















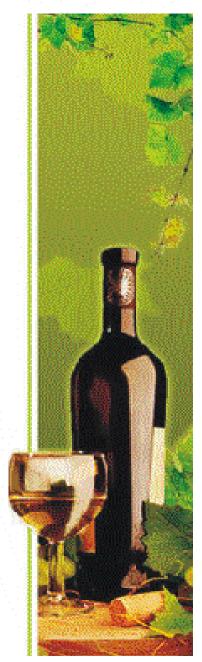
### DAAD, Module Biomaterials – Ohrid, Macedonia, 17-21 September, 2015

## **Nutritional phenolic** compounds in red wines determined by HPLC-DAD-**ESI-MS and MS/MS**

### VIOLETA IVANOVA-PETROPULOS

Faculty of Agiculture, University "Goce Delčev", Štip, Macedonia

violeta.ivanova@ugd.edu.mk

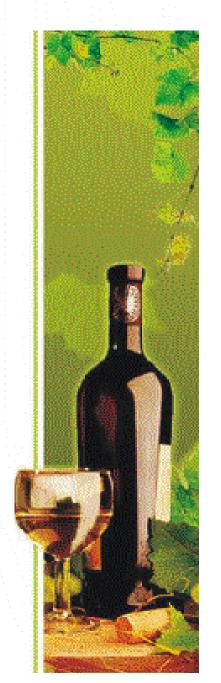

Isidro Hermosín-Gutiérrez, Borimir Vojnoski, Rubin Gulabski



## WINE

Wine is a complex mixture of different compounds:

- ✓ Organic acids
- ✓ Alcohols
- ✓ Carbohydrates
- ✓ Aldehydes, esters
- ✓ Minerals
- ✓ Nitrogen compounds
- ✓ Phenolic compounds
- √ Varietal aroma




## PHENOLIC COMPONENTS

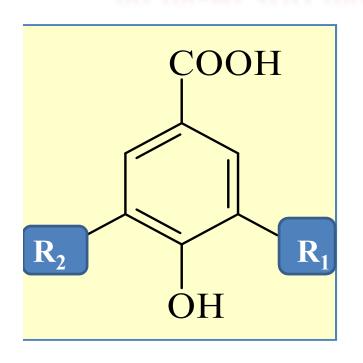
- ✓ Determine the colour, mouthfeel, astringency and bitterness of wine.
- ✓ Influenece the sensorial characteristics of grape and wine
- ✓ Antioxidant, antimicrobal, anticancerogenic effects, prevention of cardiovascular diseases.

Two groups of polyphenols:

Non-flavonoids Flavonoids





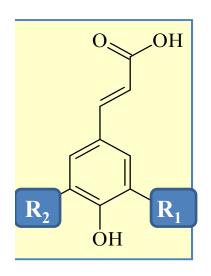

## **NON - FLAVONOIDS**



The main non-flavonoid phenols in grape and wine which contain only one aromatic ring are:

- 1. Hydroxybenzoic acids
- 2. Hydroxycinnamic acids and derivatives
- 3. Stilbenes and stilbene glucosides

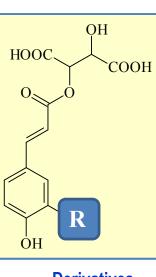
## NON-FLAVONOIDS - Hydroxybenzoic acids




| Hydroxybenzoic acids  | $R_1$   | $\mathbb{R}_2$   | $M_r$ |
|-----------------------|---------|------------------|-------|
| Gallic acid           | ОН      | OH               | 170   |
| p-Hydroxybenzoic acid | H       | H                | 138   |
| Protocatechuic acid   | OH      | H                | 154   |
| Syringic acid         | $OCH_3$ | OCH <sub>3</sub> | 198   |
| Vanillic acid         | Н       | OCH <sub>3</sub> | 168   |

## **✓** Gallic acid is present in the highest concentration in wine.

- ✓ Gallic acid originates from the grapes or from hydrolysis of hydrolyzable and condensed tannins
- ✓ These acids are present in free forms in the wine (hydrolysis or heat breakdown reactions of the complex moleculs)

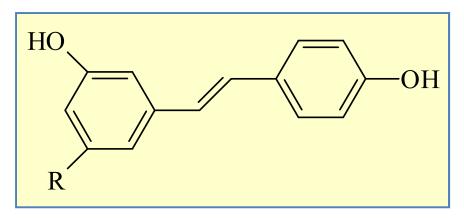

# NON-FLAVONOIDS – Hydroxycinnamic acids and derivatives



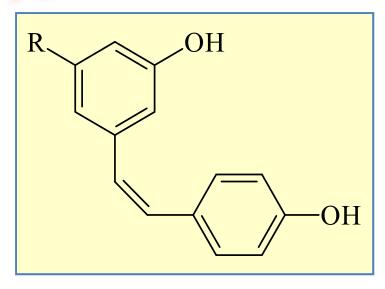
**Hydroxycinnamic acids** 

| Hydroxycinnamic acids | $R_1$            | $R_2$            | $M_r$ |
|-----------------------|------------------|------------------|-------|
| Coumaric acid         | Н                | H                | 164   |
| Caffeic acid          | ОН               | H                | 180   |
| Ferulic acid          | OCH <sub>3</sub> | H                | 194   |
| Sinapic acid          | OCH <sub>3</sub> | OCH <sub>3</sub> | 224   |

| Derivatives   | $\mathbf{R}_{1}$ | $M_r$ |
|---------------|------------------|-------|
| Coutaric acid | Н                | 296   |
| Caftaric acid | ОН               | 312   |
| Fertaric acid | OCH <sub>3</sub> | 326   |




**Derivatives** 


- ✓ Present in *cis* and *trans*-forms, *trans*-forms are more stable and prevalent.
- ✓ Present in form of esters of l-(+)-tartaric acid (predominant).
- ✓ Caftaric and coutaric acids are the most abundant in the wine; highly oxidizible components causing the browning of white must.

## NON-FLAVONOIDS - Stilbenes

## 3. Stilbenes

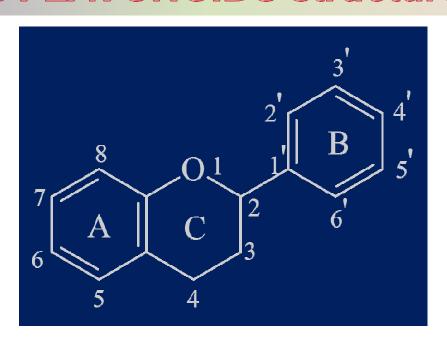


**R=OH** - *trans*-resveratrol **R=OGlc** - *trans*- piceid



R=OH - *cis*- resveratrol R=OGlc- *cis*-piceid

- Resveratrol is considered to be a phytoalexin, t.e. Toxin produced in the grapes due to fungal infection (e.g. *Botrytis cinera Pers or Plasmopora viticola*) or a product produced from abiotic stress (UV radiation, heavy metal catalysis, etc).
- Wines resulting from longer maturation periods contain a higher content of resveratrol.
- The concentration of resveratrol is higher in red wines as compared to white wines.


## **FLAVONOIDS**

- free and polymerized to other flavonoids, sugars, nonflavonoids,



- esterified to sugars, organic acids, or various alcohols

## The FLAVONOIDS structure:





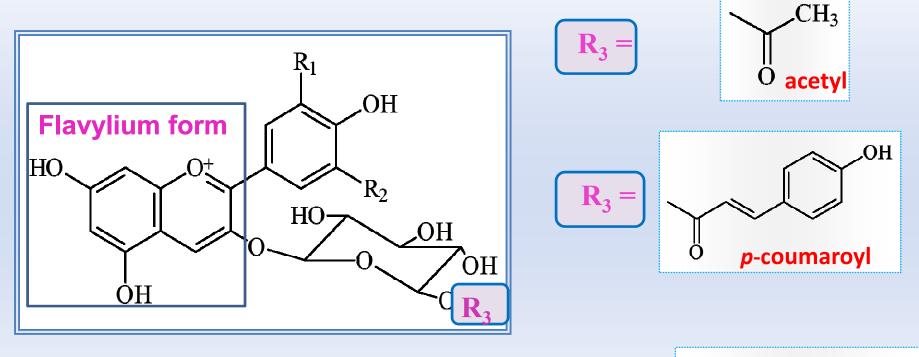


## **FLAVONOIDS**

## Flavonoids are divided into the following groups:



## **ANTHOCYANINS**


- Anthocyanins are **red compounds**, responsible for the colour of red grapes and wines.
- Mainly located in the **grape skins**, (exception are the teinturier varieties that contain anthocyanins in the pulp).



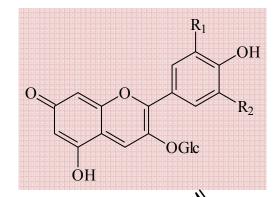


| Anthocyanidins | $R_1$            | $\mathbb{R}_2$   |
|----------------|------------------|------------------|
| Delphinidin    | OH               | OH               |
| Cyanidin       | OH               | H                |
| Petunidin      | OCH <sub>3</sub> | OH               |
| Peonidin       | OCH <sub>3</sub> | H                |
| Malvidin       | OCH <sub>3</sub> | OCH <sub>3</sub> |

## **ANTHOCYANINS**



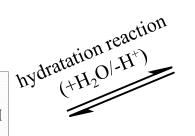
Flavylium form, 96 % at pH 1.5

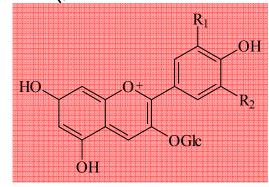

$$R_3 = OH$$

$$OH$$

$$Caffeoyl$$




## Anthocyanin transformations




## Quinoidal anhydrobase (A)

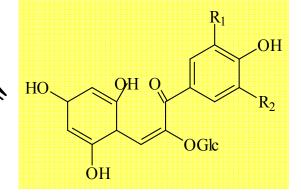
In neutral media

deprotonation (-H<sup>+</sup>)





Flavylium cation (AH+)


HO OH R<sub>2</sub> Ca

In highly acidic media

Carbinol pseudobase (B)



tautomeric reaction



Chalcone (C)





## **FLAVAN-3-OLS**

## Flavan-3-ol monomers:

(+)-catechin (-)-epicatechin

| Flavan-3-ols              | R  | R1 | R2              | $M_r$      |
|---------------------------|----|----|-----------------|------------|
| (+)-Catechin              | Н  | ОН | Н               | 290        |
| (-)-Epicatechin           | H  | H  | OH              | <b>290</b> |
| (+)-Gallocatechin         | ОН | ОН | Н               | 306        |
| (-)-Epigallocatechin      | OH | H  | OH              | 306        |
| (-)-Epicatechin-3-gallate | H  | H  | <b>OGallate</b> | 442        |





## **FLAVAN-3-OLS**

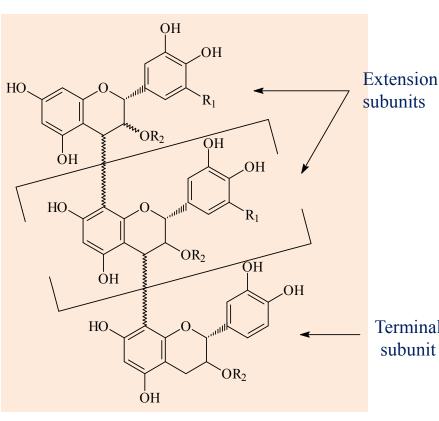
## Flavan-3-ol dimers:

### **Procyanidin dimers:**

**B1:** (-)-epicatechin-(4-8)-(+)-catechin

B2: (-)-epicatechin-(4-8)-(-)-epicatechin

**B3:** (+)-catechin-(4-8)-(+)-catechin


**B4:** (+)-catechin-(4-8)-(-)-epicatechin



## **FLAVAN-3-OLS**

## **Proanthocyanidins (Condensed tannins):**





Flavanol oligomers and polymers are called **condensed** tannins or proanthocyanidins.

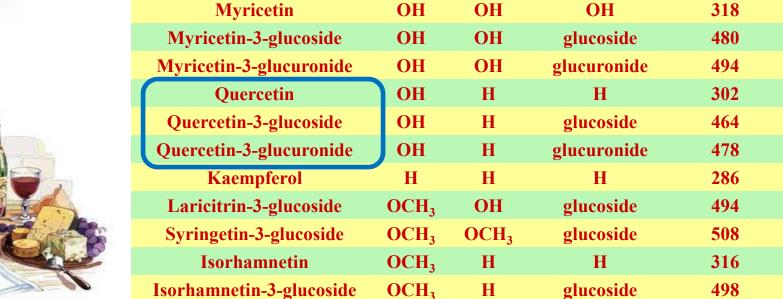
**Terminal** subunit





## **FLAVONOLS**

#### Absorb the UV radiation and play a protective role in grapes




 $\mathbf{R}_{2}$ 

 $\mathbf{R_3}$ 

 $M_r$ 





 $\mathbf{R_1}$ 

**Flavonols** 



## **ACKNOWLEDGEMENT**



## **SOE-DAAD** project

"From Molecules to Functionalized Materials"



