψ : X × Y → C of the form

ϕ(x, y) =

∞
∑

k=1

ak(x)bk(y), where (ak)k∈N and (bk)k∈N are families of measurable

functions on X and Y , respectively, satisfying the conditions

∞
∑

k=1

|ak(x)|
2 < ∞

for almost all x ∈ X and

∞
∑

k=1

|bk(y)|
2 <∞ for almost all y ∈ Y . We note that the

difference from the conditions required in Theorem 3.2 is the relaxation of the
uniform (essential) boundedness condition.

The following results were established in [31].

Theorem 3.6. Let ϕ be a complex measurable function on X × Y . The
following are equivalent:
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(i) there exists a countable family {κn}n∈N of rectangles such that ∪n∈Nκn
is marginally equivalent to X×Y and ϕκn is a Schur multiplier, for every n ∈ N;

(ii) there exist increasing sequences (Xn)n∈N and (Yn)n∈N of measur-
able subsets of X and Y , respectively, such that µ(X \ (∪n∈NXn)) = 0, ν(Y \
(∪n∈NYn)) = 0 and ϕ|Xn×Yn is a Schur multiplier, for every n ∈ N;

(iii) ϕ ∈ V(X,Y ).

Theorem 3.7. Let ϕ be a complex measurable function on X × Y . The
following are equivalent:

(i) ϕ is a weak* closable multiplier;

(ii) there exist functions ψ1, ψ2 ∈ V(X,Y ) such that ψ2(x, y) 6= 0 for

marginally almost all (x, y) and ϕ(x, y) =
ψ1(x, y)

ψ2(x, y)
, for almost all (x, y) ∈ X×Y .

We note that we lack a complete description of norm closable multipliers;
however, various sufficient conditions were found in [31] in terms of sets of multi-
plicity, a notion that arose first in classical Harmonic Analysis on the unit circle
[10].

The class of closable multipliers is strictly larger than the class of weak*
closable ones. However, when we restrict attention to the functions of Toeplitz
type, these two classes coincide. In this case, there is a convenient description
which fits well with Theorem 3.5. In order to formulate it, we recall the definition
of the “localised Fourier algebra” of G:

A(G)loc = {g : G→ C : for every t ∈ G there exists an open V ⊆ G

and h ∈ A(G) such that g = h on V }.

Theorem 3.8. Let G be an abelian locally compact group and f : G→ C

be a measurable function. Set ϕ = Nf . The following are equivalent:
(i) ϕ is a weak* closable multiplier;

(ii) ϕ is a norm closable multiplier;
(iii) f is equivalent, with respect to the Haar measure, to a function from

the class A(G)loc.

4. Synthesis. In this section, we review various connections between the
notion of spectral synthesis and that of operator synthesis. We start by recalling
these two notions.
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Let G be a locally compact group. Eymard has shown [8] that the spec-
trum of A(G) can be identified with G via the natural evaluation map. Associated
with a closed set E ⊆ G, we consider the following two ideals of A(G):

I(E) = {f ∈ A(G) : f(s) = 0 for all t ∈ E}

and

J(E) = {f ∈ A(G) : f has compact support disjoint from E}.

We have that J(E) ⊆ I(E). On the other hand, given an ideal J ⊆ A(G), one
can define the null set of E to be the closed subset of G given by

nullJ = {t ∈ G : f(t) = 0 for all f ∈ J}.

It is well-known that null I(E) = nullJ(E) and that if J is a closed ideal of A(G)
such that nullJ = E, then J(E) ⊆ J ⊆ I(E). The set E is called a set of spectral
synthesis if I(E) = J(E), that is, if there exists only one closed ideal of A(G)
whose null set equals E.

The “dual picture” is often useful: as was pointed out in Section 2, the
dual Banach space of A(G) coincides with the von Neumann algebra VN(G) of
G. Moreover, VN(G) carries a natural structure of a Banach A(G)-module: given
T ∈ VN(G) and u ∈ A(G), one lets u · T be the operator in VN(G) determined
by the identity

〈u · T, v〉 = 〈T, uv〉, v ∈ A(G).

It is easy to see that a closed subspace J ⊆ A(G) is an ideal if and only if its
annihilator J⊥ ⊆ VN(G) is a (weak* closed) submodule of VN(G). We say that
an operator T ∈ VN(G) vanishes on an open set U ⊆ G if 〈T, u〉 = 0 for all
u ∈ A(G) with suppu ⊆ U . Given a weak* closed submodule U of VN(G), we
let suppU be the smallest closed subset E of G such that every operator T ∈ U
vanishes on Ec. Via duality, a closed set E ⊆ G is a set of spectral synthsis
if and only if there exists a unique weak* closed submodule U of VN(G) with
suppU = E. One can easily check that

I(E)⊥ = [λs : s ∈ E],

where [·] denotes linear span. Hence, E is a set of spectral synthesis if and only
if, whenever U ⊆ VN(G) is a weak* closed submodule with suppU = E, every
element of U can be approximated in the weak* topology by linear combinations
of translations λs, where s ∈ E.
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The use of the word “synthesis” becomes clear when one considers the case
where G is a locally compact abelian group. In this case one has the powerful
machinery of the Fourier transform. We recall that the dual group Ĝ of G is the
set

Ĝ = {γ : G→ T : a continuous group homomorphism},

equipped with the operation of pointwise product and neutral element the con-
stant homomorphism. The Fourier transform F takes a function from L1(G) to
the function F(f) on Ĝ given by

F(f)(γ) =

∫

G

f(s)γ(s)ds, f ∈ L1(G), γ ∈ Ĝ.

The group Ĝ can be equipped with a natural topology with respect to which it
is a locally compact abelian group. The collection {F(f) : f ∈ L1(G)} coincides
with the Fourier algebra A(Ĝ) of Ĝ.

We have that F is isometric on L1(G) ∩ L2(G) with respect to ‖ · ‖2 and
hence has a unique extension to an operator (denoted in the same way) from
L2(G) into L2(Ĝ) which is moreover surjective. We have that F VN(G)F∗ equals
the algebra D

Ĝ
of all operators on L2(Ĝ) of multiplication by functions from

L∞(Ĝ). The Fourier transform of the operator λs, for s ∈ G, is easily seen
to be equal to the multiplication operator Ms corresponding to the character s
on Ĝ. In classical Harmonic Analysis, a function ϕ ∈ L∞(Ĝ) is said to admit

spectral synthesis if it is in the weak* closed linear span of its spectrum σ(ϕ)
def
=

suppF∗MϕF .
The characterisation of the sets of spectral synthesis in a locally compact

group remains an open problem, even in the special case whereG = T is the group
of the unit circle. We note that in the case where G is discrete, the problem has a
trivial solution, as every set turns out to satisfy spectral synthesis. On the other
hand, Malliavin has shown that in every non-discrete locally compact group there
exists a closed set which does not satisfy spectral synthesis (see [19]).

We now turn to the notion of operator synthesis. We fix, as in Sec-
tion 2, two standard measure spaces (X,µ) and (Y, ν), and let H1 = L2(X,µ)
and H2 = L2(Y, ν). A subspace V ⊆ Γ(X,Y ) will be called S-invariant (or
simply invariant) if ψh ∈ V for every h ∈ V and every ψ ∈ S(X,Y ). Un-
der the identification of Γ(X,Y ) with the ideal of all trace class operators, the
closed (in the trace norm) invariant subspaces correspond precisely to the closed
masa-sub-bimodules, that is, the closed subspaces V such that BTA ∈ V for all
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T ∈ V, A ∈ DX and B ∈ DY . It is easy to note that the annihilators of the
invariant subspaces of Γ(X,Y ) are precisely the weak*-closed masa-bimodules
U ⊆ B(H1,H2).

Let κ ⊆ X×Y be an ω-closed subset and χκ be its characteristic function.
We let

Φ(κ) = {h ∈ Γ(X,Y ) : χκh = 0 m.a.e.}

and

Ψ(κ) = {h ∈ Γ(X,Y ) : h = 0 m.a.e. on an ω-open nbhd of κ}.

We clearly have Ψ(κ) ⊆ Φ(κ). Analogously to the spectral synthesis setting,
given an invariant subspace V ⊆ Γ(X,Y ), we define the null set nullV to be
the smallest, up to marginal equivalence, ω-closed subset E ⊆ X × Y such that
χEh = 0 m.a.e., for all h ∈ V. The existence of such a set and the following result
were established in [32]:

Theorem 4.1. Let κ ⊆ X × Y be an ω-closed set. Then null Φ(κ) =
nullΨ(κ) and if V is a closed invariant subspace of Γ(X,Y ) with nullV = κ then
Ψ(κ) ⊆ V ⊆ Φ(κ).

Theorem 4.1 is a subspace version of a deep result of Arveson’s [1] con-
cerning commutative subspace lattices. Namely, he associated two canonical
weak* closed operator algebras with every (separably acting) commutative sub-
space lattice L and showed that any weak* closed operator algebra containing a
masa which has L as its lattice of closed invariant subspaces lies between these
two canonical algebras.

The spaces Mmax(κ)
def
= Ψ(κ)⊥ and Mmin(κ)

def
= Φ(κ)⊥ are weak* closed

masa-bimodules. They can be conveniently described in their own right, without
reference to the predual Γ(X,Y ). Let us say that an operator T ∈ B(H1,H2) is
supported on an ω-closed set κ if Mχβ

TMχα = 0 for all measurable sets α ⊆ X

and β ⊆ Y such that (α× β) ∩ κ ≃ ∅ [7]. Then

Mmax(κ) = {T ∈ B(H1,H2) : T is supported on κ}.

For Mmin(κ) there are two equivalent descriptions. On one hand, this space
coincides with the weak* closure of the set of all pseudo-integral operators sup-
ported on κ (these are operators canonically associated with certain measures,
and include as a special case all integral operators as well as all composition and
multiplication operators, see [1]); the second description of Mmin(κ) requires the
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introduction of some extra notions, such as that of a slice map, and the reader is
referred to [32] for its complete statement.

Given a masa-bimodule U ⊆ B(H1,H2), one may define its support suppU
to be the smallest, up to marginal equivalence, ω-subset of X×Y which supports
every operator from U [7]. Taking duals in Theorem 4.1, we have that if a weak*
closed masa-bimodule has support κ then Mmin(κ) ⊆ U ⊆ Mmax(κ).

We say that the ω-closed set κ satisfies operator synthesis or is opera-
tor synthetic if Φ(κ) = Ψ(κ) (equivalently, if Mmin(κ) = Mmax(κ)). The next
theorem exhibits the largest known single class of operator synthetic sets. An
ω-closed set κ ⊆ X × Y is called a set of finite width if

κ = {(x, y) ∈ X × Y : fi(x) ≤ gi(y), i = 1, . . . , n},

where fi : X → R and gi : Y → R are real valued measurable functions, i =
1, . . . , n.

Theorem 4.2. Every set of finite width is operator synthetic.

This result was established in [1] in the case where Mmax(κ) is a unital
algebra, and in [32] and [37] in the general case. We note that a particular class
of sets of finite width consists of the sets of the form

{(x, y) ∈ X × Y : f(x) = g(y)},

where f : X → R and g : Y → R are measurable functions; these are the supports
of masa-bimodules that are also ternary rings of operators, and their synthesis
was established in [18] and [30].

We now turn to the relation between spectral and operator synthesis.
Let G be a locally compact group. Recall the mapping N which sends a function
f : G→ C to the function Nf : G×G→ C given by Nf(s, t) = f(st−1), s, t ∈ G.
If G is compact, then N maps the Fourier algebra A(G) of G into Γ(G,G). To see
this, note that, in this case, the constant function 1 on G×G belongs to Γ(G,G)
and, since Nf is a multiplier of Γ(G,G), we have that Nf = (Nf)1 ∈ Γ(G,G).

The following result was established in [36]:

Theorem 4.3. Let G be a compact group. A closed set E ⊆ G satisfies
spectral synthesis if and only if the subset E∗ of G×G satisfies operator synthesis.

On the other hand, if G is abelian and locally compact, the same conclu-
sion was established earlier in [9]. The general case of a locally compact group
was studied in [22]. We note that in this case the mapping N , as seen in Section
3, maps A(G) isometrically into the multiplier algebra S(G,G) of Γ(G,G).
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As closed subset E ⊆ G is said to satisfy local spectral synthesis if Ic(E) ⊆
J(E), where

Ic(E) = {f ∈ I(E) : f is compactly supported}.

The following result was established in [22]:

Theorem 4.4. Let G be a locally compact group. A closed subset E ⊆ G

satisfies local spectral synthesis if and only if E∗ satisfies operator synthesis.

5. Reflexivity and sums. In his seminal work [1], Arveson was in-
terested in questions about reflexive operator algebras. To define the notion of
reflexivity for operator algebras, let, for a Hilbert space H and a set of operators
A ⊆ B(H),

LatA = {P : a projection on H with (I − P )AP = {0}}.

It is trivial to verify that the condition (I − P )AP = {0} is equivalent to the
range PH of the projection P being invariant for every operator in A. This is
the reason why one refers to LatA as the invariant subspace lattice of A. We
note that LatA is indeed a lattice (in fact, a complete one) with respect to the
operations of intersection and closed linear span.

Dually, given a collection L of projections on H, one defines

AlgL = {T ∈ B(H) : (I − P )TP = 0 for all P ∈ L}.

The set AlgL is a unital operator algebra closed in the weak operator topology.
For a subset A ⊆ B(H), we have that A ⊆ Alg LatA. A weakly closed unital
algebra A ⊆ B(H) is called reflexive if A = Alg LatA; in such a case, A is
completely determined by its invariant subspace lattice. We refer the reader to
[4] for a deep analysis of some classes of reflexive algebas and their latitices.

Arveson was interested in the transitive algebra problem: Is it true that a
unital operator algebra A ⊆ B(H) closed in the weak operator topology and such
that LatA = {0, I} must coincide with B(H)? In [1], he showed the following:

Theorem 5.1. If A ⊆ B(H) is a unital algebra containing a masa, such
that LatA = {0, I}, then A is weak* dense in B(H).

The latter result should be compared with the follwing theorem in Har-
monic Analysis which, in the case of the group of the circle, is known as Wiener’s
Tauberian Theorem:
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Theorem 5.2. If J ⊆ A(G) is an ideal such that nullJ = ∅ then J is
dense in A(G).

Of course, Theorem 5.2 is just a restatement of the fact that the empty set
satisfies spectral synthesis. On the other hand, Theorem 5.1 can be reformulated
by saying that every weak* closed algeba containing a masa such that LatA =
{0, I} is automatically reflexive.

We thus see that the notion of reflexvity is intimately related to the notion
of synthesis. It was extended from algebras to arbitrary subspaces by Loginov
and Shulman [21]: for a subspace U ⊆ B(H1,H2) (where H1 and H2 are Hilbert
spaces), let

Ref U = {T ∈ B(H1,H2) : Tξ ∈ Uξ, for all ξ ∈ H1}

be the reflexive hull of U . The subspace U is called reflexive if U = Ref U . It is
easy to observe that a unital algebra is reflexive as an algebra if and only if it is
reflexive as a subspace. The following result was shown in [7]:

Theorem 5.3. Let (X,µ) and (Y ν) be standard measure spaces, H1 =
L2(X,µ), H2 = L2(Y, ν) and let U ⊆ B(H1,H2) be a DY ,DX -bimodule. The
following are equivalent:

(i) U is reflexive;
(ii) there exists an ω-closed set κ ⊆ X × Y such that U = Mmax(κ).

We thus see, via Theorem 5.3, that the property of operator synthesis can
be expressed as a property of automatic reflexivity: an ω-closed set κ ⊆ X×Y is
operator synthetic if and only if every weak* closed masa-bimodule whose support
is (marginally equivalent to) κ is automatically reflexive.

One of the longest standing open questions in Harmonic Analysis is the
union problem:

Question 5.4. If E1 and E2 are closed subsets of a locally compact non-
discrete group which satisfy spectral synthesis, does their union E1 ∪ E2 satisfies
spectral synthesis as well?

For a number of particular cases, Question 5.4 is resolved; for example, it
is known that the union of a set satisfying spectral synthesis and a closed subgroup
satisfies spectral synthesis. In [6], we initiated the study of the following question:

Question 5.5. Given two reflexive spaces S,T ⊆ B(H1,H2), when is the

weak* closure S + T
w∗

of their sum reflexive?

Question 5.5 is closely related to the union problem. To see this connec-
tion, we note that it can easily be verified that if κ1 and κ2 are ω-closed subsets
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of X × Y then

Ref(Mmax(κ1) +Mmax(κ2)) = Mmax(κ1 ∪ κ2).

Therefore, an affirmative answer to Question 5.5, in the case S = Mmax(κ1) and
T = Mmax(κ2), with κ1 and κ2 operator synthetic, implies that κ1∪κ2 is operator
synthetic.

Question 5.5 turns out to be closely related to the class of idempotent
Schur multipliers, called simply Schur idempotents in the sequel. We denote
by I the collection of all Schur idempotents. To explain this connection, recall
that (X,µ) and (Y, ν) are standard measure spaces, H1 = L2(X,µ) and H2 =
L2(Y, ν). By Proposition 3.1, Schur idempotents correspond precisely to the
Schur multipliers which are characteristic functions of some measureble subsets
κ ⊆ X×Y . By Corollary 3.2, Schur multipliers are ω-continuous, and hence such
sets κ are necessarily marginally equivalent to sets that are both ω-closed and ω-
open. No characterisation is known of the class of sets κ for which χκ ∈ S(X,Y ).
One can, however, describe completely the Schur idempotents of norm one; this
was achieved in [17], where it was shown that these are the maps of the form
Sχκ , where κ is marginally equivalent to a set of the form ∪∞

i=1αi × βi, where
{αi}

∞
i=1 (resp. {βi}

∞
i=1) is a family of pairwise disjoint measurable subsets of X

(resp. Y ). The Schur idempotents are easily seen to form a Boolean algebra
with respect to the operations Φ ∧ Ψ = ΦΨ and Φ ∨ Ψ = Φ + Ψ − ΦΨ with top
element the identity and bottom element the zero idempotent. A well-known open
problem asks whether the Boolean algebra generated by the Schur idempotents
of norm one exhausts all Schur idempotents. An evidence for an affirmative
answer is provided by Harmonic Analysis: if G is an amenable locally compact
group then the idempotents in M cbA(G), which in this case coincides with the
Fourier-Stieltjes algebra B(G) of G, are precisely the elements of the subset ring
generated by the cosets of open subgroups of G [12].

Let Φ be a Schur idempotent. It was shown in [6] that the range ranΦ
of Φ is automatically reflexive; hence, if κ is the ω-closed (and, simultaneously,
ω-open) set such that Sχκ = Φ, then κ satisfies operator synthesis. Moreover,
if V is any reflexive space, then the algebraic sum ranΦ + V is automatically
reflexive (and hence automatically weakly closed). A similar conclusion remains
true in the more general case where ranΦ is replaced with the intersection of a
sequence of decreasing ranges of uniformly bounded Schur idempotents. In order
to describe the precise generality in which similar results remain true, we need
the following definition.

Definition 5.6 [6]. (i) A subspace M ⊆ B(H1,H2) is called I-injective
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if M = ranΦ for some Φ ∈ I.
(ii) A subspace M ⊆ B(H1,H2) is called approximately I-injective if

there exists a sequence (Φn)n∈N ⊆ I and a constant C > 0 such that ‖Φn‖ ≤ C,
ranΦn+1 ⊆ ranΦn, n ∈ N, and M = ∩∞

n=1 ranΦn.
(iii) A closed subspace V ⊆ B(H1,H2) is called I-decomposable if there

exists a sequence (Φn)
∞
n=1 ⊆ I and a sequence (Wn)

∞
n=1 of I-injective subspaces

such that

(a) there exists C > 0 with ‖Φn‖ ≤ C, n ∈ N;

(b) V ⊆ ranΦn +Wn for each n;

(c) Wn ⊆ V for each n;

(d) if (Tn)n∈N is a sequence of operators such that Tn ∈ ranΦn for every n ∈ N

with a weak* cluster point T , then T ∈ V.

Let us point out that, since Schur multipliers are masa-bimodule maps,
the three classes of subspaces just defined consist of reflexive masa-bimodules.
Clearly, every I-injective masa-bimodule is approximately I-injective, while every
approximately I-injective masa-bimodule is I-decomposable. These three classes
are however distinct from each other. To see the difference between the classes
of I-injective and approximately I-injective subspaces, note that any continuous
masa is an approximately I-injective space – it is the intersection of a decreasing
sequence of ranges of Schur idempotents of norm one – but such a masa is never
the range of a weak* continuous masa-bimodule projection itself, by a result of
Arveson’s (see [4]). We note that the class of approximately I-injective masa-
bimodules contains the spaces Mmax(κ), where κ has the form

κ = {(x, y) : f(x) = g(y)},

f : X → R and g : Y → R being measurable functions.
The class of I-decomposable masa-bimodules is, on the other hand, strictly

larger than the class of approximately I-injective masa-bimodules. Indeed, it was
shown in [6] that the reflexive masa-bimodules whose support is a subset of the
form

{(x, y) : f(x) ≤ g(y)},

where f and g are real valued measurable functions, are always approximately
I-decomposable, but, for example, the Volterra nest algebra, whose support falls
into the latter class (see [4]) is not approximately I-injective.
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The most general result concerning Question 5.5 proved in [6] is the fol-
lowing:

Theorem 5.7. Let Ui be an I-decomposable masa-bimodule, i = 1, . . . , n,
and U = ∩n

i=1Ui. Let V be a reflexive masa-bimodule. Then the masa-bimodule

U + V
w∗

is reflexive.

Theorem 5.7 has a number of corollaries concerning operator synthesis.
For example, as an immediate consequence we obtain the following:

Corollary 5.8. If κ is a set satisfying operator synthesis and λ is a set
of finite width, then the union κ ∪ λ satisfies operator synthesis.

Using the results presented in Section 4, one can use Theorem 5.7 to
obtain corollaries about spectral synthesis as well; we refer the reader to [6] for
details.

6. Open questions. In this short section, we collect some open prob-
lems centred around the topics descibed in the previous sections. The first one
was raised in [31].

Question 6.1. Is the class of weak* closable multipliers distinct from the
class V(X,Y )?

Question 6.2. Are the supports of approximately I-injective masa-
bimodules necessarily operator synthetic?

We note that, by [6], an affirmative answer to Question 6.2 would auto-
matically imply that such sets are operator Ditkin (see [32] for the definition of
this notion).

The characterisation of the subsets κ ⊆ X × Y wih the property that
χκ is a Schur multiplier is a well-known open problem in the area. In [5], those
sets κ for which all bounded functions supported on κ are Schur multipliers were
characterised, in the case X and Y are equipped with counting measures, while
in [25], a closely related setting for groups was considered. Let us call a subset
κ ⊆ X × Y satisfying the above property a hereditarily Schur bounded.

Question 6.3. Let (X,µ) and (Y, ν) be (standard) continuous measure
spaces. Define and study the question of hereditarily Schur bounded sets κ ⊆
X × Y .

We note that any developments around Question 6.3 should start with
identifying the “right” definition of hereditarity in the continuous setting; it is



Interactions between harmonic analysis and operator theory 31

easy to see that the naive straightforward translation from the discrete case is
not of interest.

For the next question, note that in [31] it was shown that the triangular
truncation on [0, 1] × [0, 1], which corresponds to Schur multiplication by the
characteristic function of the “triangular” set {(x, y) : x ≤ y}, is a closable
multiplier.

Question 6.4. For which subsets κ of X×Y is χκ a closable multiplier?

We finally turn to Question 5.5. All known results concerning this ques-
tion are about masa-bimodules. In view of the connections of the question with
synthesis, it would be of interest to study it more generally; this may lead to
certain insight concerning possible “non-commutative” versions of synthesis.

Question 6.5. Can one exhibit classes of subspaces, other than masa-
bimodules, for which Question 5.5 has an affirmative answer?
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