Lutetium 177 labeled rituximab: opened gateway to better radioimmunotherapy

Smilkov Katarina,
Gorgieva Ackova D, Janevik Ivanovska E,
Chinol M, Carolo A, Gjorgoski I
Paul Erlich

- Side chain theory of immunity
- Antibodies - magic bullets 1899/1906

Therapy of Non Hodgkin’s Lymphoma (NHL)

Zevalin®
Ibritumomab tiuxetan labeled with Y-90

Bexxar®
Tositumomab labeled with I-131
Are antibodies really “magic bullets”?

Therapy of Non Hodgkin lymphoma (NHL)

- Rituximab (Rituxan®),
- Obinutuzumab (Gazyva™),
- Ofatumumab (Arzerra®),
- Ibritumomab tiuxetan (Zevalin®)

- NHL is sensitive to radiation
- can be curative in early stage NHL
Design of new radiopharmaceuticals

- Antibody selection
- Suitable radionuclide
- Formulation issues
- Stability issues
- Pre-clinical studies
- Clinical studies
Selection of antibodies

- Target?
- Receptor?
- Affinity?
- Immunogenicity?

Murine
Chimeric
Humanized
Human

- antibody fragments
- tumor pretargeting
- type of administration

Radioisotope selection

- Diagnosis?
- Therapy?

Properties?
Availability?

SPECT/PET?
Rituximab

B-cell

Rituximab

\(p\text{-SCN-Bn-DOTA} \)

\(p\text{-SCN-Bn-DTPA} \)

\(1\text{B4M-DTPA} \)

\(^{177}\text{Lu} \)
Why 177Lu?

<table>
<thead>
<tr>
<th>Energy emitted</th>
<th>90 Yttrium</th>
<th>131 Iodine</th>
<th>177 Lutetium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta (2.3 MeV)</td>
<td>Beta (0.6 MeV)</td>
<td>Beta (max 0.5 MeV)</td>
<td>Beta (max 0.5 MeV)</td>
</tr>
<tr>
<td>Gamma (0.36 MeV)</td>
<td>Gamma 208 keV (11%)</td>
<td>Gamma 208 keV (11%)</td>
<td>Gamma 208 keV (11%)</td>
</tr>
<tr>
<td>Half-life</td>
<td>64 hours</td>
<td>8.04 days</td>
<td>6.71 days</td>
</tr>
<tr>
<td>Mean path-length</td>
<td>3.9 mm</td>
<td>1 mm</td>
<td>0.7 mm</td>
</tr>
</tbody>
</table>
Bifunctional chelating agents

Rituximab:BFCA

1:20

p-SCN-Bn-DOTA

p-SCN-Bn-DTPA

1B4M-DTPA
Conjugation

Lyophilisation

Lyophilized kits
Radiolabeling of kits & physicochemical evaluation

- reconstitution in 0.9% NaCl, in the presence of acetate ions at pH 7.0 with Lutetium-177 with specific activity of 555 GBq/mg, at room temperature
Radiolabeling with ^{177}Lu after reconstitution of lyophilisates

^{177}Lu-DOTA-rituximab

^{177}Lu-DTPA-rituximab

^{177}Lu-1B4M-DTPA-rituximab

- High radiochemical purity
Conclusion

- Lyophilized kits, ready to label with ^{177}Lu
- Candidates for pre-clinical cell and animal studies
- Candidates for new ready to label rituximab for NHL therapy
This research has been performed in the frames of the Coordinated Research Project, financed by the International Atomic Energy Association (IAEA).