
Finding Forensic Evidence for Several Web Attacks

Nataša Šuteva, Aleksandra Mileva

Faculty of Computer Science

University Goce Delčev

Štip, Republic of Macedonia

{natasa.suteva, aleksandra.mileva}@ugd.edu.mk

Mario Loleski

Forensic Department

Ministry of Interior of the Republic of Macedonia,

Skopje, Republic of Macedonia

mario_loleski@moi.gov.mk

Abstract—Symantec Internet Security Threat Report 2014 is showing a horrified fact, that when an attacker looked for a site to

compromise, one in eight sites made it relatively easy to gain access. Digital forensics is one of our biggest line of defense against cyber

criminals, because it provides evidence against them. For attacks against web applications, web application forensics is the branch

which gives most of the answers. First, the victim machine usually gives some data, which are then used for identifying possible

suspects, and this is followed by forensic analysis of suspects’ devices, like computers, laptops, tablets, and even smart phones. In this

paper, we use an attack scenario against the known vulnerable web application WackoPicko, using several web attacks: SQL Injection,

stored and reflected XSS, remote file inclusion, and command-line injection. We use post-mortem computer forensic analysis of

attacker and victim machine to find some artifacts in them, which can help to identify and possible to reconstruct the attack, and most

important, to obtain valid evidence which holds in court. We assume that the attacker was careless and did not perform any anti-

forensic techniques on its machine.

Keywords- Web Application Forensics; SQL Injection; File Inclusion; stored XSS; reflected XSS; command-line injection.

I. INTRODUCTION

Vulnerability scans of public websites carried out in 2013 by Symantec’s Website Vulnerability Assessment Services found that
77 percent of sites contained vulnerabilities, and 16 percent of them were classified as critical vulnerabilities that could allow
attackers to access sensitive data, alter the website’s content, or compromise visitors’ computers (Symantec, 2014). The OWASP
(Open Web Application Security Project) Top Ten (2013) each year offers a list of the most critical Web application vulnerabilities
for the previous year, and for the 2013, the list includes different types of injection, broken authentication and session management,
cross-site scripting, secure misconfiguration, etc. Many organizations lose their reputation or revenue, because of various hackers’
attacks. Hacking government institutions’ web sites is today means of war and terrorism. The cybercrime is a global problem, and
the computer forensics is one way to combat it. Computer forensics prepares legal evidences and give answers to many questions of
legal systems related to computers. Analyzed forensic images are the primary evidence. Web Application Forensics is a special
branch of the Digital Forensics, which deals with web attacks. It usually starts with an analysis of various log files in the victim
machine (Segal, 2002).

We chose to investigate five types of attacks, SQL injection, stored and reflected XSS, remote file injection, and command-line
injection, which are usually conducted through a web browser. We are interested in what kind of post-mortem forensic artifacts can
be found after performing each attack separately, on the attacker and victim machine. Also, we assume that the attacker did not
perform any anti-forensic techniques (format, wipe, log edits, etc.) on both machines. As a tested web application, we use known
vulnerable WackoPicko, first introduced by Doupe et al. (2010). We are aware that conducted research is very platform specific, so
our results holds for the dominant Apache web server and Kali Linux attacker’s machine. But similar artifacts can be also expected
on other related attacker/victim platforms, too.

We showed that all types of conducted attacks leave many traces on both machines, most of them in log files on the victim and
web history in the attacker’s machine. Maybe, command-line injection attack leaves the fewest artifacts on the attacker’ machine.

After Introduction Section, Section II is devoted to attacking scenario, including a short description of vulnerable web
application WackoPicko, and detailed description of the five performed attacks: SQL injection, stored and reflected XSS, remote
file inclusion and command-line injection. In Section III we give a brief overview of performing forensic analysis of both
machines, followed by discussion of the results and final conclusions.

A. Previous work

To our knowledge, there are no many papers for forensic analysis of specific web attacks. Andrade and Gan (2012) investigate
passive attacks for determination of vulnerabilities of Linux Ubuntu server, using Linux BackTrack 5 tools, including Metasploit,
Nessus, Whatweb, Nmap, PHP-Backdoor and Weevely. They use netstat tool and server log files for forensic investigation of the
attacks. Good forensics analysis of Linux RAM is given in (Urrea, 2006). Shulman and Waidner (2014) show how digital
signatures from DNSSEC can be useful in forensic analysis. Snow et al. (2011) propose a new framework for enabling fast and
accurate detection and forensic analysis of code injection attacks.

II. ATTACK SCENARIO

For the attack, we use virtual WMware machine with installed Kali Linux version 1.0.9a (which is Debian derivate) and with IP
address 192.168.60.163.

A. Vulnerable web application WackoPicko

The vulnerable WackoPicko application is a photo sharing and photo-purchasing site, where users can upload photos, browse

other user’s photos, comment on photos, and purchase the rights to a high-quality version of a photo. It has 10 vulnerabilities

accessible without authentication (reflected and stored XSS, reflected XSS behind JavaScript, predictable Session ID for admin,

weak admin password, reflected SQLI, command-line injection, file inclusion, unauthorized file exposure, and parameter

manipulation), and 6 vulnerabilities accessible after logging into the web site (multi-step stored XSS, stored SQLI, directory

traversal, forceful browsing, logic flaw and reflected XSS behind Flash).

The web server hosting WackoPicko and used in our experiments was run on the OWASP Broken Web Applications Project

virtual machine [8], which has numerous intentionally vulnerable applications (we ignore other applications). The following

technologies are used: Apache 2.2.14 on Linux Ubuntu 10.04.1, PHP/5.3.2-1ubuntu4.5 with Suhosin-Patch, and MySQL 5.0.67.

The IP address of the victim server is 192.168.60.141.

B. Conducted attacks

We conducted five types of attacks on the WackoPicko, including:

 SQL Injection on the login form;

 Stored XSS on the guestbook page;

 Reflected XSS on the search form;

 Remote file inclusion with null byte injection;

 Command-line injection on the password field.

SQL Injection on the login form is done by injecting a known string 1’or 1=1#, which allow us to login without a password as
Sample User.

On the guestbook page visitors can leave comments to every picture. These comment fields are not properly escaped, so we can
use them for stored XSS attack. We insert the following script <script>location=" http://www.ugd.edu.mk/
index.php/en;"</script> in the comment on the picture ugd_logo.jpg (we uploaded this picture previously, and it is saved as 4
images on the server: ugd_logo.jpg, ugd_logo.128.jpg, ugd_logo.128_128.jpg and ugd_logo.550.jpg). Whenever user visits the
guestbook page and try to see the targeted picture in full size, the attack is triggered and the JavaScript code will be executed,
redirecting the visitor to the link www.ugd.edu.mk.

WackoPicko has search.php script with search field in which, the query parameter is vulnerable to reflected XSS attack. We
have used one of the standard examples for performing this kind of attack, which returns the PHPSESSID session cookie in the
dialog box of the user’s web browser:

<script>alert(document.cookie)</script>

In WackoPicko web application, the admin page is vulnerable to file inclusion. We use remote file inclusion in two ways. In the
first way, using the browser, we upload two public accessible shells b374k-shell.php version 2.8 (used as b374k-2.8.php) and
c99shell.php and one picture ugd.jpg, using the form for uploading pictures. We can run the shells using admin page and null byte
injection, for example

http://192.168.60.141/WackoPicko/admin/index.php?page=http://192.168.60.141/WackoPicko/upload/b374-2.8/b374-2.8%00.php.

Using this shell, we have removed the folder cart (rm -rf cart) and we have created new folder papka (mkdir papka). Using
the shell c99shell.php, we have edited the page http://192.168.60.160/WackoPicko/test.php, by adding a new link to the page
http://www.stip.gov.mk. We chose two different shells, because b374k-2.8.php sends commands to the server as part of the POST
request body, and c99shell.php sends commands as parameters in the URL.

Other remote file inclusion attack uses the known hacker tool Metasploit (from Kali Linux) and its Reverse TCP Payload
command, for generating the reverse shell payload /root/napad.php on the attacker’s machine. The procedure for uploading and
using this shell on the victim machine is the same as previous. Using this shell, we have deleted the file error.php (rm error.php)
and uploaded the file stip.html (upload /root/stip.html).

https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project#tab=Main
http://www.ugd.edu.mk/

There is a passcheck.php script for checking password strength. Its password field is vulnerable to command-line injection.
Using this vulnerability, we have deleted the file tos.php (123|rm -f tos.php #).

Usually, attackers use IP spoofing, but in this case we are not doing that, because we want to see the artifacts left on the
attacker’s machine, by performing some web attacks.

III. PERFORMING FORENSIC ANALYSIS

In forensics expertise there are three main phases: acquisition, analysis, presentation.

In the acquisition phase, the state of digital system, with all allocated and unallocated areas, is saved for later analysis. This
copy is called an image. For the preserving integrity of the image, the hash result of the image is calculated and saved. For making
the image we used the free AccessData FTK Imager 3.1.

The analysis phase takes the acquired data and involves examination of every piece of data from the evidence. We are starting
with hypothesis for what kind of attack can be found. This phase includes search with keywords (names of files or folder that we
assume that are produced from the attack). For analysis we are using two forensic tools - Autopsy (The Sleuth Kit, freeware), and
WinHex (freeware).

In the last presentation phase, conclusions are made from the analysis and it is necessary to prepare a documentation that can be
in a readable format for people who work in courts. This document is called forensic report. Clearly, the final part with forensic
report is not done in this research.

A. Analysis of the victim server

The analysis of the victim image is done with the following forensic techniques:

 File system analysis

 Recovering of deleted files and folders

 Log file analysis

 Keyword search

 Overview and keyword search of the swap area

In terms of the file system analysis and recovering of deleted data, the investigator seeks for unusual entries in the log files and
specially POST data, script abuses and unusual parameters in the URL, files created and/or modified around the suspected time of
the attack, many accesses from the same IP address, etc. We have found that several new php scripts are present in the system, and
that some files are recently changed. We can use their names in keyword search for both machines. We have examined the log files:
error.log, access.log, mysql.log, and their versions with different extensions, for example, log.1, or log.1.gz. Again, we assume that
we are dealing with careless attacker that did not change the log files. From the log files analysis, we can first determine that the
attack on this server is performed from the IP address 192.168.60.163; and looking at user agent string ("Mozilla/5.0 (X11; Linux
x86_64; rv:24.0) Gecko/20140924 Firefox/24.0 Iceweasel/24.8.1"), we can determine that the attacker’s machine runs on 64-bit
version of Linux operating system, with Mozilla Firefox 24.0 web browser based on Gecko. Additionally, Iceweasel is a Debian
rebranded version of Firefox, which means that the Linux operating system is Debian derivate. We have obtained also traces that
show the use of b374-2.8.php, c99shell.php and napad.php shells, and even the modification of the file test.php with c99shell (see
Table I) from 192.168.60.163.

In mysql.log file one can find the following traces of SQL injection and stored XSS attacks, which were conducted on
December 12, 2014 from 11:28:06 till 11:48:12:

141220 11:28:06 558 Connect wackopicko@localhost on

558 Init DB wackopicko

558 Query SELECT * from `users` where `login` like '-1'or 1=1#' and `password` = SHA1(CONCAT('', `salt`)) limit 1

141220 11:43:16 571

571 Query INSERT INTO `pictures` (`id`, `title`, `width`, `height`, `tag`, `filename`, `price`, `high_quality`, `created_on`,
`user_id`) VALUES (NULL, 'ugd_logo', '128', '128', 'ugd_logo', 'ugd_logo/ugd_logo', '2', 'MzEzMjM5Mw==', NOW(), '12')

572 Query SELECT pictures.filename, pictures.id, pictures.user_id, users.login from pictures, users where pictures.id != '17' and
pictures.tag like 'ugd_logo' and pictures.user_id = users.id order by RAND() limit 2

573 Query INSERT INTO `comments_preview` (`id`, `text`, `user_id`, `picture_id`, `created_on`) VALUES (NULL,
'<script>location=\"http://www.ugd.edu.mk/index.php/en/\";</script>', '12', '17', NOW())

141220 11:48:12 574

574 Query INSERT INTO `comments` (`id`, `text`, `user_id`, `picture_id`, `created_on`) VALUES (NULL,
'<script>location=\"http://www.ugd.edu.mk/index.php/en/\";</script>', '12', '17', '2014-12-20 11:48:12')

The first one, show us how the attacker’s SQL injection query is processed, the second one is for uploading of a picture, and the
third one tells us the creation date and time for stored XSS attack as a comment under the picture with id 17 from the user with
user_id 12. These traces can be connected to the machine 192.168.60.163 using logs from access.log file that show accesses to the
WackoPicko’s scripts login.php, upload.php, preview_comment.php and add_comment.php in the same times. One example is the
following trace for uploading a file

192.168.60.163 - - [20/Dec/2014:11:43:16 -0500] "POST /WackoPicko/pictures/upload.php HTTP/1.1" 303 20
"http://192.168.60.141/WackoPicko/pictures/upload.php" "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140924 Firefox/24.0
Iceweasel/24.8.1"

192.168.60.163 - - [20/Dec/2014:11:43:16 -0500] "GET /WackoPicko/pictures/view.php?picid=17 HTTP/1.1" 200 1211
"http://192.168.60.141/WackoPicko/pictures/upload.php" "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140924 Firefox/24.0
Iceweasel/24.8.1"

TABLE I PART OF THE KEYWORD SEARCH ON THE VICTIM MACHINE WITH COMMENTS, PRESENTED ALSO AS ENTRIES IN ACCESS.LOG

No. Search hints Name Path Modified Accessed
Inode

Modification
Comment

1

192.168.60.163 - - [20/Dec/2014:12:03:17 -

0500] "GET
/WackoPicko/admin/index.php?page=http://

192.168.60.141/WackoPicko/upload/b374k-

2.8/b374k-2.8%00.php HTTP/1.1" 200
1780 "-" "Mozilla/5.0 (X11; Linux x86_64;

rv:24.0) Gecko/20140924 Firefox/24.0

Iceweasel/24.8.1"

access.log \var\log\apache2
22/12/2014

09:20:12 +1

19/12/2014

19:46:07 +1

22/12/2014

09:20:12 +1

Successful use of

the script
b374.php with

null byte

injection and
GET request

from IP address

192.168.60.163

2

192.168.60.163 - - [20/Dec/2014:12:05:31 -

0500] "POST

/WackoPicko/admin/index.php?page=http://
192.168.60.141/WackoPicko/upload/b374k-

2.8/b374k-2.8%00.php& HTTP/1.1" 200

4008
"http://192.168.60.141/WackoPicko/admin/i

ndex.php?page=http://192.168.60.141/Wac

koPicko/upload/b374k-2.8/b374k-
2.8%00.php" "Mozilla/5.0 (X11; Linux

x86_64; rv:24.0) Gecko/20140924

Firefox/24.0 Iceweasel/24.8.1"

access.log \var\log\apache2
22/12/2014

09:20:12 +1

19/12/2014

19:46:07 +1

22/12/2014

09:20:12 +1

Successful use of

the script
b374.php with

null byte

injection and
POST request

from IP address

192.168.60.163

3

192.168.60.163 - - [20/Dec/2014:12:35:05 -

0500] "GET
/WackoPicko/admin/index.php?page=http%

3A%2F%2F192.168.60.141%2FWackoPick

o%2Fupload%2Fc99shell%2Fc99shell%00.
php&act=f&f=test.php&ft=edit&d=%2Fow

aspbwa%2FWackoPicko-relative_urls-

git%2Fwebsite%2F HTTP/1.1" 200 3593
"http://192.168.60.141/WackoPicko/admin/i

ndex.php?page=http%3A%2F%2F192.168.

60.141%2FWackoPicko%2Fupload%2Fc99
shell%2Fc99shell%00.php&act=f&f=test.p

hp&d=%2Fowaspbwa%2FWackoPicko-

relative_urls-git%2Fwebsite&"
"Mozilla/5.0 (X11; Linux x86_64; rv:24.0)

Gecko/20140924 Firefox/24.0

Iceweasel/24.8.1"

access.log \var\log\apache2
22/12/2014

09:20:12 +1

19/12/2014

19:46:07 +1

22/12/2014

09:20:12 +1

Successful use of
the script

c99shell.php

with null byte
injection and

POST request

from IP address
192.168.60.163.

From the URL,

one can see that
file test.php is

edited (ft=edit).

4

192.168.60.163 - - [20/Dec/2014:13:31:18 -

0500] "GET

/WackoPicko/admin/index.php?page=http://
192.168.60.141/WackoPicko/upload/napad/

napad%00.php HTTP/1.1" 200 29 "-"

"Mozilla/5.0 (X11; Linux x86_64; rv:24.0)
Gecko/20140924 Firefox/24.0

Iceweasel/24.8.1"

access.log \var\log\apache2
22/12/2014

09:20:12 +1

19/12/2014

19:46:07 +1

22/12/2014

09:20:12 +1

Successful use of
the script pay

with null byte

injection and
GET request

from IP address

192.168.60.163

From the log files found in the location presented before, a keyword list can be prepared. In our research, the keyword list
consists of the following terms: 1=1#, b374k, c99shell, %00.php, ugd, papka, napad, stip.html, tos.php, www.stip.gov.mk, and
www.ugd.edu.mk, cart, error.php.

Part of the useful results of the keyword search with WinHex were the same as those found in log files, and are presented in the
Table I. Figure I shows how the results of the keyword search look in WinHex. The keyword www.ugd.edu.mk, beside in the
mysql.log, is found also in the comments.myd and comments_preview.myd files with part of database’ data. The keywords papka
and stip.html are found in the .journal file.

Figure 1 Part of the keyword search results on victim machine as given by WinHex

For command-line injection, we look for successful POST requests of the passcheck.php script in the access.log, like

192.168.60.163 - - [22/Dec/2014:03:03:34 -0500] "POST /WackoPicko/passcheck.php HTTP/1.1" 200 1015
"http://192.168.60.141/WackoPicko/passcheck.php" "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140924 Firefox/24.0
Iceweasel/24.8.1"

An enormous interest was expected to be the swap file (which had 400MB of size) and inside that file were not found any hits,
which could be further treated as clues/traces for the interest in the analysis. Or in other words, the SWAP area has proven as a
useless target for the task.

B. Analysis of the attacker’s machine

The analysis of the suspect’s image is done with the following forensic techniques using Autopsy:

 File system analysis and hash comparing

 Log file analysis and internet history files

 OS and third party software artifacts/CLI history overview

 Keyword search

 Preparation of forensic report

According to the report of the incident and the previous analysis on the server, the forensic expert can have a starting point for
answering the question - Is the suspect the attacker itself? We actually have the attacker’s machine, and the following results are
found:

File system analysis and hash comparing

In this case, a complete file search activity is done in which every file and folder is hashed. From the attacked side, the forensic
expert can find names and hash values of the files which one thinks that are produced from the incident, and see if some of those
values can be found in the suspect’s image. If so, there is a starting point for determining that this is the actual attacker. In this case,
we have found that the file content and their hash values are appropriate for both sides, so we have a starting point. From Table II,
one can see that the shells used in the attack, are the same files on both machines, and also uploaded files ugd_logo.jpg and
stip.html are the same. This type of forensic analysis is proven to be very useful.

We can conclude that careless attacker that saves and use shells for an attack, lives evidences for their existence on both
machines.

Log file analysis and internet history files

The mentioned activity in general is focused on locating internet artifacts which can be found in web browser temporary storage
and browser’s history files. In this case, several URL records and cached content is found, which proves that the user was visiting
the attacked site. Because in our case, FireFox was used by the attacker, there are several very interesting files. The places.sqlite file
keeps track of visited pages and saved bookmarks, the cookies.sqlite file is used for temporary storage of cookie updates, and the
formhistory.sqlite file stores values that the user enters into form input fields.

Since our attacking methods are conducted through the interface of the web browser, this analysis can prove the act of the first,
third and fourth attack, the methodology (used scripts) and the files that were the object of the intrusion. Sample results are given in
Table III and Table IV. Figure 2 shows the forensic artefacts for SQL injection, remote file inclusion and reflected XSS attack,
found in the formhistory.sqlite file.

TABLE II SOME RESULTS OF THE FILE SYSTEM ANALYSIS AND HASH COMPARING USING FTK IMAGER AND AUTOPSY

Victim machine file system Attacker machine file system

Location MD5 Hash Location MD5 Hash

[root]\owaspbwa\WackoPicko-relative_urls-

git\website\upload\b374k-2.8\b374k-2.8

cc8d0f69743578361

0a4c17278e3c51c
[root]\root\Desktop\b374k-2.8.php

cc8d0f697435783610

a4c17278e3c51c

[root]\owaspbwa\WackoPicko-relative_urls-

git\website\upload\c99shell\c99shell

83f83bb415b98d41f

bcae9193b47c984
[root]\root\Desktop\c99shell.php

83f83bb415b98d41fb

cae9193b47c984

[root]\owaspbwa\WackoPicko-relative_urls-

git\website\upload\ugd_logo\ugd_logo

842753e783da94542

dc53d053c4e3687
[root]\root\Desktop\ugd_logo.jpeg

842753e783da94542d

c53d053c4e3687

[root]\owaspbwa\WackoPicko-relative_urls-

git\website\upload\napad\napad

76da7d37759542cf1

1316e44ed9c54eb
[root]\root\napad.php

76da7d37759542cf11

316e44ed9c54eb

[root]\owaspbwa\WackoPicko-relative_urls-
git\website\stip.html

4d34178c417daa8e9
d160365e150566f

[root]\root\stip.html
4d34178c417daa8e9d
160365e150566f

TABLE III SOME RESULTS FROM LOG ANALYSIS AND INTERNET HISTORY FILES FROM ATTACKER’S MACHINE WITH AUTOPSY

URL Program Source File
Date

Accessed

Tags
Comment

http://192.168.60.141/WackoPick
o/admin/index.php?page=http://19

2.168.60.141/WackoPicko/upload/

b374k-2.8/b374k-2.8%00.php

FireFox

/img_KaliLinux.E01

/vol_vol2/root/.mozi
lla/firefox/qr82uf4g.

default/places.sqlite

2014/12/20
18:03:20

Mozilla
History

Using of the script

b374.php on the victim

machine.

http://192.168.60.141/WackoPick

o/admin/index.php?page=http%3
A%2F%2F192.168.60.141%2FW

ackoPicko%2Fupload%2Fc99shell

%2Fc99shell%00.php&act=f&f=t
est.php&ft=edit&d=%2Fowaspbw

a%2FWackoPicko-relative_urls-

git%2Fwebsite%2F#

FireFox

/img_KaliLinux.E01
/vol_vol2/root/.mozi

lla/firefox/qr82uf4g.

default/places.sqlite

2014/12/20

18:41:47

Mozilla

History

Using of the script
c99shell.php with null

byte injection on the

victim machine. From
the URL, one can see

that file test.php is edited

(ft=edit).

http://192.168.60.141/WackoPick

o/admin/index.php?page=http://19
2.168.60.141/WackoPicko/upload/

napad/napad%00.php

FireFox

/img_KaliLinux.E01

/vol_vol2/root/.mozi

lla/firefox/qr82uf4g.
default/places.sqlite

2014/12/20

19:31:21

Mozilla

History

Using of the script

napad.php with null byte

injection on the victim
machine.

http://192.168.60.141/WackoPick

o/pictures/search.php?query=%3C

script%3Ealert%28document.cook
ie%29%3C%2Fscript%3E&x=37

&y=12

FireFox

/img_KaliLinux.E01

/vol_vol2/root/.mozi
lla/firefox/qr82uf4g.

default/places.sqlite

2014/12/20
19:55:35

Mozilla
History

Reflected XSS attack

http://192.168.60.141/WackoPick

o/passcheck.php
FireFox

/img_KaliLinux.E01

/vol_vol2/root/.mozi
lla/firefox/qr82uf4g.

default/places.sqlite

2014/12/20
20:08:10

Mozilla
History

Using of passcheck.php

script (for possible

command-line attack)

TABLE IV SOME RESULTS FROM WEB COOCKIES FROM ATTACKER’S MACHINE WITH AUTOPSY

URL Date/Time Name Value Program Source File

192.168.60.141

2014/12/20

19:33:13
b374k_included 1 FireFox

/img_KaliLinux.E01/vol_v

ol2/root/.mozilla/firefox/qr8
2uf4g.default/cookes.sqlite

192.168.60.141
2014/12/20

19:33:13
b374k

fb621f5060b9f65acf
8eb4232e3024140de

a2b34

FireFox
/img_KaliLinux.E01/vol_v
ol2/root/.mozilla/firefox/qr8

2uf4g.default/cookes.sqlite

Figure 2 Forensic artifacts found in the formhistory.sqlite

Because web browser is the primary way of performing selected attacks, it is normal that we have found evidence in Internet
history, and in the saved web cookies, again, if the attacker is careless.

OS and third party software artifacts

A useful forensic artifacts are found in the bash history file (Table V), which show the creation of napad.php script. Apparently
the forensic expert can conclude that the user has cleaned the other history of the shell activity, or the shell was not used for other
attacks. Also, additional interesting forensic artifact can be the IP address of the suspect’s machine, but in this case, the operating
system of the suspect machine was using an automatic assigned IP address of the virtual machine. Therefore, the file at the location
etc/network/interfaces in this case does not prove anything.

If the attacker had used the command prompt for carrying the attack, the bash_history file keeps the records of executed
commands (if it is not erased by the attacker). So, for example, if the attacker uses the Metasploit console, every command will be
recorded in the bash_history file.

TABLE V INTERESTED RESULT FROM OS ARTIFACT ANALYSIS

File name Location Content

.bash_history
/img_KaliLinux.E01/vol_

vol2/root/.bash_history

msfpayload php/meterpreter/reverse_tcp
LHOST=192.168.60.163 LPORT=4444 R
>/root/napad.php

msfconsole

 Keyword search

From the keyword search approach we can obtain additional information, some of them are presented in Table VI (for keyword
hack.html). Some of the search hits are in temporary database files as meta.db-wal, other are in database file as formhistory.sqlite
and places.sqlite, other in the free space, in journal files, etc.

TABLE VI SOME RESULTS FROM KEYWORD SEARCH ANALYSIS ON ATTACKER’S MACHINE

Search hits Name Path Created Modified Accessed

-20T18:08:04Z †£ ‹] 2014-12-

20T18:08:04Z †£ ‹] H ‹] †£ ‹]
5file:///root/napad.php †£ ‹]

9application/x-php †£ ‹] Í †£ ‹] B

†¡ †£ ‹] @true š

tracker-
store.journal

\root\.local\share\trac
ker\data

19/12/2014
21:04:50 +1

22/12/2014
08:52:21 +1

22/12/2014
08:50:17 +1

//root/Desktop/c99shell.php ‹[, Y
file:///root/Desktop/SQL_Injection

.jpg ‹V$ I

file:///root/Desktop/stip.html ‹\(Q
file:///root/Desktop/ugd_logo.jpeg

‹W 9 file:///root/napad.php ‹]$ I

file:///usr/share/appli

meta.db-wal \root\.cache\tracker
19/12/2014

21:12:57 +1

22/12/2014

08:52:21 +1

22/12/2014

08:51:43 +1

napad ©ø Ý(©ø
Ý(FRjP8H0ZTuC6C3Wc. -price4

© ÙŽø ©

ÙŽøfwWRmTJMSE6ZpjqG5 -

titlec99shell © ÙŽø ©

ÙŽø3Y3fAKq/QMmAalb04 -

namec99shell © ÙŽø ©
ÙŽøzbaGAGEMQueAXXLj3 -

tagc

formhistory.sqlite
\root\.mozilla\firefox

\qr82uf4g.default

19/12/2014

21:18:11 +1

20/12/2014

19:55:36 +1

22/12/2014

09:06:58 +1

/bookmark:applications

/metadata _/info_ _/bookmark_
_bookmark

href="file:///root/napad.php"

added="2014-12-20T18:09:57Z"
modified="2014-12-

20T18:26:00Z" visited="2014-12-

20T18:09:57Z"_ _

Free space

ad/napad/M@ •

http://192.168.60.141/WackoPicko
/pictures/view.php?picid=20L" I

file:///root/Desktop/stip.htmlK& Q

place:type=6&sort=14&maxResult
s=10 A

place:sort=8&maxResults=10 2 i
place:sort=14&type=6&maxR

places.sqlite
\root\.mozilla\firefox

\qr82uf4g.default

19/12/2014

21:13:33 +1

22/12/2014

09:11:35 +1

22/12/2014

09:11:35 +1

G· ¹ _ Ú ` G· � „ G· ‚ ¨ G· ¯ Ì G· t
ð G·ugd_logo.jpeg c99shell.php

b374k-2.8.php SQL_Injection.jpg

stip.html VMwareTools-9.2.3-
1031360.tar.gz a

home
\root\.local\share\gvf

s-metadata
22/12/2014
08:51:20 +1

22/12/2014
08:51:20 +1

22/12/2014
08:51:20 +1

KaliLinux%2012-28-2014-20-28-43%20autopsy/HTML%20Report/Bash%20history/.bash_history_57614
KaliLinux%2012-28-2014-20-28-43%20autopsy/HTML%20Report/Bash%20history/.bash_history_57614

IV. DISCUSSIONS

From the obtained results, we can summarize several results. First, remote file inclusion and use of shells leave many traces on
the attacker’s and the victim’s machine. If the shell carries out commands through a POST request, its successful use is documented
(without content of POST body) in victim log files and in the attacker files places.sqlite, formhistory.sqlite and cookies.sqlite. Even
more, if the shell carries out commands as parameters in the URL, they are documented in the same way, and even the attack can be
reconstructed correctly. If the attacker use Metasploit console, he leaves traces in a batch_history file on its machine.

Examples of our SQL injection and stored XSS attacks use the body of the POST request, so they do not leave any traces in the
attacker’s browser history files. But SQL injection leaves traces in formhistory.sqlite file and in the mysql.log file. The script from
the stored XSS attack is saved in the backend database and it leaves traces in the mysql.log file also, which includes a time stamp
and user_id which identifies the user who create this entry. For both attacks, there are traces in the victim log files, which show
accesses to the related php scripts (login.php, upload.php, preview_comment.php and add_comment.php) by the attacker machine.
This can be used as forensic evidences for these attacks.

Reflected XSS attack where the parameter in the URL is used for conducting the attack, leaves direct forensic evidence in the
Internet history of the attacker’s machine and in the formhistory.sqlite file.

Command-line injection, conducted as in our attack scenario, does not leave any direct forensic evidence in the attacker
machine, except the use of passcheck.php script in the Internet history. Again, the reason is the use of the POST request for
carrying the command.

V. CONCLUSIONS

Using post-mortem computer forensic analysis of attacker and victim machine, we found several direct and/or indirect forensic
evidences of them, for each conducted attacks in our scenario. Careless attacker that saves and use shells for his attack, leaves
evidence on both machines. On the attacker’s machine, traces were found in the browser’s history files, browser’ temporary
storage, and bash_history_file. On the victim’s machine, traces were found in the file system and in the log files. These artifacts can
help to identify and sometimes to reconstruct performed attacks, and even more, they can represent a valid evidence for the court.

REFERENCES

Andrade, J. J. B., and Gan, D. (2012) ‘A Forensics Investigation into Attacks on Linux Servers’, In: Issues in cybercrime, security and digital forensics.
University of Strathclyde Continuing Education Centre, Glasgow, UK, pp. 73-80. ISBN 9780947649852.

Autopsy 3.1.0. [online] http://www.sleuthkit.org/autopsy/ (Accessed 1 September 2014).

b374k-2.8.php. [online] https://code.google.com/p/b374k-shell/downloads/detail?name=b374k-2.8.php (Accessed 1 November 2014)

c99shell.php. [online] http://www.4shared.com/file/-sHx3aFm/c99shell.html?locale=en (Accessed 1 September 2014)

Doupe, A., Cova, M., and Vigna, G. (2010) ‘Why Johnny Can’t Pentest: An Analysis of Black-box Web Vulnerability Scanners’. In C. Kreibich, M. Jahne (Eds.)
Proceedings of the 7th International conference on Detection of Intrusions and Malware, and Vulnerability Assessment - DIMVA’10, pp. 111-131, Springer Berlin
Heidelberg.

FTK Imager 3.1. [Online]. Available: http://accessdata-ftk-imager.software.informer.com/3.1/. (Access Date: 1 September 2014)

Open Web Application Security Project, OWASP Broken Web Applications Project. [online] https://www.owasp.org/index.php/
OWASP_Broken_Web_Applications_Project#tab=Main (Accessed 1 November 2014)

Open Web Application Security Project, “OWASP Top Ten Project”. [online] http://www.owasp.org/index.php/Category: OWASP Top Ten Project (Accessed 1
September 2014).

Segal, O. (2002) Web Application Forensics: The Uncharted Territory. Sanctum Inc. http://www.cgisecurity.com/lib/WhitePaper_Forensics.pdf (Accessed 1
September 2014).

Shulman, H., and Waidner, M. (2014) ‘DNSSEC for cyber forensic’, EURASIP Journal on Information Security 2014, 2014:16 (doi:10.1186/s13635-014-0016-2).

Snow, K.Z., Krishnan, S., Monrose, F. and Provos, N. (2011) ‘SHELLOS: Enabling Fast Detection and Forensic Analysis of Code Injection Attacks’. In
Proceedings of USENIX Security Symposium. https://www.usenix.org/legacy/event/sec11/tech/full_papers/Snow.pdf (Accessed 1 September 2014).

Symantec (2014) Internet Security Threat Report 2014, April 2014. http://www.symantec.com/content/en/us/enterprise/other_resources/b-
istr_main_report_v19_21291018.en-us.pdf (Accessed 1 September 2014).

Urrea, J. M. (2006) An Analysis of Linux RAM forensics, MSc thesis, Naval Postgraduate School, Monterey, USA.

WackoPicko. [online] https://github.com/adamdoupe/ WackoPicko/archive/master.zip (Accessed 1 September 2014).

WinHex. [online] http://www.x-ways.net/winhex/ (Accessed 1 September 2014).

