Validation of biomarkers of oxidative stress in large-scale human studies

Eugène Jansen¹, P Beekhof¹, D Viezeliene², T Ruskovska³, V Muzakova⁴, J Skalicky⁵

¹Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.

²Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.

³Faculty of Medical Sciences, Goce Delcev University, Stip, Macedonia.

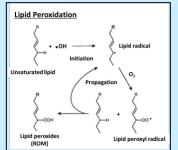
⁴Department of Biological and Biochemical Sciences, University of Pardubice, Czech Republic.

⁵Department of Clinical Biochemistry and Diagnostics, Regional Hospital of Pardubice, Czech Republic.

Email corresponding author: eugene.jansen@rivm.nl

Introduction

Oxidative stress has been proposed to be important in age-related processes and chronic diseases. In the EC-FP7 project CHANCES a biomarker approach was used to study both the aging process and the prevalence of chronic diseases.


Materials and methods

ROM (Reactive Oxygen Metabolites, Diacron, Grosseto, Italy) was used as biomarker for oxidative stress.

BAP (Biological Antioxidant Potential, Diacron) for the antioxidant status.

TTL (Total Thiol Levels, RelAssay, Gaziantep, Turkey or Diacron for the redox status.

The assays were adapted for use on an auto-analyzer (Beckman-Coulter).

ROM test (Reactive Oxygen Metabolites) R-OOH \uparrow + Fe²⁺ \rightarrow R-O* + OH⁻ R-O* + A-NH₂ \rightarrow R-O⁻ + [A-NH₂*]⁺ \uparrow

BAP test (Biological Antioxidant Potential)

Fe³⁺- NH₄SCN + serum (AO)↑

→ Fe²⁺-NH₄SCN↑

TTL test (Total Thiol Levels)
P-SH + RO*↑ → P-S-S-P + P-SH \lor P-SH + DTNB → [DTNB]* \lor

Results

The biomarkers were tested for their performance and stability on short- and long-term storage.

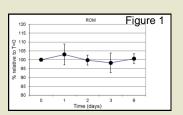
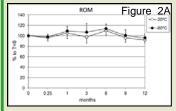
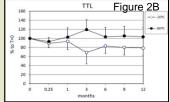
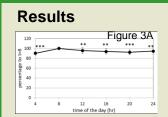




Figure 1: Short-time stability of ROM on storage at 4 hrs/day at RT



<u>Figure 2</u>: Long-time stability of ROM (A) and TTL (B) upon storage at two different temperatures.

Conclusions

A set of biomarkers of oxidative stress was selected for use on a clinical auto-analyzer to perform large-scale studies. The biomarkers ROM, BAP and TTL were selected based on their short- and long-term stability, lack of circadian and post-prandial variations. This set of biomarkers was successfully applied in a number of large-scale European studies with more than 15,000 samples. The results suggest that ROM and TTL are risk markers for several chronic diseases and aging.

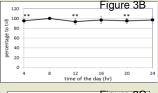
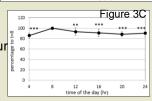



Figure 3: Circadian behaviour of ROM (A), BAP (B) and TTL (C).

ROM, BAP and TTL showed no very significant deviations during blood sampling at different time of the day, nor post-prandial effects 2 hours after a meal (Figure 3).

References

- A Leufkens, et al. Biomarkers of oxidative stress and risk of colorectal cancer. Amer J Epidemiol, 175, 653-663, 2012.
- E Jansen, et al. Long term stability of cancer biomarkers of oxidative stress, redox status, etc. Biomarkers in Medicine, 9, 425-432, 2015.
- E Jansen et al. Long term stability of parameters of antioxidant status in human serum. Free Radical Res, 47, 535-540, 2013.
- E Jansen et al. Short-term stability of biomarkers of oxidative stress and antioxidant status. ISRN Biomarkers, Vol 2013, Article ID 316528.
- B Schöttker et al. Oxidative Stress Markers and All-Cause Mortality at Older Age: A Population-Based Cohort Study. J Gerontol A Biol Sci Med Sci. 2015 70:518-524.
- K-U Saum, et al. Association between oxidative stress and frailty in an elderly German population: results from the ESTHER cohort study. Gerontology. On-line April 24, 2015. (DOI:10.1159/000380881)

Acknowledgements

This study was conducted by the National Institute for Public Health and the Environment (project S/340006).