Substance P – a possible PET diagnostic agent

Katarina Smilkov¹, Darinka Gjorgieva Ackova¹, Adriano Duatti³, Giovanni Di Domenico³, Remo Guerrini², Emilija Janevik-Ivanovska¹

BACKGROUND

Supstance P (SP) is the most prominent member of tachykinine family and has been known to trigger biological responses by linking to (mostly) NK 1 receptors. The presence of functional NK1 receptors has already been documented in malignant brain tumors of glial origin, medullary thyroid cancer, non-small cell lung cancer and pancreatic carcinoma. Also, some studies have confirmed the presence of Substance P receptors in breast cancer, colon cancer and lymphomas. Development of diagnostic equivalents to Substance P, may allow easier localization of primary cancers and targeting a therapeutic radioisotopes to these receptors may be used for the treatment of malignancies that express them, through possible reduction of the blood supply and tumor draining.

METHODOLOGY

cell surface binding after incubation with NK1 receptor expressing U-87 MG cells, and negative controll cell line L-929. The cell culture was incubated for 15 min with the radiolabeled Substance P and the activity was measured in gamma counter. The results were performed in triplicate and were presented as a percentage of initial activity added. The preliminary whole-body biodistribution studies were carried out with ^{99m}Tc labeled SP using a hybrid SPECT/CT YAP(S)PET (small-animal tomography scanner).

^{99m}Tc and ¹⁸⁸Re radiolabeled Substance P was tested for

Table 1. Cell uptake, expressed as a percentage of the initial activity added.

Cell line	% of initial added activity [99mTc(N)(Cys-Cys-SP)(PCN)]	% of initial added activity [188Re(N)(Cys-Cys-SP)(PCN)]
U-87 MG	58,49 ± 0,35	$61,37 \pm 1,02$
L-929	2,95 ±1,17	$1,96 \pm 0,95$

RESULTS

Our results using ^{99m}Tc and ¹⁸⁸Re radiolabeled Substance P, demonstrated that the affinity of these radioconjugates for NK1 receptor expressing cells, showed pronounced cell surface binding after incubation with U-87 MG cells, compared to the negative control cell line L-929 (Table 1). Further preliminary whole-body biodistribution studies with ^{99m}Tc labeled SP using a hybrid SPECT/CT YAP(S)PET small-animal tomography scanner, showed a predominant kidney elimination 60 min post injection, which is expected for peptides, and an uptake in a region associated with the thymus. Although cardiac uptake was suspected in this region, it was excluded with *ex-vivo* measurement of the thymus gland, which after 60 min. showed high, detectable uptake of 0.0132% IA/g. This finding confirmed the previous findings about the localization of specific SP binding sites.

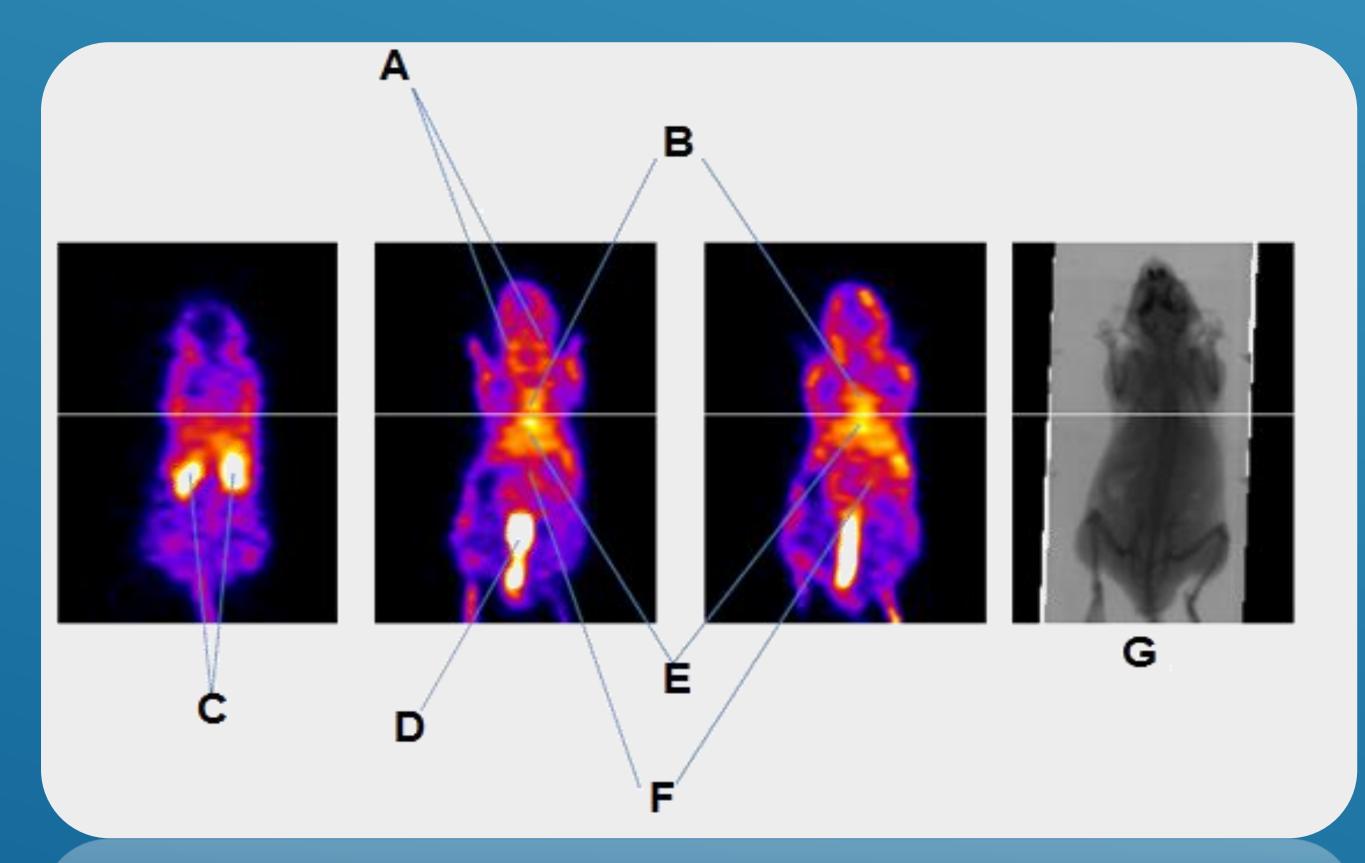


Fig. 1. Representative coronal sections recorded 20 minutes after administration of [99mTc(N)(Cys-Cys-SP)(PCN)] in mouse:

A) salivary glands, B) heart and/or thymus, C) kidney, D) bladder, E) liver, F) digestive system, G) X-ray image of the test mice.

CONCLUSION

Following the success of ⁶⁸Ga-DOTATOC, and knowing that receptor targeted imaging may provide better diagnostic outcomes in comparison with registering a high glucose uptake in the affected area using [¹⁸F]FDG, we believe that it would be interesting to consider new radiochemistry approaches of radiolabeling Substance P with ⁶⁸Ga. ⁶⁸Ga (or other PET radionuclides) may provide better screening and possible detection of malignant brain tumors of glial origin, but also other diseases known to express NK1 receptors.

¹ Faculty of Medical Sciences, Goce Delcev University, Stip, Macedonia

² Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy

³ Laboratory of Nuclear Medicine, Department of Experimental Medicine, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy