

BOOK of ABSTRACTS

2nd International Conference

Under the official patronage of the President of the National Atomic Energy Agency

WORKSHOP

GOLD SPONSOR:

SILVER SPONSOR:

SPONSORS:

BOOK of ABSTACTS 2- INTERNATIONAL CONFERENCE "RADON IN THE ENVIRONMENT 2015"; KRAKÓW, POLAND

ORGANIZING COMMITTEE

Institute of Nuclear Physics PAN, POLAND

Krzysztof KOZAK

- chairman

Jadwiga MAZUR

- co-chairman, scientific secretary

Dominik GRZĄDZIEL

Mariusz MROCZEK

SCIENTIFIC COMMITTEE:

Maciej BUDZANOWSKI

Institute of Nuclear Physics PAN (IFJ PAN), POLAND

Fernando P. CARVALHO

University of Lisbon (IST), PORTUGAL

Jing CHEN

Radiation Protection Bureau, Health Canada, CANADA

Werner HOFMANN

University of Salzburg, AUSTRIA

Karol HOLY

Comenius University, SLOVAKIA

Geraldine IELSCH

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), FRANCE

Mirosław JANIK

National Institute of Radiological Sciences (NIRS), JAPAN

Tibor KOVACS

University of Panonnia, HUNGARY

Krzysztof KOZAK

Institute of Nuclear Physics PAN (IFJ PAN), POLAND

Beata KOZŁOWSKA

University of Silesia, POLAND

Jadwiga MAZUR

Institute of Nuclear Physics PAN (IFJ PAN), POLAND

Luis S. Quindós PONCELA

University of Cantabria, SPAIN

Tadeusz PRZYLIBSKI

Wroclaw University of Technology, POLAND

Vanja RADOLIČ

University of Osijek, CROATIA

Rakesh C. RAMOLA

H.N.B. Garhwal University, INDIA

Shinji TOKONAMI

Hirosaki University, JAPAN

Janja VAUPOTIČ

Jožef Stefan Institute, SLOVENIA

Małgorzata WYSOCKA

Central Mining Institute (GIG), POLAND

Institute of Industrial Ecology, RUSSIA

Michael ZHUKOVSKY

-

Weihai ZHUO

Fudan University, CHINA

Zora S. ZUNIČ

Vinča Institute of Nuclear Sciences, SERBIA

Book of abstracts edited by:

Jadwiga Mazur (IFJ PAN, Poland) Krzysztof Kozak (IFJ PAN, Poland)

Wydano Nakładem Instytutu Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk Kraków 2015

ISBN 978-83-63542-44-3

A03

R

short ed to

ch as /ed in an in

ficant

f this ather

it the

uence y the

radon

fected ds all

radon | | by a

eason

gh the ve an

refore

e also

DOSE ASSESSMENT DUE TO RADON EXPOSURE IN DWELLINGS, SCHOOLS AND KINDERGARTEN

Zdenka Stojanovska¹, Zora S. Zunic², Kremena Ivanova³, Peter Bossew⁴, Blazo Boev¹, MartinaTsenova³, Vaso Taleski¹

Goce Delcev University, Faculty of Medical sciences, Stip, Republic of Macedonia University of Belgrade, Institute of Nuclear Sciences "Vinča", Belgrade, Serbia National Center of Radiobiology and Radiation Protection, Sofia, Bulgaria German Federal Office for Radiation Protection, Berlin, Germany

E-mail: zdenka.stojanovska@ugd.edu.mk

Radon concentrations measurements were performed in 40 dwellings, 35 elementary schools and 5 kindergartens in 3 municipalities in Republic of Macedonia by two types CR-39 nuclear track detectors. In the dwellings, the measurements were performed with detectors commercially named RSKS for one year period from June 2013 to May 2014 in the most occupied rooms of the buildings: living room or bedroom. The detectors type Gamma 1 were exposed for the same period in the kindergartens playroom or bedroom. The measurements in schools were performed in one classroom with paired Gamma 1 detectors. One detector was exposed during the same period as detectors in the dwellings and kindergarten and other in the period of the school year duration, starting September 2013 to May 2014. In order to check reproducibility of the results paired RSKS and Gamma 1 detectors were exposed in five schools. We accepted equality of the results at 95% confidence level.

The distribution of the measured data in all observed buildings was well fitted by lognormal function. The geometric mean values of radon concentrations obtained for dwellings (129 Bq/m³), schools (127 Bq/m³) and kindergartens (125 Bq/m³) in these municipalities were higher than country average radon concentration (84 Bq/m³) reported in national survey. Taking into account different occupation time the estimated annual effective doses due to radon exposure were found to be 3.3 mSv in dwellings, 0.8 mSv in kindergartens, 0.4 mSv for teachers in schools and 0.3 mSv for children in schools. We obtained that different exposure time of detectors in schools did not influence annual effective dose for teachers and children.

annual

radon

air. Sci

A04

RADON GENERATION AND DECAY FROM SOIL AND GROUNDWATER OF BUDHAKEDAR REGION, GARHWAL HIMALAYA, INDIA

Subhash Chandra^{1,*}, Ganesh Prasad², Sanjeev Kimothi³, Gurupad Singh Gusain⁴ and R.C. Ramola^{5,#}

¹ Department of Physics Govt. P.G. College Agastyamuni, Rudraprayg-246421, India ² Department of Physics Govt. P.G. College Purola, Uttarkashi-249185, India ³ Department of Physics SRHU, Doiwala, Dehradun-248140, India ⁴ Department of Physics Govt. P.G. College New Tehri, Tehri Garhwal-249001, India ⁵ Department of Physics H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249199, India.

*E-Mail: subhash.physics@gmail.com, # rcramola@gmail.com

Radon enters in the environment through diffusion and transport from the soil and ground surface. Atmospheric radon is considered to be the most effective element of health risk. Diffusion of radon through soil is strongly affected by the degree of water saturation of the soil pores. This paper reports the radon emanation power of soil samples in Budhakedar area of Garhwal Himalaya, India. The formulations are applied to the experimentally measured radon data from soil of the study area. The estimated rate of generation and decay of radon in Budhakedar area ranges from 6.8×10^{-5} Bq.m⁻³s⁻¹ to 89.9×10^{-5} Bq.m⁻³s⁻¹ and 1.4×10^{-5} Bq.m⁻³s⁻¹ to 42.9×10^{-5} Bq.m⁻³s⁻¹, respectively. The quantity of radon present in soil or in groundwater depends directly on trace concentration of radium in the earth's crust. It is observed that the total generated radon in soil of the earth crust is more than the decay of radon in the same medium. The generation and decay of radon can be described with the traditional single phase diffusion advection equation. Generated radon values are validated with the radon emanation rate measured by plastic track detector (LR-115 type II) technique for two different seasons of a year.

Keywords: Radon; Generation; Decay; Groundwater; Soil-Gas