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Abstract— We consider protocol coding that gives a rise to
secondary communication channels, defined by combinatorial
ordering of the user resources (packets, channels) in a primary
(legacy) communication system. In general, the capacity analysis
of the secondary communication channel depends on the way
the errors are introduced in the communication. Here we extend
the previous results for the capacity of secondary communication
channels obtained for the binary erasure channel model, to the
case of the Z-channel model. This error model is of practical
relevance in secondary communication channels because they
are often asymmetric, i.e the probability that a packet will not
be detected is much higher than the probability that noise can
produce detection of a valid packet, since packet existence is de-
tected through very robust preamble/synchronization sequences.
The capacity results are obtained by modelling the secondary
channel by a cascade of channels, which proves to be an effective
framework for capacity analysis.

I. INTRODUCTION

While there are continuous efforts to introduce new com-
munication systems and standards, it is of a significant practi-
cal interest to look for the opportunities to send additional
bits by minimally changing the systems that are already
operating. The place to look for such an opportunity is the
communication protocol and we use the term protocol coding
to refer to strategies for sending information by using the
degrees of freedom available when one needs to decide the
actions taken by a particular communication protocol [1], [2].
The concept of protocol coding gives a rise to secondary
communication channels, defined by combinatorial ordering
of the user resources (packets, channels) in a primary (legacy)
communication system. Secondary communication channels
arise as result of the inherent redundancy of communication
systems and protocols.

In other word, protocol coding is a concept which unleashes
latent or, what we call ”secondary capacity”. As an example,
let Alice and Bob communicate by using a primary (legacy)
communication protocol in which Alice sends packets of size
n = 50 bits to Bob. Each packet uses four of the bits for a
label, which is a number 0 · · · 15. If Alice, instead of sending
the packets as they arrive, collects 16 packets and sends them
in any of the possible 16! orderings, she can encode additional
log2(16!) ≈ 44.25 bits in the ordering of the packets. These
bits are sent through a secondary communication channel,
which leverages on the degrees of freedom left unused in the
legacy protocol.

The concepts of secondary communication and protocol
coding were introduced in [1] and [2], where communica-
tion models were described that enable us to compute the
capacity of such secondary channels under suitable restrictions
imposed by the primary systems. There, capacity analysis
was performed in the cases without transmission errors as
well as the case with packet erasures. Forms of protocol
coding can be also found in other works that mention the
possibility to send data by modulating the random access
protocol, see for example [3], or the seminal work [4] where
information is modulated in the arrival times of data packets.
More recent works on possible encoding of information in
relaying scenarios through protocol–level choice of whether
to transmit or receive is presented in [5] [6] and [2]. At a
conceptual level, protocol coding bridges information theory
and networking [7]. Ideas for communication based on packet
reordering have been presented in the context of covert chan-
nels [8] [9]. There is also a relation to [10], where a set of
packets is randomly permuted and is useful in determining
the rate/delay tradeoffs when transmitting temporally ordered
content over multipath routed networks. The practical coding
strategies are related to the frequency permutation arrays for
power line communications [11], [12].

Besides the obvious practical importance of this concept,
it is also of information-theoretic value. In [1] it is shown
that there is a relation between the capacity of secondary
channels to the capacity of channels with causal channel state
information at the transmitter (CSIT), originally considered
by Shannon. By using the specific communication setup,
in [13] an alternative framework for achieving the capacity
was developed. There, the secondary communication channel
was represented through a cascade of channels and coding
strategies that need to be used over the secondary channels
were discussed.

The representation through a cascade of channels, brings
modularity to the problem of finding the capacity under
different scenarios. In general, the capacity analysis of the
secondary communication channel depends on the way the
errors are introduced in the communication, i.e. on the un-
derlying model for the transmission errors. In the previous
works [1], [2], [13], we focused on the case with packet
erasures, based on the block BEC (binary erasure channel).
While erasures are suitable for modelling the error process
in secondary communication channels, other error models are



possible, where an incorrectly received packet address can be
confused with another address. Let us take the example when
address 0 is an “empty” user, while address 1 means that
there is a packet transmission (irrespective to which user it
is addressed). In that case, there is a probability that a packet
will not be detected, i. e. a probability that 1 is interpreted as
0. On the other hand, the probability that noise can produce
detection of a valid packet, i. e. 0 interpreted as 1 is practically
zero, since packet existence is detected through very robust
preamble/synchronization sequences. This other error model
corresponds to the Z-channel [15], which is a special form of
an binary asymmetric channel, and is the model of interest in
this paper.

In practice, a secondary channel can be defined over vir-
tually any existing wireless system and it is of interest to
find the coding strategies that are suited to a certain primary
system. In this sense, this analysis is the first step towards
an unified solution for the case of more general error models.
Additionally, it can give an insight in the coding strategies that
are approaching the capacity.

II. SYSTEM MODEL

We introduce the following communication model. We
consider a primary system in which a Base Station (BS) com-
municates with K primary users using Time Division Multiple
Access (TDMA), i. e. only one user receives data form the BS
at a time. The BS serves the users in scheduling frames. Each
frame consists of F packet transmissions, addressed to m ≤ F
primary users, where m ≤ F . Each packet carries the address
of a user to whom the packet is destined. We also allow for
empty packet slots being addressed to an “empty” user address,
such that an empty frame slot actually can be treated as a
valid packet. We point out that, in general, we do not have
to constrain ourselves on the above mentioned system. The
concepts of secondary communication and protocol coding are
generic in nature and can be applied to any system where
resources such as packets and users and more general, such
as time and frequency, can be combinatorially ordered.

Unless stated otherwise, in the sequel we will assume that
the number of different packet types in a frame is m ≤ 2, i. e.
each packet in a frame is addressed either to user 0 or user
1. This setup is sufficient to illustrate the main concepts and
ideas when capacity of these systems is analyzed.

The key assumption in the model is that the packets
that are scheduled in a frame are decided by the primary
communication system. This means that the primary system
decides that s packets in a frame will be sent to user 0 and
(F − s) packets will be addressed to user 1, where 0 ≤
s ≤ F . This assumption captures the fact that the secondary
communication is restricted in selecting its communication
symbol, i.e. the secondary communication does not affect the
primary communication.

The number of packets s addressed to user 1 in a given
frame is called state of the frame. We assume that the process
by which the primary system selects packets for transmission
is a memoryless random process: in each frame, a packet is

addressed 1 with probability q and 0 with probability 1 − q,
independently of the other packets and the previous frames.
Hence, the probability that a frame is in state s is:

PS(s) =

(
F

s

)
qs(1− q)F−s. (1)

As already mentioned, the packets that are scheduled in a
frame are decided by the primary communication system,
leading to variable and unpredictable amount of information
that can be sent over the secondary system. This is the key
property of the secondary communication. The freedom left
to the secondary transmitter is to re-arrange the packets in a
frame.

Erasures are suitable to model the error process in the
secondary communication system. We have addressed the
problem in the case with erasures in [1] and [13]. Besides the
erasure model, other error models are possible. We are going
to address the case where the errors are generated according
to the Z- channel model. As already discussed, this approach
is justified since there is a certain probability that a packet
will not be detected, i. e. a probability that 1 is interpreted as
0. On the other hand, the probability that noise can produce
detection of a valid packet, i. e. 0 interpreted as 1 is practically
zero, since packet existence is detected through very robust
preamble/synchronization sequences. We use x and y to
denote the transmitted and the received symbol, respectively,
by using protocol coding for secondary communication. If not
stated otherwise, we will always refer to the symbols, bits, etc.
sent over the secondary communication channel. Both x and
y are F−dimensional vectors, since each of them consists of
F packets within the primary communication system. In the
case of the Z-channel, x,y ∈ X = {0, 1, . . .K− 1}F .We use
S = {0, 1, . . . F} to denote the set of possible states.

III. CAPACITY ANALYSIS: PRELIMINARIES

A. Relation to the Shannon’s Model with Causal State Infor-
mation at the Transmitter (CSIT)

The secondary communication channel can be represented
by the framework that Shannon used to derive the capacity
of channels with causal state information at the transmitter
(CSIT) [14], as done in [1]. Shannon showed that instead of
considering the original channel with CSIT, one can consider
an ordinary, discrete memoryless channel with equivalent
capacity that has a larger input alphabet. The input variable
of the equivalent channel is denoted by T and each possible
input letter t, termed strategy [14], represents a mapping from
the state alphabet S to the input alphabet X of the original
channel. Thus, a particular strategy t ∈ T is defined by the
vector of size |S|:

(t(1), . . . t(|S|)) ∀s, t(s) ∈ X . (2)

We note that in this model, the cardinality |T | can be much
larger than the cardinality |X | of the original system, for
example in the order of |X ||S|. The capacity of the equivalent



channel can be found as:

C = max
PT (·)

I(T,Y), (3)

where PT (·) is a probability distribution defined over the set
T which is independent of the state S. The maximization is
performed across all the joint distributions that satisfy [14]:

PS,T,X,Y(s, t,x,y) = PS(s)PT (t)δ(x, t(s))PY|X,S(y|x, s),
(4)

where δ(x, t(s)) = 1 if x = t(s) and δ(x, t(s)) = 0 otherwise.
Following the properties of mutual information ( [15], Section
8.3), in order to achieve the capacity in (3), the required
cardinality of T is at most |Y|.

When Shannon’s results are applied to the model of a
secondary communication channel, additional remarks are in
order. The first thing to be noted is that, for a given state
S = s only a subset Xs ∈ X of symbols x may be produced.
For example, when F = 4 and the state is s = 2 it is not
possible to send the symbol x = 1011. In general, the set
of transmittable secondary symbols X can be partitioned in
|S| = F + 1 different subsets, defined as:

Xs =

{
x|

F∑
i=1

xi = s

}
. (5)

However, it should be noted that in the model with causal
CSIT the distribution PY|X,S(y|x, s) needs to be defined for
all pairs (x, s), irrespective of the fact that in the original
model some x are incompatible with s, i. e. when the state is
S = s, the symbols x /∈ Xs cannot be sent. In order to deal
with this situation, we need to extend the model.

We assume that the channel X − Y is defined and thus
the conditional distribution PY|X(y|x) is specified. Given
PY|X(y|x), we define PY|X,S(y|x, s) in the following way
For each xu /∈ Xs we take one xv ∈ Xs and define:

PY|X,S(y|xu, s) ≡ PY|X,S(y|xv, s) ∀y ∈ Y. (6)

The idea to do this is based on the following: For example,
when F = 4 and s = 0 only the symbol x = 0000 can be
sent; but we can look at it in another way — when s = 0
only the symbol y = 0000 can be received when there are no
errors (and the corresponding versions of 0000 when erasures
occur). Thus, when s = 0, we can think that we can send
any x, but at the output we can receive only 0000 and the
erroneous versions of it. In that case picking a strategy t′′

in which t′′(s) = xu is equivalent to picking the strategy t′

in which t′(s) = xv . In short, we define PY|X,S in order, for
given s, to discourage selection of symbols x for which x 6= y
in absence of channel errors.

According to [13], the capacity of the secondary channel
with memoryless state change across frames is given by
(3) where the cardinality of the set of reduced strategies T
satisfies:

|T | =
F∏
s=0

(
F

s

)
. (7)

As pointed out in [14], expressing the capacity in terms of
strategies might pose some conceptual and practical problems
for code construction and implementation when F is large.
Motivated by this observation, as well as by the specific way in
which the set of states partitions the possible set of transmitted
symbols X , in [13] a different framework for computing
the capacity for protocol coding based on reordering of user
resources, was created. In the following we present the main
aspects of this framework.

B. Capacity Analysis through a Cascade of Channels

The specific structure of the transition probabilities enable
us to use models that can more easily lead to capacity
characterization. Recall that T is the auxiliary random variable
defined over the reduced set of possible strategies T , where
reduction is done according to Proposition 7. For given T = t
and each s ∈ S there is a single t(s) ∈ Xs. Due to
the randomized state change, each fixed t ∈ T induces a
distribution on X . In general, we can define the following
transition probabilities:

PX|T (x|t) =

F∑
s=0

δ(x, t(s))PS(s), (8)

where δ(x, t(s)) = 1 if x = t(s) and is 0 otherwise. It is
easily seen that:

PX|T (x|t) =

{
PS(s∗) if ∃s∗, t(s∗) = x

0 otherwise (9)

In this way, we do not need to explicitly consider state in
the capacity analysis, but instead we model the secondary
communication channel by using a cascade of two channels:

T −X−Y, (10)

where PX|T and PY|X are well–defined. In order to express
the mutual information I(T ;Y), we use:

I(T,X;Y) = I(T ;Y) + I(X;Y|T )

= I(X;Y) + I(T ;Y|X) (11)

Due to the Markovian properties, T and Y are conditionally
independent given X, such that I(T ;Y|X) = 0, which
implies:

I(T ;Y) = I(X;Y)− I(X;Y|T ). (12)

Our objective is to maximize this mutual information. For
this reason, we will perform individual analysis of the terms
I(X;Y and I(X;Y|T ).

To facilitate the discussion, in the rest of the paper we will
use the terms “strategies” and “input symbols” interchangeably
and we can equivalently treat the set T as consisting of the
input symbols {1, 2, . . . |T |}.

We will use the following terminology: If the probability
PX|T (x|t) > 0, then x is a representative of t. According to
the capacity results for channels with causal CSIT, each T = t
has a single representative in each Xs, which will be denoted
by xs(t). In order to avoid further confusion and noticing
that the ordering of input symbols 1, 2, . . . ∈ T is arbitrary,



the following can be noted: instead of speaking about which
strategies out of T that are chosen with non–zero probability,
we can equivalently speak of which representatives to choose
for given T = t. The set of representatives Mt = {xs(t)}
for given t will be called a multisymbol of t. Additionally, the
multisymbol which has representatives defined as follows:

xs(t) =

{
0 if i ≤ F − s
1 otherwise (13)

will be called basic and will be denoted as Mb.

IV. CAPACITY ANALYSIS WITH ERRORS MODELLED BY
THE Z-CHANNEL

In this section we present the main results in this paper. The
aim is to find the capacity of the secondary channel represented
as a cascade of the channels T −X −Y, in the case where
the error process is modeled by the Z-channel model. We
recall that the capacity of the binary Z-channel with crossover
probability ε is given by

CZ(ε) = log2

(
1 + (1− ε)εε/(1−ε)

)
(14)

and is achieved by non-uniform distribution over X .
Our objective is to find the pair of distributions(
PT (·), PX|T (·)

)
that maximizes I(T ;Y). Thus, the capacity

of the secondary channel can be written as:

C = max
PT (·),PX|T (·)

I(T ;Y). (15)

For brevity, we will always assume that PX|T (·) ∈ PX|T ,
without noting it explicitly. The expression (15) can be upper–
bounded as follows:

C ≤ max
PT (·),PX|T (·)

I(X;Y)− min
PT (·),PX|T (·)

I(X;Y|T ) (16)

where the equality is achieved if and only if there is a pair
of distributions

(
PT (·), PX|T (·)

)
that simultaneously attains

the maximum and the minimum in the first and the second
term, respectively. In the sequel we will decompose the prob-
lem (15) into two sub–problems, maximization of I(X;Y)
and minimization of I(X;Y|T ).

A. Analysis of I(X;Y)

Let us define:

CXY = max
PX∈PX ,S (·)

I(X;Y). (17)

Note that here the maximization is not done by considering all
possible distributions PX(·) ∈ PX , but rather only distribution
from the subset PX ,S ⊂ PX that satisfies the constraints posed
on the input distribution by the primary packet scheduler. The
set PX ,S is defined as:

PX ,S =

{
PX(·)|

∑
x∈Xs

PX(x) = PS(s),∀s = 0, 1, · · ·F

}
(18)

Clearly, the capacity CXY is upper bounded by the capacity
of the Z-channel. This is because the capacity–achieving

distribution for the Z-channel requires a specific, non-uniform
input distribution. In order to attain CXY , the set T , the
distribution PT (·) and the representatives of each T = t (i.
e. the distribution PX|T (·)) should be carefully chosen.

In this text we are interested in channels X − Y with a
particular structure, where each single channel use x consists
of F uses of a more elementary, identical channels. Therefore,
the following symmetry takes place: the set of transition
probabilities {PY|X(y|x)} is identical for all x ∈ Xs, as
they are all permutations of a vector with s 1s and F − s
0s. This is valid irrespective of the the type of elementary
channel that affects a single transmission of a primary packet.
Such a symmetry is instrumental for making statements about
CXY . It can be shown that the distribution PX(·) ∈ PX ,S that
achieves CXY is:

PX(x) =
PS(s)(
F
s

) (19)

i. e. all the inputs x that belong to the same Xs are equiprob-
able. Due to the lack of space, we present the result without
proof.

As already discussed, in order to attain CXY , the set T , the
distribution PT (·) and the representatives of each T = t (i. e.
the distribution PX|T (·)) should be chosen such that (19) is
satisfied. These aspects are out of the scope of this paper and
are a topic of current work.

B. Analysis of I(X;Y|T )

We recall that according to the analysis of the expression
for mutual information (12), its second member can be written
as:

I(X;Y|T ) =

|T |∑
t=1

PT (T = t)I(X;Y|T = t). (20)

With a slight notational abuse, we use I(X;Y|Mt) to denote
the mutual information conditioned on T = t, where the
multisymbol for T = t is chosen to be Mt. The question
to be addressed is, how to choose the representatives xs(t)
that constitute the multisymbol Mt of t in order to minimize
I(X;Y|Mt).

For the channel with erasures, this problem has been ad-
dressed in [13], where it has been proven that a necessary
and sufficient condition to minimize I(X;Y|Mt) is that the
multisymbol Mt of t is a permutation of the basic set of
representatives.

Without going into details, we only say that the proof
provided in [13] follows from two lemmas. The first lemma
states that the value of I(X;Y|Mt) is minimized if the
multisymbol Mt = {xt(s)} is chosen such that for the
Hamming distance it holds dH(xs(t),xs+1(t)) = 1 for each
s = 0 . . . F−1. The second lemma states that any multisymbol
that achieves the minimal value of of I(X;Y|Mt) must be
one of the F ! possible permutations Π(Mb) of the basic
multisymbol Mb.

Since the error model described by the Z-channel is dif-
ferent from the erasure channel, the question is if a similar
conclusion holds in this case as well.Interestingly, we are



going to show that the same conclusion holds also for the
case when the errors are modelled by the Z-channel. In order
to prove this statement, we will start by writing the mutual
information I(X;Y|Mt) in the form,

I(X;Y|Mt) = H(Y|Mt)−H(Y|X,Mt). (21)

Careful examination of the term H(Y|X,Mt) reveals that
this term does not depend on the choice of the multisymbol.
Therefore, the multisymbol Mt = {xs(t)} should be chosen
such that H(Y|Mt) is minimized. This conditional entropy
can be written as

H(Y|Mt) = −
∑
y∈Y

PY|T (y|t) · log2 PY|T (y|t), (22)

where

PY|T (y|t) =

F∑
s=0

PX(xs(t))PY|X,T (y|xs(t)). (23)

Given the Z-channel model, the transition probability
PY|X,T (y|xs(t)) is given by

PY|X,T (y|xs(t)) = εd(1− ε)s−d · gs(y,xs), (24)

where d is the Hamming distance between y and xs(t), d =
dH(y,xs(t))and gs(y,xs(t)) = 1 when PY|X,T (y|xs(t)) 6= 0
and 0 otherwise. In order to demonstrate how the conditional
entropy H(Y|Mt) depends on the choice of the multisymbol
Mt, we are going to present an example with frame length
F = 3.

C. Example F = 3

We start with the basic multisymbol Mb =
{000, 001, 011, 111}, where the Hamming distance
between two consecutive elements is 1. We concentrate for
the moment on the set Y1 = {001, 010, 100}, i.e. the subset
of Y corresponding to the state s = 1. The representation
by the cascade of channels T − X − Y, together with the
channel transitions, is shown in Fig. 1, where the left-hand
part corresponds to the the basic multisymbol, illustrated with
T = 1. For simplicity and for the purpose of the worked-out
example, for the channel X−Y only the transitions associated
with the subset Y1 are shown We define

p
(1)
i =

εi−1(1− ε)
(
3
i

)
23

, (25)

where the superscript ”(1)” stands for s = 1. We note that
p
(1)
1 ≥ p

(1)
2 ≥ p

(1)
3 , ∀ε ∈ [0, 1]. With this, the involved

conditional probabilities are given by PY|T (001|t) = p
(1)
1 +

p
(1)
2 +p

(1)
3 , PY|T (010|t) = p

(1)
2 +p

(1)
3 and PY|T (100|t) = p

(1)
3 .

Additionally, we denote P (1)
1,2,3 = p

(1)
1 + p

(1)
2 + p

(1)
3 , P (1)

2,3 =

p
(1)
2 + p

(1)
3 and P

(1)
3 = p

(1)
3 . For the basic multisymbol, the

contribution to the entropy H(Y|Mb) which is a result of Y1
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Fig. 1. Example: Choice of the multisymbols for F = 3, T = 1 and T = 2

.

can be written as

H1,b(Y|Mb) =−
∑
y∈Y1

PY|T (y|t) · log2 PY|T (y|t)

=− (P
(1)
1,2,3 log2 P

(1)
1,2,3 + P

(1)
2,3 log2 P

(1)
2,3

+ P
(1)
3 log2 P

(1)
3 ). (26)

Now, let us take a multisymbolMm which is a permutation
of the basic multisymbol, i.e. for the Hamming distance
between the consecutive symbols it holds

dH(xs(t),xs+1(t)) = 1. (27)

The multisymbols that have the property (27) are of special
interest and will be termed minimal multisymbols. For given
F , there are F ! different minimal multisymbols. Indeed, any
minimal multisymbol can be obtained from the basic multi-
symbol by a permutation π of size F , by defining the following
operation:

Mm = γπ(Mb), (28)

where the operation γπ(·) is defined as follows: each element
x′ ∈M′ is obtained from one element x ofM by rearranging
the components of x according to the same selected permu-
tation. For example, if F = 3, the set of basic representatives
is Mb = {000, 001, 101, 111} and the permutation used to
define Π(Mb) is 132, then the obtained set of permuted
representatives isMm = {000, 010, 110, 111}. It is easily ver-
ified that the operation γπ(·) preserves the Hamming distances
between any two representatives xs1 ,xs2 :

dH(xs1 ,xs2) = dH(x′s1 ,x
′
s2) = s2 − s1. (29)

Any minimal multisymbolMm can be obtained by specifying
a permutation πm of length F and applyingMm = γπm(Mb).
Using contradiction, it can be proved that any minimal mul-
tisymbol must be obtained from the basic multisymbol by
applying γπ(·), such that there are in total F ! different minimal
multisymbols.



As an example of a minimal multisymbol we take Mm =
{000, 010, 110, 111}. It is easy to check that the partial con-
tribution to the entropy H(Y|Mm) is given by

H1,m(Y|Mm) =−
∑
y∈Y1

PY|T (y|t) · log2 PY|T (y|t)

=− (P
(1)
1,2,3 log2 P

(1)
1,2,3 + P

(1)
2,3 log2 P

(1)
2,3

+ P
(1)
3 log2 P

(1)
3 ), (30)

where P (1)
1,2,3, P

(1)
2,3 and P (1)

3 are the same as in the case of the
basic multisymbol, leading to H1,m(Y|Mb) = H1,b(Y|Mn),
i.e H(Y|Mm) = H(Y|Mb).

Now, let us take another multisymbol, Mn =
{000, 001, 110, 111}, which is not a permutation of
the basic multisymbol (and thus not a minimal multisymbol),
i.e. the Hamming distance between two consecutive symbols
is not always 1. For this multisymbol, in the right-hand part
of Fig. 1, we show the transitions for the cascade of channels
T −X−Y. The choice of the multisymbol Mn corresponds
to the strategy T = 2. In this case the contribution to the
entropy H(Y|Mn) is given by

H1,n(Y|Mn) =− (P
(1)
1,3 log2 P

(1)
1,3 + P

(1)
2,3 log2 P

(1)
2,3

+ P
(1)
2,3 log2 P

(1)
2,3 ). (31)

In order to compare H1,b(Y|Mn) with H1,n(Y|Mn), we first
present the following property of entropy
Property 1: Let P = {p1, . . . , pi, . . . , pj , . . . , pn} be a set
such that p1 ≥ p2 ≥ · · · ≥ pn ≥ 0. Let us define Q =
{q1, . . . , qi, . . . , qj , . . . , qn} such that qi = pi −∆, qj = pj +
∆,where ∆ ≤ pi − pj and qk = pk,∀ k 6= i, j. Then H(P) ≤
H(Q). The proof of this property is follows from the Jensen
inequality.

With this it is straightforward to conclude that
H1,b(Y|Mb) ≤ H1,n(Y|Mn). Indeed, we denote
P = {P (1)

1,2,3, P
(1)
2,3 , P

(1)
3 }, where it holds that

P
(1)
1,2,3 ≥ P

(1)
2,3 ≥ P

(1)
3 . For the second multisymbol we

denote Q = {P (1)
1,3 , P

(1)
2,3 , P

(1)
2,3 }, where P (1)

1,3 ≥ P
(1)
2,3 . Since

P
(1)
2,3 = P

(1)
1,2,3 − P

(1)
2 = P

(1)
3 + P

(1)
2 , it follows from the

above property that H1,b(Y|Mb) ≤ H1,n(Y|Mn). The same
observation holds for all s = 0, 1, 2, 3.

Hence, the choice of the multisymbol Mt to be the basic
multisymbol, Mt = Mb, or a permutation of it, minimizes
the entropy H(Y|Mt) =

∑3
s=0Hs(Y|Mt). Consecutively,

I(X;Y|Mt) is minimized, which was required in order to
maximize I(T ;Y).

D. The general case

Using the analogy with the presented example, we state the
following result for the general case

Theorem 1: A necessary and sufficient condition to min-
imize I(X;Y|Mt) is that the multisymbol of Mt is a
permutation of the basic set of representatives.

Proof: Let Mb be the basic set of representatives. We
introduce the following notation. For the channel X−Y, we

say that there is a link between x and y if pY|X(y|x) 6= 0. The
elements of X and Y are ordered in ascending order (according
to the binary notation, starting from 0 · · · 0). We denote by ls,k
the number of links (defined by the Z-channel model) ending
at the k-th element ys,k of Ys.For the basic multisymbol, the
number of links ending at ys,k is given by

ls,k =



F − s+ 1 for k = 1
...

F − s− (j − 1) for
(
s+j
s

)
+ 1 ≤ k ≤

(
s+j+1
s

)
...
1 for

(
F−1
s

)
+ 1 ≤ k ≤

(
F
s

)
(32)

where j = 0, 1, . . . , F − s. We note that each link ls,k arises
from different symbol (representative) from the multisymbol
xs(t). The total number of links ending at the elements of Ys
is

Ls =

F−s∑
j=0

(
s+ j

s

)
. (33)

We observe that the total number of links Ls is constant and
independent on the choice of the multisymbol Mt. However,
the choice of the multisymbol affects the distribution of the
number of links between the individual elements of Ys, ls,k,
and thus the entropy H(Y|Mt). For example, in the case
when F = 3 and s = 1, given the choice of the basic
multisymbol Mb, for the number of links at each element
y1,k ∈ Y1, we have {l1,k} = {3, 2, 1}, as represented in Fig.
1. The links at each element y1,k arise from different symbols
from the basic multisymbol Mb = {000, 001, 011, 011, 111}.
For example, the 3 links ending at 001 arise from 001, 011
and 111 respectively, the 2 links at 010 from 011 and 111 and
the 1 link at 100 from 111.

In the case of the multisymbolMn = {001, 011, 110, 111},
for the number of links at each element y1,k ∈ Y1, we have
{l1,k} = {2, 2, 2}, also shown in Fig.1. We see that the total
number of links in both cases is Ls = 6 and does not depend
on the choice of the multisymbol. It is only the distribution of
the links which differs in both cases.

Now, as in the example for F = 3, we define

p
(s)
i =

{
0, for 0 ≤ i < s

εi−s(1−ε)s(F
i )

2F
, for s ≤ i ≤ F

(34)

It holds that p(s)i ≥ p
(s)
i+1, since ε ∈ (0, 1). Additionally, we

define
P

(s)
I =

∑
i∈I

p
(s)
i . (35)

For brevity of the notation, we denote U = {u1, . . . , uK},
where for the basic multisymbol Mb

uk =

{
P

(s)
{s,...,F} for k = 1,

P
(s)
{i+1,...,F} for

(
i
s

)
+ 1 ≤ k ≤

(
i+1
s

) (36)

and i = s, s + 1, . . . , F . For the elements of U obtained in
this way it holds uk ≥ uk+1, k = 1, . . . ,K − 1. For the basic



multisymbol Mb, the contribution at the entropy H(Y|Mb)
resulting from Ys is given by

Hs,b(Y|Mb) = −
K∑
k=1

uk log2 uk, (37)

which is a direct result of (32) and (35).
For example, in the case when F = 4 and s = 2 we have

H2,b(Y|Mb) = −
6∑
k=1

uk log2 uk (38)

where U = {P (2)
{2,3,4}, P

(2)
{3,4}, P

(2)
{3,4}, P

(2)
{4}, P

(2)
{4}, P

(2)
{4}}.

It can be easily shown that for any minimal multisymbol
Mm which is a permutation of the basic multisymbol Mb,
i.e. the Hamming distance between the consecutive symbols
is 1, the set U ′ is identical with the set U of the basic
multisymbol. This is a direct consequence of the properties of
the Z channel. For example, the choice of the multisymbol
Mm = {000, 001, 101, 111} yields a link distribution
equivalent to the one for the basic multisymbol Mb, which
yields the same set of distributions, U .

Now, let us take a multisymbol Mn which is not a
minimal multisymbol. For this multisymbol we define the
set V = {v1, . . . , vK}. This set has the property that vk =
uk, for all k ∈ {1, 2, . . . ,K}/J where J is a set con-
taining an even number of indices, ordered in pairs, J =
{i1, j1, ı2, j2, . . . , im, jm}. For the indices of the set J it holds
vim = uim −∆m and vjm = ujm + ∆m, ∆m ≤ |uim − ujm |.
By applying Property 1 |J |/2 times, it follows that the entropy
associated with V is greater than the entropy associated with U ,
H(V) ≥ H(U). Hence, the choice of the set of representatives
to be the basic multisymbol, or a permutation of it, minimizes
the entropy H(Y|Mt) =

∑F
s=0H(s)(Y|Mt). Consequently,

I(X;Y|Mt) is minimized, which was required in order to
maximize I(T ;Y), which concludes the proof.

Hence, we can conclude that if the multisymbol for each t is
a permutation of the basic multisymbol, then I(X;Y|T = t)
is minimal and constant (independent of t). We recall that
according to (16) we had the following upper bound of the
capacity

C ≤ max
PT (·),PX|T (·)

I(X;Y)− min
PT (·),PX|T (·)

I(X;Y|T ).

Having conducted the analysis of I(X;Y) and I(X;Y|T ),
we can write (16) in the following form

C ≤ CXY − Im. (39)

CXY is the capacity of the X − Y channel, given by (17).
We recall that this capacity is attained by the distribution (19)
and is less or equal to the capacity of the Z-channel. Im is
the minimal value (constant) of I(X;Y|T = t), achieved
by the choice of the multisymbol as a permutation of the
basic multisymbol. It can be explicitly calculated by (21),
by substituting the discussed choice of the multisymbol. The
equality is achieved if and only if there is a pair of distributions

(
PT (·), PX|T (·)

)
that simultaneously attains the maximum and

the minimum in the first and the second term, respectively.
Preliminary results show that it is always possible to find such
distributions, which remains to be formally proven and is a
topic of current work.

V. CONCLUSIONS AND FUTURE WORK

We elaborated on the capacity of communication channels
with protocol coding, where the information is modulated
in the actions taken by the communication protocol of an
existing, primary system. In general, the capacity analysis of
the secondary communication channel depends on the way
the errors are introduced in the communication, i.e. on the
underlying model for the transmission errors. In the previous
works [1], [2], [13], we focused on the case with packet
erasures, based on the block BEC (binary erasure channel).
Here, we extended the capacity results derived in [13], to
the case when the errors are modelled by the Z-channel
model, which is of practical relevance. We used the framework
where the secondary communication channel was represented
through a cascade of channels, which is an alternative to
the Shannon’s representation of channels with causal channel
state information at the transmitter (CSIT). The alternative
framework shows to be an effective tool for capacity com-
putation, independent on the way the errors are introduced in
the communication. Additionally, it can give an insight in the
coding strategies that are approaching the capacity, which is a
part of an ongoing work. A problem of current analysis is the
computation of the capacity under more general error models.
In practice, a secondary channel can be defined over virtually
any existing wireless system and it is of interest to find the
coding strategies that are suited to a certain primary system.
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