INTERNATIONAL SYMPOSIUM AT FACULTY OF MEDICAL SCIENCES "Current achievements and future perspectives in medical and biomedical research" November 24, 2015 - Stip

Drug development based on radiolabeled antibodies

- Emilija Janevik
- University Goce Delcev Stip
- Republic of Macedonia

Flow chart of molecular imaging in drug development.

Elisabeth G.E. de Vries et al. Cancer Discovery 2011;1:25-28

First labelling For diagnosis

Schwarz, A. and Steinstrasser, A. (1987), A novel approach to Tc-99m-labeled monoclonal antibodies [abstract]. *J. Nucl. Med.*, **28**, 721.

Figure 4 - Static images obtained with a gamma camera of the normal mice (up) and with tumor (down) after 24 hours post injection iv of the antibody ior egf/r3 labeled with 99mTc. Tumor (T), thyroid (Ty) and liver (L).

Radiopharmaceuticals in diagnostics and therapy

- Radioimmunotherapy of cancer
- Radioimmunoscintigraphy
- Pretargeted imaging of cancer
- Peptide receptor radionuclide imaging
- Peptide receptor radionuclide therapy

Established Therapeutic Radionuclides Pursued

Radionuclide	Half-life	Mode of decay	Energy (keV)		
THERAPY					
90Y	<mark>64.1 h</mark>	β-	2282.0		
131	8.0 d	β-, γ	970.8		
¹⁵³ Sm	46.3 h	β ⁻ , γ	808.4		
⁸⁹ Sr	50.5 d	β-	1496.6		
¹⁷⁷ Lu	6.7 d	<mark>β⁻,</mark> γ	498.2		
^{188/186} Re	16.9 h	β⁻, γ	2120.4		

Evolution of Monoclonal Antibodies

Human

Humanized

Over houndred different types of antibodies – potential for therapy, potential for radioimmunotherapy

Antibody targeting of tumors

Some like it hot: radioimmunotherapy

David M. Goldenberg

lood 14 MAY 2009 I VOLUME 113, NUMBER 20

valent hapten-bearing peptides designed for dine-131 pretargeted radioimmunotherapy Janevik-Ivanovska, E Gautherot, M Hillairet de bisferon, M Cohen, ...

oconjugate chemistry 8 (4), 526-533

adiolabeled bivalent haptens for tumor munodetection and radioimmunotherapy

Gruaz-Guyon, E Janevik-Ivanovska, O Raguin, C De abriolle-Vaylet, ...

ne Quarterly Journal of Nuclear Medicine and olecular Imaging 45 (2), 201

Preclinical and clinical application of bispecific antibodies anti-CEA/anti histamine labeled with 99mTc/188 Re :

Fusion images - autoradiography / microscopic photo

Tumor 3 hour after application

Tumor 3 hour after application

Antibody Conjugate

These changes are not necessarily independent The vast majority of these occur at miniscule levels or not at all They are generally not characterized in many products

Characterization of structure and heterogeneity is not enough- \rightarrow

	S	Conjugate Antibody	Linkage OK	MAb OK	Toxin OK	Detect- able	Scen- ario #	End State
							1	Accept.
		1	P=?	P=?	P=?		2	Batch Fails
		22.112		1.00	-	P=?	3	No Efficacy
				10 A 1			4	Batch Fails
	P=?				P=?	5	Toxicity	
C							6	Batch Fails
						P=?	7	Toxicity
t								

P=? Probabilistic Risk Assessment

Very Complex Combinations

Commercially available – only TWO!! – TREATMENT OF NHL - hematology

Anti-CD20 (Rituximab= Mabthera®) mechanism of action

Adapted from Male D, et al., Advanced Immunology 1996: 1.1–1.16

- Who is the best one... Antibody... Isotope... Labelling methods... Animal model...
 - **Clinical trials** ...

waiting on the door

Preclinical data ...animal models

The Quest for the optimal radionuclide for RIT

J Nucl Med. 2004;45:327-337

microPET imaging of VEGF-A expression with ⁸⁹Zr-bevacizumab

microPET imaging of VEGF-A expression with ⁸⁹Zr-bevacizumab

⁸⁹Zr-bevacizumab, 7 days p.i.

⁸⁹Zr-bevacizumab + 300 µg cold

Pretargeted immunoPET imaging of cancer

⁶⁸Ga-immunoPET

Inflammation

Schoffelen et al. Mol Cancer Ther 2009; in press

Flow chart of molecular imaging in drug development.

Clinical trials.....

Potential Advantages of ¹⁷⁷Lu for Brain Tumor Treatment

Property	131	¹⁷⁷ Lu
Half-life (days)	8.1	6.7
Ave. β-energy (keV)	182	133
Mean range (mm)	0.91	0.67
Max. range (mm)	2.3	1.8
γ-ray energy (keV)	364, 637	113, 208
γ-ray intensity (%)	81,7	7, 11

Assume 2-cm radius cavity (33.5 cm³)

Dose to Brain beyond SCRC Interface

Brain volume (cm³) > threshold dose

Threshold				
Dose (Gy)	131	¹⁷⁷ Lu	90 y	Ì
110	2.05	1.02	11.70	
50	4.73	1.79	18.12	
10	180.3	3.64	31.14	

Preliminary results (H. R. Mäcke)

Mantle cell lymphoma

Follicular lymphoma

FDG-PET ¹⁷⁷Lu-DOTA-Rituximab

FDG-PET

Post

Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology?

- ²¹³Bi labeled anti-CD33 monoclonal antibody HuM195 was investigated in patients with myeloid leukemia
- ²¹¹At-anti-tenascin for glioblastoma
- ²²⁵Ac-HuM195 for myeloid leukemia
- ²¹²Pb-Trastuzumab for ovarian cancer
- ²¹¹At-MX35 F(ab')2 for ovarian cancer
- ²¹³Bi-substance P for glioblastoma

Theranostics: combining imaging and therapy

Radioiodine: the classic theranostic agent

β⁺/β⁻isotopes -actual ⁶⁴Cu and ⁶⁷Cu ⁶⁷Ga and ⁶⁸Ga

Work performed in Faculty of Medical Sciences – from 2011...

Establishment and standardization of a technology for ready to use production of cold kit formulation of DOTA-Rituximab and peptide based radiopharmaceuticals for labeling with Lu-177 and Y-90

Development and preclinical evaluation of therapeutic radiopharmaceuticals based on Lu-177 and Y-90 labeled monoclonal antibodies

IAEA - Radioisotope Production and Radiation Technology Section, Doctoral Grant under CRP

Darinka Gjorgieva - Ackova Subject: Chemical analysis of labeled product using not radioactive Lutetium / Ytrium and determination of the structure of obtained freeze dried products

Katarina Smilkov

Subject: Established protocol for freeze-draying of bifunctional ligand -Rituximab

Schematic representation of the conjugation reaction of rituximab with p-SCN-Bn-DOTA

Rit-DTPA Aug/mi

COOH

COOH

Animal studies - Double xenografts in Nude mice specific vs non-specific uptake

Patient – Dog with B limphoma

- To use the same method of freeze drying for the other working antibodies, other anti CD-20 (biosimilary), - formulation of stable immunoconjugate of the HER2-targeting trastuzumab – potential for rapid labelling with Gallium-68
 Other isotopes with the same antibody
 - To participate in clinical trial existing PET facility with production laboratory dedicated for GPM small scale production of radiopharmaceuticals for therapy

Accreditation of the Laboratory of Radiopharmacy requested requirements or need of challenge

Define methods and procedures for accreditation

ISO

MKC EN Organize education and trainings for stuff 17025

Make internal check and audits

> Write all documentation, procedures and quality manual

Thank you

